This is a good article. Click here for more information.

अवकलज

From Vigyanwiki
Revision as of 10:10, 10 December 2022 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक कार्य का लेखाचित्र, काले रंग में खींचा गया है, और उस लेखाचित्र की स्पर्श रेखा, लाल रंग में खींची गई है। स्पर्शरेखा रेखा का ढलान चिह्नित बिंदु पर कार्य के व्युत्पन्न के एकरूप है।

गणित में, वास्तविक चर के एक प्रकार्य का व्युत्पन्न इसके तर्क(निविष्ट मान) में परिवर्तन के संबंध में प्रकार्य मान(प्रक्षेपण मान) के परिवर्तन की संवेदनशीलता को मापता है। उदाहरण के लिए, समय के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का वेग है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है।

किसी सुचयनित निवेश मूल्य पर एकल चर के कार्य का व्युत्पन्न जब उपस्थित होता है, तो उस बिंदु पर कार्य के लेखाचित्र पर स्पर्शरेखा का ढलान होता है। स्पर्शरेखा उस निवेश मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को प्रायः परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है।

व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए समूहीकृत किया जा सकता है। इस सामूहीकरण में, व्युत्पन्न की एक रैखिक परिवर्तन के रूप में पुनर्व्याख्या की जाती है जिसका लेखाचित्र(उचित अनुवाद के बाद) मूल कार्य के लेखाचित्र के लिए सबसे अच्छा रैखिक सन्निकटन है। जैकबियन आव्यूह(गणित) है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी गणना स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन आव्यूह प्रवणता संवाहक में कम हो जाता है।

व्युत्पन्न खोजने की प्रक्रिया को विवेक कहा जाता है। विपरीत प्रक्रिया को 'विरोधी विशिष्टीकरण' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।[Note 1]

परिभाषा

वास्तविक चर f(x) का एक फलन इसके प्रांत के एक बिंदु a पर अवकलनीय है, यदि इसके प्रांत में एक खुला अंतराल I होता है जिसमें a सम्मिलित है, और जिसकी सीमा निम्न होती है:

इसका उद्देश्य यह है कि, हर सकारात्मक वास्तविक संख्या के लिए(यहां तक ​​कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या ऐसे उपस्थित होती है, जैसे कि, प्रत्येक h के लिए तथा फिर परिभाषित किया गया है, और

जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं(देखें(ε, δ)-सीमा की परिभाषा)।

यदि फलन f पर a अवकलनीय है, यानी अगर सीमा L उपस्थित है, तो इस सीमा को f पर a का व्युत्पन्न और निरूपित कहा जाता है,(a के प्रमुख f के रूप में पढ़ें) या (f के व्युत्पन्न के रूप में पढ़ें इसके संबंध में x पर a,dy द्वारा dx पर a, या dy ऊपर dx पर a); देखना § प्रतीकांकन (सूचना ), नीचे

निरंतरता और भिन्नता

File:Right-continuous.svg
इस कार्य का चिह्नित बिंदु पर कोई व्युत्पन्न नहीं है, क्योंकि कार्य वहां निरंतर नहीं है(विशेष रूप से, इसमें कूदना बंद करो है)।

यदि f, a पर अवकलनीय है, तो f भी a पर निरंतर होना चाहिए। एक उदाहरण के रूप में, कोई बिंदु a चुनें और f को चरण फलन होने दें जो a से कम सभी x के लिए मान 1 लौटाता है, और a से अधिक या उसके बराबर सभी x के लिए भिन्न मान 10 लौटाता है, f का a पर व्युत्पन्न नहीं हो सकता। यदि h ऋणात्मक है, तो a + h कदम के निचले हिस्से पर है, अतः a से a + h तक की छेदक रेखा बहुत खड़ी है, और वैसे ही h शून्य की ओर जाता है जैसे ढलान अनंत की ओर जाती है। यदि h सकारात्मक है, तो a + h सीढी के ऊँचे भाग पर है, अत: a से a + h तक की छेदक रेखा का ढाल शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा उपस्थित नहीं है।

File:Absolute value.svg
निरपेक्ष मूल्य फलन निरंतर है, लेकिन पर अवकलनीय होने में विफल रहता है x = 0 चूँकि स्पर्शरेखा ढलान बाईं शैली से उसी मूल्य तक नहीं पहुँचती है जैसा कि वे दाईं शैली से करते हैं।

यद्यपि, समान ही कोई कार्य किसी बिंदु पर निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए,f(x) = |x| द्वारा दिया गया निरपेक्ष मान फलन x = 0 पर निरंतर है, लेकिन यह वहां भिन्न नहीं है। यदि h धनात्मक है, तो 0 से h तक छेदक रेखा का ढाल एक होता है, जबकि यदि h ऋणात्मक है, तो 0 से h तक की छेदक रेखा का ढाल ऋणात्मक है। इसे रेखांकन के रूप में x = 0 पर लेखाचित्र में व्याकुंचन या संक्रांति के रूप में देखा जा सकता है। यहां तक ​​​​कि एक सुचारू लेखाचित्र वाला कार्य उस बिंदु पर अलग-अलग नहीं होता है जहां इसकी लंबवत स्पर्शरेखा होती है: उदाहरण के लिए, f(x) = x1/3 द्वारा दिया गया फलन x = 0 पर अवकलनीय नहीं है।

सारांश में, एक ऐसा फलन जिसमें एक व्युत्पन्न होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई व्युत्पन्न नहीं होता।

अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या इतस्ततः हर जगह व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एकदिष्ट फलन या लिप्सचिट्ज़ फलन है, तो यह सत्य है। यद्यपि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब वीयरस्ट्रैस फलन के रूप में जाना जाता है। 1931 में, स्टीफन बानाच ने सिद्ध किया कि किसी बिंदु पर व्युत्पन्न वाले कार्य का निर्धारित सभी निरंतर कार्य के स्थान पर एक अल्प निर्धारित है।[1] अनौपचारिक रूप से, इसका उद्देश्य यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है।

एक फलन के रूप में व्युत्पन्न

File:Tangent function animation.gif
अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के एकरूप है:

मान लीजिए कि f एक ऐसा फलन है जिसके प्रांत के प्रत्येक बिंदु पर एक व्युत्पन्नहै। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु x को मानचित्र करता है x पर f के व्युत्पन्न के मूल्य के लिए। इसे फलन f' लिखा जाता है और इसे व्युत्पन्न फलन या f का व्युत्पन्न कहते हैं।

कभी-कभी f का व्युत्पन्न अधिक से अधिक होता है, लेकिन सभी का नहीं, इसके अनुक्षेत्र के अंको का। वह फलन जिसका मान a f′(a) के बराबर होता है जब भी f′(a) परिभाषित होता है और अन्यत्र अपरिभाषित होता है, उसे f का व्युत्पन्न भी कहा जाता है। यह अभी भी एक फलन है, लेकिन इसका प्रांत f के प्रांत से छोटा हो सकता है।

इस विचार का उपयोग करते हुए, विवेक कार्यों का कार्य बन जाता है: व्युत्पन्न एक संचालक(गणित) है जिसका अधिक्षेत्र उन सभी कार्यों का निर्धारित है जिनके अधिक्षेत्र के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक निर्धारित है। यदि हम इस संकारक को D से निरूपित करते हैं, तो D(f) का फलन f′ है, इसका मूल्यांकन एक बिंदु a पर किया जा सकता हैै। व्युत्पन्न फलन की परिभाषा के द्वारा, D(f)(a) = f(a).

तुलना के लिए, f(x) = 2x द्वारा दिए गए दोहरीकरण फलन पर विचार करें , f एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को निवेश के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है:

परिचालक D यद्यपि, अलग-अलग नंबरों पर परिभाषित नहीं है। यह केवल कार्यों पर परिभाषित किया गया है:

क्योंकि D का प्रक्षेपण एक कार्य है, D के प्रक्षेपण का मूल्यांकन एक बिंदु पर किया जा सकता है। उदाहरण के लिए, जब D को चौकोर कार्य पर लागू किया जाता है, xx2, D दोहरीकरण कार्य x ↦ 2x को प्रक्षेपण करता है, जिसे हमने f(x) नाम दिया है। इस प्रक्षेपण कार्य का मूल्यांकन f(1)= 2, f(2)= 4, और इसी तरह प्राप्त करने के लिए किया जा सकता है।

उच्च व्युत्पन्न

मान लीजिए f एक अवकलनीय फलन है और f ′ इसका व्युत्पन्न है। यदि f' का व्युत्पन्न(यदि इसमें एक है) को f'' ​​लिखा जाता है और इसे f का दूसरा व्युत्पन्न कहते हैं। इसी प्रकार, दूसरे व्युत्पन्न का अवकलज, यदि उसका अस्तित्व है, को f' लिखा जाता है तो उसे f का तीसरा व्युत्पन्न कहा जाता हैैं। इस प्रक्रिया को जारी रखते हुए, nth व्युत्पन्न को(n−1)th व्युत्पन्न के रूप में परिभाषित किया जा सकता है, यदि यह अस्तित्व में है। इन पुनरावर्ती गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। nth व्युत्पन्न को कोटि n का व्युत्पन्न भी कहा जाता है और इसे f(n) से निरूपित किया जाता है।.

यदि x(t) समय t पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है, तब x के उच्च-क्रम के व्युत्पन्न की भौतिकी में विशिष्ट व्याख्या होती है। पहला व्युत्पन्न x वस्तु का वेग है। दूसरा व्युत्पन्न x त्वरण है। तीसरा व्युत्पन्न x झटका(भौतिकी) है। और अंत में, चौथे से छठे व्युत्पन्न x हैं उछाल, लोकप्रिय; खगोल भौतिकी के लिए सबसे अधिक लागू।

एक फलन f व्युत्पन्न होने की आवश्यकता नहीं है(उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, समान ही f एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, मान लेते हैं

गणना यह दर्शाती है f एक अवकलनीय फलन है जिसका व्युत्पन्न द्वारा दिया गया है

f'(x) x पर निरपेक्ष मान फलन का दुगुना है, और इसका शून्य पर कोई व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक कार्य में प्रत्येक गैर-ऋणात्मक पूर्णांक k के लिए kth व्युत्पन्न हो सकता है, लेकिन(k + 1) वें व्युत्पन्न नहीं हो सकता। एक कार्य जिसमें k क्रमिक व्युत्पन्न होते हैं, k गुना अवकलनीय कहलाता है। यदि इसके अलावा kth व्युत्पन्न निरंतर है, तो कार्य अवकलनीयता वर्ग Ck का कहा जाता है।(k व्युत्पन्न होने की तुलना में यह एक मजबूत स्थिति है, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है सहजता § उदहारण।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक व्युत्पन्न होते हैं, अपरिमित रूप से अवकलनीय या सहजता कहलाता है।

वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मानक विभेदन नियमों के अनुसार, यदि n श्रेणी के एक बहुपद को n बार अवकलित किया जाता है, तो यह एक निरंतर कार्य बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे उपस्थित हैं, इसलिए बहुपद सहज कार्य हैं।

एक बिंदु x पर एक कार्य f के व्युत्पन्न उस कार्य को x के पास बहुपद सन्निकटन प्रदान करते हैं। उदाहरण के लिए, यदि f दो बार अवकलनीय है, तब

इस अर्थ में कि

यदि f असीम रूप से भिन्न है, तो यह x के चारों ओर x + h पर मूल्यांकन किए गए f के लिए टेलर श्रृंखला की शुरुआत है।

विभक्ति बिंदु

एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।[2] एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, f( x ) = x 3 f(x) = x^3 द्वारा दिए गए कार्य के विभक्ति बिंदु x = 0 के कारक में, या यह अस्तित्व में विफल हो सकता है, जैसा कि द्वारा दिए गए फलन के विभक्ति बिंदु x = 0 के कारक में। एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर विपर्येण करता है।

अंकन(विवरण)

लीबनिज का अंकन

प्रतीक , , तथा 1675 में गॉटफ्रीड विल्हेम लीबनिज द्वारा पेश किए गए थे।[3] यह तब भी सामान्यतः प्रयोग किया जाता है जब समीकरण y = f(x) निर्भर और स्वतंत्र चर के बीच कार्यात्मक संबंध के रूप में देखा जाता है। फिर पहले व्युत्पन्न द्वारा निरूपित किया जाता है

और एक बार एक अतिसूक्ष्म भागफल के रूप में सोचा गया था। उच्च व्युत्पन्न्स को संकेतन का उपयोग करके व्यक्त किया जाता है

y = f( x ) के nth व्युत्पन्न के लिए ये व्युत्पन्न संचालक के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए,

Leibniz's के अंकन के साथ, हम बिंदु x = a पर y का व्युत्पन्न दो भिन्न तरीकों से लिख सकते हैं::

Leibniz's के अंकन से विभेदीकरण(हर में) के लिए चर निर्दिष्ट करने की अनुमति मिलती है, जो आंशिक व्युत्पन्न में प्रासंगिक है। इसकी उपयोग श्रृंखला नियम को लिखने के लिए भी की जा सकती है[Note 2]

लैग्रेंज का अंकन

कभी-कभी मुख्य अंकन पद्धति के रूप में जाना जाता है,[4] विवेक के लिए सबसे सामान्य आधुनिक अंकन पद्धति में से एक जोसेफ-लुई लाग्रेंज के कारण है और मुख्य(प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके निरूपित किया जाता है । इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता हैै।

तथा

इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक अधिलेख में प्राचीन रोमी अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं:

या

उत्तरार्द्ध संकेतन f के nth व्युत्पन्न के लिए संकेतन f(n) प्राप्त करने के लिए सामान्यीकृत करता है- यह संकेतन तब सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है।

न्यूटन का अंकन

अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, एक समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि , तो

तथा

क्रमशः, y के पहले और दूसरे व्युत्पन्न को निरूपित करें। यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह सामान्यतः पर भौतिकी और अंतर ज्यामिति में अंतर समीकरणों में प्रयोग किया जाता है।[5][6] डॉट अंकन पद्धति, यद्यपि उच्च-अनुक्रम व्युत्पन्न(अनुक्रम 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता।

यूलर का अंकन

लियोनहार्ड यूलर के संकेतन में अवकल संकारक D का उपयोग होता है, जो पहले अवकलज D f देने के लिए फलन f पर लागू होता है। Nth व्युत्पन्न को निरूपित किया जाता हैै।

यदि y = f(x) एक आश्रित चर है, तो प्रायः स्वतंत्र चर x को स्पष्ट करने के लिए पादांक x को D से जोड़ा जाता है। इसके बाद यूलर का अंकन लिखा जाता है

या ,

यद्यपि यह पादांक प्रायः छोड़ दिया जाता है जब चर x को समझा जाता है, उदाहरण के लिए जब यह अभिव्यक्ति में उपस्थित एकमात्र स्वतंत्र चर है।

रैखिक अवकल समीकरणों को बताने और हल करने के लिए यूलर का संकेतन उपयोगी है।

गणना के नियम

एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है।

मूलतत्त्व कार्यों के लिए नियम

यहां सबसे सामूल्य्य मूलतत्त्व कार्यों के व्युत्पन्न के नियम हैं, जहां एक वास्तविक संख्या है।

  • शक्ति नियम:
  • घातांकीकार्य और लघुगणक कार्य:
  • त्रिकोणमितीय फलन:
  • व्युत्क्रम त्रिकोणमितीय कार्य:

संयुक्त कार्यों के लिए नियम

मूलतत्त्व कार्यों के व्युत्पन्न से कार्य संरचना के व्युत्पन्न को निकालने के लिए यहां कुछ सबसे मूलतत्त्व नियम दिए गए हैं।

  • स्थिर नियम: यदि f(x) स्थिर है, तो
  • विभेदन की रैखिकता:
    सभी कार्यों f और g और सभी वास्तविक संख्याओं तथा .के लिए
  • उत्पादन नियम:
    सभी कार्यों के लिए f और g। एक विशेष मामले के रूप में, इस नियम में तथ्य शामिल है जब भी एक स्थिर है, क्योंकि निरंतर नियम से।
  • भागफल नियम:
    सभी कार्यों के लिए f और g सभी निवेश पर जहां g ≠ 0.
  • समग्र कार्यों के लिए चेन नियम: यदि , फिर

संगणना उदाहरण

द्वारा दिए गए कार्य का व्युत्पन्न

है

यहाँ दूसरे पद की गणना श्रृंखला नियम का उपयोग करके और तीसरे पद की गणना उत्पाद नियम का उपयोग करके की गई है। प्रारंभिक कार्यों x के ज्ञात व्युत्पन्न x2, x4, sin(x), ln(x) और exp(x) = ex, साथ ही साथ स्थिरांक 7 का भी उपयोग किया गया था।

हाइपररियल्स के साथ परिभाषा

अति वास्तविक संख्या विस्तारण के सापेक्ष RR वास्तविक संख्याओं का, वास्तविक फलन का व्युत्पन्न y = f(x) एक वास्तविक बिंदु पर x भागफल की इमेज(गणित) के रूप में परिभाषित किया जा सकता है y/x अनंत के लिए x, कहाँ पे y = f(x + ∆x) − f(x).यहाँ f से हाइपररियल्स के प्राकृतिक विस्तार को अभी भी f निरूपित किया गया है। यहाँ कहा जाता है कि व्युत्पत्ति का अस्तित्व है यदि इमेज सुचयनित अपरिमेय से स्वतंत्र है।

उच्च आयामों में

संवाहक -मूल्यवान कार्य

एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान Rn में सदिशों को वास्तविक संख्याएँ भेजता है, एक संवाहक -मूल्यवान कार्य को इसके समन्वय कार्यों y1(t), y2(t), ..., yn(t) में विभाजित किया जा सकता है , जिसका अर्थ है कि y(t) = (y1(t), ..., yn(t)). इसमें शामिल है, उदाहरण के लिए, R2 या R3 में प्राचलिक वक्र। समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(t) के व्युत्पन्न को संवाहक(ज्यामितीय) के रूप में परिभाषित किया गया है, जिसे वक्रों की विभेदक ज्यामिति कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है,

समूल्य रूप से,

अगर सीमा उपस्थित है। अंश में घटाव सदिशों का घटाव है, अदिश राशियों का नहीं। यदि y का व्युत्पन्न t के प्रत्येक मूल्य के लिए उपस्थित है, तो y' एक अन्य सदिश-मूल्यवान फलन है।

यदि e1, ..., en Rn का मूल्यक आधार है, तो 'y'(t) को इस रूप में भी लिखा जा सकता है y1(t)e1 + ⋯ + yn(t)en. अगर हम गृहीत हैं कि संवाहक-मूल्यवान कार्य का व्युत्पन्न विवेक संपत्ति की रैखिकता को बरकरार रखता है, तो y(t) का व्युत्पन्न होना चाहिए

क्योंकि प्रत्येक आधार सदिश एक स्थिर है।

यह सामूहीकरण उपयोगी है, उदाहरण के लिए, यदि y(t) समय t पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(t) समय t पर कण का वेग सदिश है।

आंशिक व्युत्पन्न

मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए,

f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के पूर्णके रूप में पुनर्व्याख्या की जा सकती है:

दूसरे शब्दों में, x का प्रत्येक मान एक फलन चुनता है, जिसे fx द्वारा निरूपित किया जाता है, जो कि एक वास्तविक संख्या का फलन है।[Note 3] वह है,

एक बार x का मूल्य चुने जाने के बाद, a कहें, फिर f(x, y) एक कार्य f निर्धारित करता है जो y को a2 + ay + y2 भेजता है:

इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए fa केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक फलन के लिए व्युत्पन्न की परिभाषा लागू होती है:

उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है:

यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के स्थान पर der , del , या आंशिक उच्चारित किया जाता है।

सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' f(x1, …, xn) दिशा में xi बिंदु पर(a1, ..., an) के रूप में परिभाषित किया गया है:

उपरोक्त अंतर भागफल में, xi को छोड़कर सभी चर स्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है

और, परिभाषा के अनुसार,

दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले अनुक्रमणिका के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है।

यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। f(x1, ..., xn) ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न f / ∂xj का f बिंदु पर परिभाषित किया गया है a = (a1, ..., an), ये आंशिक व्युत्पन्न संवाहक को परिभाषित करते हैं

जिसे a पर f की प्रवणता कहते हैं। यदि f किसी अधिक्षेत्र में प्रत्येक बिंदु पर अवकलनीय है, तो प्रवणता एक संवाहक -मूल्यवान कार्य ∇f है जो बिंदु (a1, ..., an) को संवाहक f(a1, ..., an) से मानचित्र करता है।नतीजतन, ढाल एक संवाहक क्षेत्र निर्धारित करता है।

दिशात्मक व्युत्पन्न

यदि f 'Rn' पर एक वास्तविक-मूल्यवान फलन है, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक व्युत्पन्नf में x दिशा और y दिशा में परिवर्तन को मापता है। यद्यपि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे विकर्ण रेखा y = x के साथ। इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक संवाहक चुनें

बिंदु x पर v की दिशा में 'f की दिशात्मक व्युत्पत्ति सीमा है

कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। ईकाई संवाहक की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को संचालन करने के लिए प्रायः ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए v = λu जहाँ u, v की दिशा में एक इकाई सदिश है। स्थानापन्न h = k/λ अंतर भागफल में अंतर भागफल बन जाता है:

यह 'u' के संबंध में f के दिशात्मक व्युत्पन्न के लिए अंतर भागफल का λ गुना है। इसके अपवाद, जब h शून्य की शैली प्रवृत्त होता है तो सीमा को लेना वैसा ही है जैसे कि k को शून्य की शैली ले जाने की सीमा लेना क्योंकि h और k एक दूसरे के गुणक हैं। इसलिए, Dv(f) = λDu(f) इस पुनर्विक्रय संपत्ति के कारण, दिशात्मक व्युत्पन्न को प्रायः ईकाई संवाहक के लिए ही मूल्या जाता है।

यदि f के सभी आंशिक व्युत्पन्न उपस्थित हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं:

यह पूर्ण व्युत्पन्न की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ Dv + w(f) = Dv(f) + Dw(f) हैै।

वही परिभाषा तब भी काम करती है जब f 'Rm' में मूल्य वाला कार्य है उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक व्युत्पन्न 'Rm' में एक सदिश है।

पूर्ण व्युत्पन्न, पूर्णअंतर और जैकबियन आव्यूह

जब f, Rn से Rm के एक खुले उपसमुच्चय से एक कार्य है, तो एक चुनी हुई दिशा में f का दिशात्मक व्युत्पन्न उस बिंदु पर और उस दिशा में f के लिए सबसे अच्छा रैखिक सन्निकटन है। लेकिन जब n > 1, कोई भी एकल दिशात्मक व्युत्पन्न f के व्यवहार का पूरा चित्र नहीं दे सकता है। पूर्ण व्युत्पन्न एक बार में सभी दिशाओं पर विचार करके पूरा चित्र देता है। अर्थात, 'a' से शुरू होने वाले किसी भी सदिश 'v' के लिए, रैखिक सन्निकटन सूत्र धारण करता है:

एकल-चर व्युत्पन्न की तरह, f ′(a) चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो।

यदि n और m दोनों एक हैं, तो व्युत्पन्न f ′(a) एक संख्या है और अभिव्यक्ति f ′(a)v दो संख्याओं का गुणनफल है। लेकिन उच्च आयामों में, f ′(a) के लिए एक संख्या होना असंभव है। यदि यह एक संख्या होती, तो f ′(a)v Rn में एक सदिश होता जबकि अन्य पद Rm में सदिश होते, और इसलिए सूत्र का कोई अर्थ नहीं होगा। रैखिक सन्निकटन सूत्र को समझने के लिए, f ′(a) एक ऐसा कार्य होना चाहिए जो Rn में संवाहक को Rm में संवाहक भेजता है, और f ′(a)v को v पर मूल्यांकन किए गए इस कार्य को निरूपित करना चाहिए।

यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है

ध्यान दें कि यदि हम एक और संवाहक w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह v के लिए w और a के लिए a + v दोनों को प्रतिस्थापित करके एक तीसरा सन्निकट समीकरण निर्धारित करता है। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं

अगर हम गृहीत हैं कि v छोटा है और व्युत्पन्न लगातार a में बदलता रहता है, तो f ′(a + v) इतस्ततः एकरूप f ′(a) है , और इसलिए दाहिनी शैलीइतस्ततः शून्य है। रैखिक सन्निकटन सूत्र का उपयोग करके बाएं हाथ की शैली को एक अलग तरीके से फिर से लिखा जा सकता है v + w, v के लिए प्रतिस्थापित। रैखिक सन्निकटन सूत्र का अर्थ है:

इससे पता चलता है कि f ′(a) सदिश समष्टि Rn से सदिश समष्टि Rm में एक रैखिक रूपांतरण है। वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मान लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, f ′(a) एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। v और w शून्य की शैली बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। अतः हम पूर्ण व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, f ′(a) एक रैखिक परिवर्तन होना चाहिए।

एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। यद्यपि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि सामान्यतः पर संवाहक को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश को अधिक्षेत्र Rm में स्थित है जबकि हर 'Rn' अधिक्षेत्र में स्थित है, इसके अपवाद, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि f ′(a) सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं अन्तेर्ध्यान हो जाती हैं। यदि f : RR, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए युक्तियोजित किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या f ′(a) है ऐसा है कि

यह इसके एकरूप है

क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मान की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक(गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है।

इसलिए, a पर f के कुल व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक रूपांतरण f ′(a) : RnRm ऐसा है कि

यहाँ h, Rn में एक सदिश राशि है, इसलिए हर में मूल्यक 'Rn' पर मूल्यक लंबाई है. यद्यपि, f′('a')'h' 'Rm' में एक संवाहक है, और अंश में मूल्यदंड 'Rm' पर मूल्यक लंबाई है, यदि v एक संवाहक है जो a से शुरू होता है, तो f ′(a)v 'f' द्वारा v का बाध्य अग्रसर f(अंतर) कहा जाता है और कभी-कभी fv लिखा जाता है .

यदि पूर्ण व्युत्पन्न a पर उपस्थित है, तो f के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर उपस्थित हैं, और सभी v के लिए, f ′(a)v दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि f = (f1, f2, ..., fm), तो पूर्ण व्युत्पन्न को आव्यूह(गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर f का जैकबियन आव्यूह कहा जाता है:

पूर्ण व्युत्पन्न f′(a) का अस्तित्व सभी आंशिक व्युत्पन्न के अस्तित्व से दृढता से मजबूत है, लेकिन यदि आंशिक व्युत्पन्न उपस्थित हैं और निरंतर हैं, तो पूर्ण व्युत्पन्न उपस्थित है, जैकबियन द्वारा दिया गया है, और लगातार निर्भर करता है a पर।

पूर्ण व्युत्पन्न की परिभाषा एक चर में व्युत्पन्न की परिभाषा को समाहित करती है। यदि f वास्तविक चर का वास्तविक-मूल्यवान कार्य है, तो पूर्ण व्युत्पन्न उपस्थित है और केवल सामूल्य्य व्युत्पन्न उपस्थित है। जेकोबियन आव्यूह 1×1 आव्यूह में कम हो जाता है जिसका एकमात्र प्रवेश व्युत्पन्न f'(x) है। यह 1×1 आव्यूह उस संपत्ति को संतुष्ट करता है जो f(a + h) − (f(a) + f ′(a)h) इतस्ततः शून्य है, दूसरे शब्दों में

चर बदलने तक, यह कथन है कि कार्य a पर f के लिए सबसे अच्छा रैखिक सन्निकटन है।

किसी कार्य का पूर्ण व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर विभक्ति। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के पूर्ण व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, पूर्ण व्युत्पन्न स्रोत के स्पर्शरेखा समूह से लक्ष्य के स्पर्शरेखा समूह तक एक कार्य देता है।

दूसरे, तीसरे, और उच्च-क्रम के पूर्ण व्युत्पन्न का प्राकृतिक समधर्मी एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा समूह पर कोई कार्य नहीं है, और पूर्ण व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का समधर्मी, जिसे धारा(गणित) कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक आँकड़े जैसे संवाहक के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा समूह पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा समूह में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि धारा उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को धारा समूह कहा जाता है। किसी कार्य के पूर्ण व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के kth अनुक्रम धारा और k से कम या उसके बराबर क्रम के आंशिक व्युत्पन्न के बीच के संबंध में समानांतर है।

पूर्ण व्युत्पन्न को बार-बार लेने से, 'Rn' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं। Rp क्रम के पूर्ण व्युत्पन्नकी व्याख्या मूल्यचित्र के रूप में की जा सकती है

जो Rn में एक बिंदु x लेता है और इसे 'Rn ' से 'Rm' तक के रैखिक मानचित्रों के स्थान का एक तत्व प्रदान करता है -– "सर्वश्रेष्ठ"(एक निश्चित सटीक अर्थ में) उस बिंदु पर f के लिए k-रैखिक सन्निकटन है। इसे विकर्ण मानचित्र Δ, x →(x, x) के साथ पूर्वनिर्मित करके, एक सामान्यीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है

जहाँ f(a) को निर्धारित एक स्थिर फलन से किया जाता है, xiai सदिश xa के घटक हैं, और(Df)i और(D2f)jk रैखिक परिवर्तन के रूप में Df और D2f के घटक हैं।

सामूहीकरण

व्युत्पन्न की अवधारणा को कई अन्य निर्धारितिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है।

  • व्युत्पन्न का एक महत्वपूर्ण सामूहीकरण जटिल संख्याओं के जटिल कार्यों से संबंधित है, जैसे कि(एक अधिक्षेत्र में) जटिल संख्या C से C तक के कार्य। इस तरह के एक फलन के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। यदि C को निर्धारित संख्या z को x + iy, लिखकर R2 से पहचाना जाता है, तो C से C तक एक अवकलनीय फलन निश्चित रूप से R2 से R2 के फलन के रूप में अवकलनीय होता है।(इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी उपस्थित हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी उपस्थित होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण- पूर्णसममितिक कार्य देखें।
  • एक अन्य सामूहीकरण सुचारू कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी स्पर्शरेखा स्थान कहा जाता है: प्रोटोटाइपिकल उदाहरण 'R3' में एक सुचारू सतह है। एक(विभेदक) मूल्यचित्र का व्युत्पन्न(या अंतर)। f: MN मैनिफोल्ड्स के बीच, M में एक बिंदु x पर, फिर x पर M के स्पर्शरेखा स्थान से f(x)) पर N के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य M और N के स्पर्शरेखा समूहों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - प्रेरित अग्रसर(अंतर) और ऐंठनापार्श्व(अंतर ज्यामिति) देखें।
  • आयाम(संवाहक स्थल) संवाहक स्थल जैसे बनच स्थान और फ्रेचेट स्थल के बीच के मानचित्र के लिए भी विवेक को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूहीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है।
  • शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि कमजोर व्युत्पन्न के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में स्थापित करना है जिसे वितरण का स्थान(गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य सामान्य पर अलग-अलग हो।
  • व्युत्पन्न के गुणों ने बीजगणित और सांस्थिति में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है- उदाहरण के लिए, अंतर बीजगणित देखें।
  • विभेदन का असतत समतुल्य परिमित अंतर है। अंतरीय गणना का अध्ययन समय पैमूल्ये की गणना में परिमित अंतर के गणना के साथ एकीकृत है।
  • अंकगणित व्युत्पन्न भी देखें।

इतिहास

गणना, अपने प्रारंभिक इतिहास में अत्यंत सूक्ष्म गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा(गणित), कार्य(गणित), व्युत्पन्न, संपूर्ण और अनंत श्रृंखला पर केंद्रित है। 17वीं शताब्दी के मध्य में आइजैक न्यूटन और गॉटफ्रीड लीबनिज ने स्वतंत्र रूप से गणना की खोज की। यद्यपि, प्रत्येक आविष्कार ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा।

यह भी देखें


टिप्पणियाँ

  1. Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.
  2. In the formulation of calculus in terms of limits, the du symbol has been assigned various meanings by various authors. Some authors do not assign a meaning to du by itself, but only as part of the symbol du/dx. Others define dx as an independent variable, and define du by du = dxf(x). In non-standard analysis du is defined as an infinitesimal. It is also interpreted as the exterior derivative of a function u. See differential (infinitesimal) for further information.
  3. This can also be expressed as the operation known as currying.


संदर्भ

  1. Banach, S. (1931), "Uber die Baire'sche Kategorie gewisser Funktionenmengen", Studia Math., 3 (3): 174–179, doi:10.4064/sm-3-1-174-179.. Cited by Hewitt, E; Stromberg, K (1963), Real and abstract analysis, Springer-Verlag, Theorem 17.8
  2. Apostol 1967, §4.18
  3. Manuscript of November 11, 1675 (Cajori vol. 2, page 204)
  4. "विभेदन का अंकन". MIT. 1998. Retrieved 24 October 2012.
  5. Evans, Lawrence (1999). आंशिक अंतर समीकरण. American Mathematical Society. p. 63. ISBN 0-8218-0772-2.
  6. Kreyszig, Erwin (1991). विभेदक ज्यामिति. New York: Dover. p. 1. ISBN 0-486-66721-9.


ग्रन्थसूची

प्रिंट


ऑनलाइन किताबें


बाहरी संबंध