प्रत्यक्ष तुलना परीक्षण

From Vigyanwiki

गणित में, तुलना परीक्षण को कभी-कभी प्रत्यक्ष तुलना परीक्षण भी कहा जाता है जिससे इसे समान संबंधित परीक्षणों (विशेष रूप से सीमा तुलना परीक्षण) से अलग किया जा सके, जो अनंत श्रृंखला (गणित) या अनुचित अभिन्न अंग के अभिसरण या विचलन को निकालने की एक प्रणाली प्रदान करता है। दोनों स्थितियों में, परीक्षण दी गई श्रृंखला या अभिन्न अंग की तुलना उस श्रृंखला से करके काम करता है जिसके अभिसरण गुण ज्ञात हैं।

श्रृंखला के लिए

कैलकुलस में, श्रृंखला के लिए तुलना परीक्षण में सामान्यतः गैर-नकारात्मक (वास्तविक संख्या) शब्दों के साथ अनंत श्रृंखला के बारे में कथनों की एक जोड़ी होती है:[1]

  • यदि अनंत श्रृंखला अभिसरण करती है और सभी पर्याप्त रूप से बड़े n के लिए (अर्थात, कुछ निश्चित मान N के लिए सभी के लिए) हैं, तो अनंत श्रृंखला भी अभिसरण करती है।
  • यदि अनंत श्रृंखला विचलन करती है और सभी पर्याप्त रूप से बड़े n के लिए है, तो अनंत श्रृंखला भी विचलन करती है।

ध्यान दें कि बड़े पदों वाली श्रृंखला कभी-कभी छोटे पदों वाली श्रृंखला पर प्रमुख हो जाती है (या अंततः प्रमुख हो जाती है)।[2]

वैकल्पिक रूप से, परीक्षण को पूर्ण अभिसरण के संदर्भ में कहा जा सकता है, इस स्थिति में यह जटिल संख्या शर्तों वाली श्रृंखला पर भी लागू होता है:[3]

  • यदि अनंत श्रृंखला पूर्णतः अभिसारी है और सभी पर्याप्त रूप से बड़े n के लिए है, तो अनंत श्रृंखला भी पूर्णतः अभिसारी है।
  • यदि अनंत श्रृंखला पूर्णतया अभिसरण नहीं है और सभी पर्याप्त रूप से बड़े n के लिए है, तो अनंत श्रृंखला भी पूर्णतः अभिसरण नहीं है।

ध्यान दें कि इस अंतिम कथन में, श्रृंखला अभी भी वास्तविक-मूल्यवान श्रृंखला के लिए सशर्त रूप से अभिसरण हो सकती है, ऐसा तब हो सकता है जब an सभी गैर-नकारात्मक न हों।

वास्तविक-मूल्यवान श्रृंखला के स्थिति में कथनों की दूसरी जोड़ी पहले के बराबर है क्योंकि } पूर्ण रूप से अभिसरण करता है यदि और केवल यदि , गैर-नकारात्मक शब्दों वाली श्रृंखला अभिसरण करती है।

प्रमाण

ऊपर दिए गए सभी कथनों के प्रमाण समान हैं। यहाँ तीसरे कथन का प्रमाण है।

मान लीजिए कि और ऐसी अनंत श्रृंखला हैं कि पूर्णतः अभिसरण करता है (इस प्रकार अभिसरण करता है) और व्यापकता की हानि के बिना मान लें कि सभी धनात्मक पूर्णांक n के लिए है। आंशिक योग पर विचार करें

चूँकि किसी वास्तविक संख्या T के लिए पूर्णतः पर अभिसरण करता है। सभी n के लिए

एक न घटने वाला क्रम है और न बढ़ने वाला क्रम है। दिया गया है तो दोनों अंतराल से संबंधित हैं, जिसकी लम्बाई के अनंत तक जाने पर शून्य हो जाती है। इससे पता चलता है कि कॉची अनुक्रम है, और इसलिए इसे एक सीमा तक परिवर्तित होना चाहिए। इसलिए, पूर्णतः अभिसरण है।

अभिन्न के लिए

इंटीग्रल के लिए तुलना परीक्षण इस प्रकार कहा जा सकता है, जिसमें निरंतर वास्तविक-मूल्य वाले फलन f और g को पर b या तो या एक वास्तविक संख्या के साथ माना जा सकता है, जिस पर f और g प्रत्येक में एक लंबवत अनंतस्पर्शी है:[4]

  • यदि के लिए अनुचित इंटीग्रल और पर अभिसरण होता है, तो अनुचित इंटीग्रल भी के साथ अभिसरण करता है।
  • यदि के लिए अनुचित इंटीग्रल विचलन करता है और , तो अनुचित इंटीग्रल भी विचलन करता है।

अनुपात तुलना परीक्षण

वास्तविक-मूल्यवान श्रृंखला के अभिसरण के लिए और परीक्षण, उपरोक्त प्रत्यक्ष तुलना परीक्षण और अनुपात परीक्षण दोनों के समान, अनुपात तुलना परीक्षण कहा जाता है:[5]

  • यदि अनंत श्रृंखला अभिसरण करती है और , , और सभी पर्याप्त रूप से बड़े n के लिए अभिसरण करती है, तो अनंत श्रृंखला भी अभिसरण करती है।
  • यदि अनंत शृंखला विचलन करती हैं और , , और सभी पर्याप्त रूप से बड़े n के लिए विचलन करती हैं, तो अनंत श्रृंखला भी विचलन करती है।

यह भी देखें

टिप्पणियाँ

  1. Ayres & Mendelson (1999), p. 401.
  2. Munem & Foulis (1984), p. 662.
  3. Silverman (1975), p. 119.
  4. Buck (1965), p. 140.
  5. Buck (1965), p. 161.


संदर्भ

  • Ayres, Frank Jr.; Mendelson, Elliott (1999). Schaum's Outline of Calculus (4th ed.). New York: McGraw-Hill. ISBN 0-07-041973-6.
  • Buck, R. Creighton (1965). Advanced Calculus (2nd ed.). New York: McGraw-Hill.
  • Knopp, Konrad (1956). Infinite Sequences and Series. New York: Dover Publications. § 3.1. ISBN 0-486-60153-6.
  • Munem, M. A.; Foulis, D. J. (1984). Calculus with Analytic Geometry (2nd ed.). Worth Publishers. ISBN 0-87901-236-6.
  • Silverman, Herb (1975). Complex Variables. Houghton Mifflin Company. ISBN 0-395-18582-3.
  • Whittaker, E. T.; Watson, G. N. (1963). A Course in Modern Analysis (4th ed.). Cambridge University Press. § 2.34. ISBN 0-521-58807-3.