द्विपद प्रमेय

From Vigyanwiki
द्विपद गुणांक(एनके) पास्कल के त्रिभुज की nवीं पंक्ति में प्रविष्टि के रूप में प्रतीत होता है, गिनती 0 से शुरू होती है। प्रत्येक प्रविष्टि इसके ऊपर दो का योग होता है।

प्रारंभिक बीजगणित में, द्विपद प्रमेय(या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद (x + y)n को axbyc के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक b + c = n हैं और गुणांक a के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,

axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अधिकांशता n और b के रूप में उच्चारित किया जाता है।

इतिहास

द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।[1][2] इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]

बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।[3]: 230  10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ अनुमानतः यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।[4]

हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5][6][7] अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया[8] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[8] फारसी कवि और गणितज्ञ उमर खय्याम अनुमानतः उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[9] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।[3]: 142 

1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[10] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[11] चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[10]

आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[10][12]







कथन

प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव होता है।

जहाँ पे एक पूर्णांक है और प्रत्येक एक धनात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अधिकांशता शब्द से हटा दिया जाता है। इसलिए अधिकांशता दाहिने हाथ की ओर लिखा हुआ दिखाई देता है .) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। योग संकेतन का उपयोग करके, इसे इस रूप में लिखा जा सकता है।


अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन(बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर(गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है

द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है

या समकक्ष
या अधिक स्पष्ट रूप से[13]


उदाहरण

यहाँ द्विपद प्रमेय के पहले कुछ कारक हैं