अवकलज: Difference between revisions
(TEXT) |
|||
| Line 3: | Line 3: | ||
{{Short description|Instantaneous rate of change (mathematics)}} | {{Short description|Instantaneous rate of change (mathematics)}} | ||
{{good article}} | {{good article}} | ||
[[File:Tangent to a curve.svg|thumb|एक | [[File:Tangent to a curve.svg|thumb|एक कार्य का ग्राफ़, काले रंग में खींचा गया है, और उस ग्राफ़ की स्पर्श रेखा, लाल रंग में खींची गई है। [[स्पर्शरेखा]] रेखा का [[ढलान]] चिह्नित बिंदु पर कार्य के व्युत्पन्न के बराबर है।]] | ||
{{Calculus |differential}} | {{Calculus |differential}} | ||
गणित में, एक वास्तविक चर के एक | गणित में, एक वास्तविक चर के एक कार्य का व्युत्पन्न एक कार्य (इनपुट मूल्य) के अपने तर्क में परिवर्तन के संबंध में कार्य मूल्य (प्रक्षेपण मूल्य) के परिवर्तन की संवेदनशीलता को मापता है। व्युत्पन्न गणना का एक मूलभूत उपकरण है। उदाहरण के लिए, [[समय]] के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का [[वेग]] है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है। | ||
किसी चुने हुए इनपुट | किसी चुने हुए इनपुट मूल्य पर एकल चर के कार्य का व्युत्पन्न, जब वह मौजूद होता है, उस बिंदु पर कार्य के ग्राफ़ पर [[स्पर्शरेखा]] का ढलान होता है। स्पर्श रेखा उस इनपुट मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को अक्सर परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है। | ||
व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए सामूल्य्यीकृत किया जा सकता है। इस सामूल्य्यीकरण में, व्युत्पन्न को एक [[रैखिक परिवर्तन]] के रूप में पुनर्व्याख्या की जाती है जिसका ग्राफ (उचित अनुवाद के बाद) मूल कार्य के ग्राफ के लिए सबसे अच्छा [[रैखिक सन्निकटन]] है। [[जैकबियन मैट्रिक्स]] [[मैट्रिक्स (गणित)]] है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी [[गणना]] स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन मैट्रिक्स [[ग्रेडिएंट वेक्टर]] में कम हो जाता है। | |||
व्युत्पन्न खोजने की प्रक्रिया को भेदभाव कहा जाता है। रिवर्स प्रोसेस को '[[antiderivative]]' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।{{#tag:ref|Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.|group=Note}} | व्युत्पन्न खोजने की प्रक्रिया को भेदभाव कहा जाता है। रिवर्स प्रोसेस को '[[antiderivative]]' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।{{#tag:ref|Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.|group=Note}} | ||
| Line 15: | Line 15: | ||
== परिभाषा == | == परिभाषा == | ||
एक वास्तविक चर का एक कार्य {{math|1=''f''(''x'')}} एक बिंदु पर अवकलनीय है {{mvar|a}} किसी | एक वास्तविक चर का एक कार्य {{math|1=''f''(''x'')}} एक बिंदु पर अवकलनीय है {{mvar|a}} किसी कार्य के अपने डोमेन का, यदि उसके डोमेन में एक [[खुला अंतराल]] है {{mvar|I}} युक्त {{mvar|a}}, और [[सीमा (गणित)]] | ||
:<math>L=\lim_{h \to 0}\frac{f(a+h)-f(a)}h </math> | :<math>L=\lim_{h \to 0}\frac{f(a+h)-f(a)}h </math> | ||
मौजूद। इसका मतलब है कि, हर सकारात्मक [[वास्तविक संख्या]] के लिए <math>\varepsilon</math> (यहां तक कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या मौजूद है <math>\delta</math> ऐसा है कि, हर के लिए {{mvar|h}} ऐसा है कि <math>|h| < \delta</math> तथा <math>h\ne 0</math> फिर <math>f(a+h)</math> परिभाषित किया गया है, और | मौजूद। इसका मतलब है कि, हर सकारात्मक [[वास्तविक संख्या]] के लिए <math>\varepsilon</math> (यहां तक कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या मौजूद है <math>\delta</math> ऐसा है कि, हर के लिए {{mvar|h}} ऐसा है कि <math>|h| < \delta</math> तथा <math>h\ne 0</math> फिर <math>f(a+h)</math> परिभाषित किया गया है, और | ||
:<math>\left|L-\frac{f(a+h)-f(a)}h\right|<\varepsilon,</math> | :<math>\left|L-\frac{f(a+h)-f(a)}h\right|<\varepsilon,</math> | ||
जहां लंबवत पट्टियां निरपेक्ष | जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं (देखें (ε, δ)-सीमा की परिभाषा)। | ||
यदि समारोह {{mvar|f}} पर अवकलनीय है {{mvar|a}}, वह है अगर सीमा {{mvar|L}} मौजूद है, तो इस सीमा को व्युत्पन्न कहा जाता है {{mvar|f}} पर {{mvar|a}}, और निरूपित <math>f'(a)</math> (के रूप में पढ़ें{{math|''f''}} के प्रमुख {{math|''a''}}) या <math DISPLAY=inline>\frac{df}{dx}(a)</math> (के व्युत्पन्न के रूप में पढ़ें {{math|''f''}} इसके संबंध में {{math|''x''}} पर {{mvar|a}},{{math|''dy''}} द्वारा {{math|''dx''}} पर {{mvar|a}}, या{{math|''dy''}} ऊपर {{math|''dx''}} पर {{mvar|a}}); देखना {{slink||Notation (details)}}, नीचे। | यदि समारोह {{mvar|f}} पर अवकलनीय है {{mvar|a}}, वह है अगर सीमा {{mvar|L}} मौजूद है, तो इस सीमा को व्युत्पन्न कहा जाता है {{mvar|f}} पर {{mvar|a}}, और निरूपित <math>f'(a)</math> (के रूप में पढ़ें{{math|''f''}} के प्रमुख {{math|''a''}}) या <math DISPLAY=inline>\frac{df}{dx}(a)</math> (के व्युत्पन्न के रूप में पढ़ें {{math|''f''}} इसके संबंध में {{math|''x''}} पर {{mvar|a}},{{math|''dy''}} द्वारा {{math|''dx''}} पर {{mvar|a}}, या{{math|''dy''}} ऊपर {{math|''dx''}} पर {{mvar|a}}); देखना {{slink||Notation (details)}}, नीचे। | ||
| Line 25: | Line 25: | ||
== निरंतरता और भिन्नता == | == निरंतरता और भिन्नता == | ||
[[File:Right-continuous.svg|thumb|right|इस | [[File:Right-continuous.svg|thumb|right|इस कार्य का चिह्नित बिंदु पर कोई व्युत्पन्न नहीं है, क्योंकि कार्य वहां निरंतर नहीं है (विशेष रूप से, इसमें [[कूदना बंद करो]] है)।]]यदि {{math|''f''}} पर अवकलनीय है {{math|''a''}}, फिर {{math|''f''}} पर भी [[निरंतर कार्य]] करना चाहिए {{math|''a''}}. एक उदाहरण के रूप में, एक बिंदु चुनें {{math|''a''}} और जाने {{math|''f''}} चरण कार्य बनें जो सभी के लिए मूल्य 1 लौटाता है {{math|''x''}} से कम {{math|''a''}}, और सभी के लिए भिन्न मूल्य 10 लौटाता है {{math|''x''}} इससे बड़ा या इसके बराबर {{math|''a''}}. {{math|''f''}} पर व्युत्पन्न नहीं हो सकता {{math|''a''}}. यदि {{math|''h''}} नकारात्मक है, तो {{math|''a'' + ''h''}} कदम के निचले हिस्से पर है, इसलिए छेदक रेखा से {{math|''a''}} प्रति {{math|''a'' + ''h''}} बहुत खड़ी है, और के रूप में {{math|''h''}} शून्य की ओर जाता है ढलान अनंत की ओर जाता है। यदि {{math|''h''}} सकारात्मक है, तो {{math|''a'' + ''h''}} सीढी के ऊँचे भाग पर है, अत: से छेदक रेखा {{math|''a''}} प्रति {{math|''a'' + ''h''}} ढलान शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा मौजूद नहीं होती है। | ||
[[File:Absolute value.svg|right|thumb|निरपेक्ष | [[File:Absolute value.svg|right|thumb|निरपेक्ष मूल्य फलन निरंतर है, लेकिन पर अवकलनीय होने में विफल रहता है {{math|''x'' {{=}} 0}} चूँकि स्पर्शरेखा ढलान बाईं ओर से उसी मूल्य तक नहीं पहुँचती है जैसा कि वे दाईं ओर से करते हैं।]]हालाँकि, भले ही एक बिंदु पर एक कार्य निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए, द्वारा दिया गया निरपेक्ष मूल्य कार्य {{math|''f''(''x'') {{=}} {{abs|''x''}} }} पर निरंतर है {{math|''x'' {{=}} 0}}, लेकिन यह वहां भिन्न नहीं है। यदि {{math|''h''}} धनात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक है, जबकि अगर {{math|''h''}} ऋणात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक नकारात्मक है। इसे ग्राफ़िक रूप से ग्राफ़ में किंक या कस्प के रूप में देखा जा सकता है {{math|''x'' {{=}} 0}}. यहां तक कि एक चिकनी ग्राफ वाला कार्य भी उस बिंदु पर भिन्न नहीं होता है जहां इसकी [[लंबवत स्पर्शरेखा]] होती है: उदाहरण के लिए, दिया गया कार्य {{math|''f''(''x'') {{=}} ''x''<sup>1/3</sup>}} पर अवकलनीय नहीं है {{math|''x'' {{=}} 0}}. | ||
सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता। | सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता। | ||
अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या [[लगभग हर जगह]] | अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या [[लगभग हर जगह]] व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एक [[मोनोटोन समारोह]] या [[लिप्सचिट्ज़ समारोह]] है, तो यह सत्य है। हालाँकि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब [[वीयरस्ट्रैस समारोह]] के रूप में जाना जाता है। 1931 में, [[स्टीफन बानाच]] ने साबित किया कि किसी बिंदु पर व्युत्पन्न वाले फ़ंक्शंस का सेट सभी निरंतर फ़ंक्शंस के स्थान पर एक [[अल्प सेट]] है।<ref>{{Citation|author=Banach, S.|title=Uber die Baire'sche Kategorie gewisser Funktionenmengen|journal=Studia Math.|issue=3|year=1931|volume=3|pages=174–179|doi=10.4064/sm-3-1-174-179|postscript=.|url=https://scholar.google.com/scholar?output=instlink&q=info:SkKdCEmUd6QJ:scholar.google.com/&hl=en&as_sdt=0,50&scillfp=3432975470163241186&oi=lle|doi-access=free}}. Cited by {{Citation|author1=Hewitt, E |author2=Stromberg, K|title=Real and abstract analysis|publisher=Springer-Verlag|year=1963|pages=Theorem 17.8|no-pp=true}}</ref> अनौपचारिक रूप से, इसका मतलब यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है। | ||
== एक समारोह के रूप में व्युत्पन्न == <!-- Removing "The derivative as a" completely changes the meaning --> | == एक समारोह के रूप में व्युत्पन्न == <!-- Removing "The derivative as a" completely changes the meaning --> | ||
[[File:Tangent function animation.gif|thumb|अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के बराबर है:<math>\sin \left(x^2\right) + 2x^2 \cos\left(x^2\right)</math>]]होने देना {{math|''f''}} ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक | [[File:Tangent function animation.gif|thumb|अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के बराबर है:<math>\sin \left(x^2\right) + 2x^2 \cos\left(x^2\right)</math>]]होने देना {{math|''f''}} ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु को मैप करता है {{mvar|x}} के व्युत्पन्न के मूल्य के लिए {{mvar|f}} पर {{mvar|x}}. यह समारोह लिखा है {{math|''f''{{′}}}} और इसे व्युत्पन्न फंक्शन या व्युत्पन्न कहा जाता है {{math|''f''}}. | ||
कभी-कभी {{math|''f''}} इसके डोमेन के अधिकांश बिंदुओं पर | कभी-कभी {{math|''f''}} इसके डोमेन के अधिकांश बिंदुओं पर व्युत्पन्न है, लेकिन सभी नहीं। वह कार्य जिसका मूल्य at {{mvar|a}} बराबरी {{math|''f''{{′}}(''a'')}} जब भी {{math|''f''{{′}}(''a'')}} परिभाषित किया गया है और कहीं और अपरिभाषित है, इसे व्युत्पन्न भी कहा जाता है {{math|''f''}}. यह अभी भी एक कार्य है, लेकिन इसका डोमेन के डोमेन से छोटा हो सकता है {{math|''f''}}. | ||
इस विचार का उपयोग करते हुए, भेदभाव कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक [[ऑपरेटर (गणित)]] है जिसका डोमेन उन सभी कार्यों का सेट है जिनके डोमेन के प्रत्येक बिंदु पर | इस विचार का उपयोग करते हुए, भेदभाव कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक [[ऑपरेटर (गणित)]] है जिसका डोमेन उन सभी कार्यों का सेट है जिनके डोमेन के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक सेट है। यदि हम इस ऑपरेटर को निरूपित करते हैं {{math|''D''}}, फिर {{math|''D''(''f'')}} कार्य है {{math|''f''{{′}}}}. तब से {{math|''D''(''f'')}} एक कार्य है, इसका मूल्यांकन एक बिंदु पर किया जा सकता है {{mvar|a}}. व्युत्पन्न समारोह की परिभाषा के द्वारा, {{math|''D''(''f'')(''a'') {{=}} ''f''{{′}}(''a'')}}. | ||
तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें {{math|''f''(''x'') {{=}} 2''x''}}; {{math|''f''}} एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को इनपुट के रूप में लेता है और संख्याओं को | तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें {{math|''f''(''x'') {{=}} 2''x''}}; {{math|''f''}} एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को इनपुट के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
1 &{}\mapsto 2,\\ | 1 &{}\mapsto 2,\\ | ||
| Line 52: | Line 52: | ||
D\left(x \mapsto x^2\right) &= (x \mapsto 2\cdot x). | D\left(x \mapsto x^2\right) &= (x \mapsto 2\cdot x). | ||
\end{align}</math> | \end{align}</math> | ||
क्योंकि का उत्पादन {{math|''D''}} एक | क्योंकि का उत्पादन {{math|''D''}} एक कार्य है, का प्रक्षेपण {{math|''D''}} एक बिंदु पर मूल्यांकन किया जा सकता है। उदाहरण के लिए, कब {{math|''D''}} स्क्वायर कार्य पर लागू होता है, {{math|''x'' ↦ ''x''<sup>2</sup>}}, {{math|''D''}} दोहरीकरण समारोह को प्रक्षेपण करता है {{math|''x'' ↦ 2''x''}}जिसे हमने नाम दिया है {{math|''f''(''x'')}}. इस प्रक्षेपण कार्य का मूल्यांकन प्राप्त करने के लिए किया जा सकता है {{math|''f''(1) {{=}} 2}}, {{math|''f''(2) {{=}} 4}}, और इसी तरह। | ||
=={{anchor|order of derivation}} उच्च व्युत्पन्न == | =={{anchor|order of derivation}} उच्च व्युत्पन्न == | ||
होने देना {{math|''f''}} एक अवकलनीय कार्य हो, और चलो {{math|''f'' ′}} इसका व्युत्पन्न हो। का व्युत्पन्न {{math|''f'' ′}} (यदि है तो) लिखा हुआ है {{math|''f'' ′′}} और का [[दूसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह मौजूद है, लिखा गया है {{math|''f'' ′′′}} का [[तीसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह मौजूद है, तो {{math|''n''}}वें व्युत्पन्न के व्युत्पन्न के रूप में {{math|(''n''−1)}}वें व्युत्पन्न। इन दोहराए गए | होने देना {{math|''f''}} एक अवकलनीय कार्य हो, और चलो {{math|''f'' ′}} इसका व्युत्पन्न हो। का व्युत्पन्न {{math|''f'' ′}} (यदि है तो) लिखा हुआ है {{math|''f'' ′′}} और का [[दूसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह मौजूद है, लिखा गया है {{math|''f'' ′′′}} का [[तीसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह मौजूद है, तो {{math|''n''}}वें व्युत्पन्न के व्युत्पन्न के रूप में {{math|(''n''−1)}}वें व्युत्पन्न। इन दोहराए गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। {{math|''n''}}'}}वें अवकलज को क्रम का अवकलज भी कहा जाता है {{math|''n''}}और # लैग्रेंज का अंकन {{math|''f'' <sup>(''n'')</sup>}}. | ||
यदि {{math|''x''(''t'')}} समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है {{math|''t''}}, फिर के उच्च-क्रम के | यदि {{math|''x''(''t'')}} समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है {{math|''t''}}, फिर के उच्च-क्रम के व्युत्पन्न {{math|''x''}} भौतिकी में विशिष्ट व्याख्याएँ हैं। का पहला व्युत्पन्न {{math|''x''}} वस्तु का वेग है। का दूसरा व्युत्पन्न {{math|''x''}} [[त्वरण]] है। का तीसरा व्युत्पन्न {{math|''x''}} [[झटका (भौतिकी)]] है। और अंत में, चौथे से छठे व्युत्पन्न के {{math|''x''}} हैं उछाल|स्नैप, क्रैकल, और पॉप; [[खगोल भौतिकी]] के लिए सबसे अधिक लागू। | ||
एक समारोह {{math|''f''}} व्युत्पन्न होने की आवश्यकता नहीं है (उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, भले ही {{math|''f''}} एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो | एक समारोह {{math|''f''}} व्युत्पन्न होने की आवश्यकता नहीं है (उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, भले ही {{math|''f''}} एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो | ||
| Line 64: | Line 64: | ||
गणना यह दर्शाती है {{math|''f''}} एक अवकलनीय फलन है जिसका व्युत्पन्न है <math>x</math> द्वारा दिया गया है | गणना यह दर्शाती है {{math|''f''}} एक अवकलनीय फलन है जिसका व्युत्पन्न है <math>x</math> द्वारा दिया गया है | ||
:<math>f'(x) = \begin{cases} +2x, & \text{if }x\ge 0 \\ -2x, & \text{if }x \le 0.\end{cases}</math> | :<math>f'(x) = \begin{cases} +2x, & \text{if }x\ge 0 \\ -2x, & \text{if }x \le 0.\end{cases}</math> | ||
{{math|''f'''(''x'')}} पर निरपेक्ष | {{math|''f'''(''x'')}} पर निरपेक्ष मूल्य फलन का दुगुना है <math>x</math>, और इसका शून्य पर व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक फलन में a हो सकता है {{math|''k''}}प्रत्येक गैर-ऋणात्मक पूर्णांक के लिए वें व्युत्पन्न {{math|''k''}} लेकिन नहीं {{math|(''k'' + 1)}}वें व्युत्पन्न। एक समारोह जिसमें है {{math|''k''}} उत्तरोत्तर व्युत्पन्न कहलाते हैं{{math|k}} बार अलग करने योग्य। अगर इसके अलावा {{math|''k''}}वां अवकलज सतत है, तो फलन अवकलनीयता वर्ग का कहा जाता है {{math|''C<sup>k</sup>''}}. (यह होने की तुलना में एक मजबूत स्थिति है {{math|''k''}} व्युत्पन्न, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है {{slink|Smoothness|Examples}}।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक अवकलज होते हैं, अपरिमित रूप से अवकलनीय या चिकनापन कहलाता है। | ||
वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। | वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मूल्यक [[भेदभाव नियम]]ों द्वारा, यदि डिग्री का बहुपद {{math|''n''}} विभेदित है {{math|''n''}} समय, तो यह एक [[निरंतर कार्य]] बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे मौजूद हैं, इसलिए बहुपद सहज कार्य हैं। | ||
एक समारोह के | एक समारोह के व्युत्पन्न {{math|''f''}} एक बिंदु पर {{math|''x''}} उस कार्य के पास बहुपद सन्निकटन प्रदान करें {{math|''x''}}. उदाहरण के लिए, यदि {{math|''f''}} तब दो बार अवकलनीय है | ||
:<math> f(x+h) \approx f(x) + f'(x)h + \tfrac{1}{2} f''(x) h^2</math> | :<math> f(x+h) \approx f(x) + f'(x)h + \tfrac{1}{2} f''(x) h^2</math> | ||
इस अर्थ में कि | इस अर्थ में कि | ||
| Line 76: | Line 76: | ||
===विभक्ति बिंदु=== | ===विभक्ति बिंदु=== | ||
{{Main|Inflection point}} | {{Main|Inflection point}} | ||
एक बिंदु जहां किसी | एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।<ref>{{harvnb|Apostol|1967|loc=§4.18}}</ref> एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, जैसा कि विभक्ति बिंदु के मामले में होता है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^3</math>, या यह अस्तित्व में विफल हो सकता है, जैसा कि विभक्ति बिंदु के मामले में है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^\frac{1}{3}</math>. एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर स्विच करता है। | ||
== अंकन (विवरण) == | == अंकन (विवरण) == | ||
| Line 87: | Line 87: | ||
: <math>\frac{dy}{dx},\quad\frac{d f}{dx}, \text{ or }\frac{d}{dx}f,</math> | : <math>\frac{dy}{dx},\quad\frac{d f}{dx}, \text{ or }\frac{d}{dx}f,</math> | ||
और एक बार एक अतिसूक्ष्म भागफल के रूप में सोचा गया था। उच्च | और एक बार एक अतिसूक्ष्म भागफल के रूप में सोचा गया था। उच्च व्युत्पन्न्स को संकेतन का उपयोग करके व्यक्त किया जाता है | ||
<!-- In the following formula, the function is a lower-case f, not an upper case F. Please do not change it.--> | <!-- In the following formula, the function is a lower-case f, not an upper case F. Please do not change it.--> | ||
| Line 94: | Line 94: | ||
\text{ or } | \text{ or } | ||
\frac{d^n}{dx^n}f</math> | \frac{d^n}{dx^n}f</math> | ||
के n वें व्युत्पन्न के लिए <math>y = f(x)</math>. ये | के n वें व्युत्पन्न के लिए <math>y = f(x)</math>. ये व्युत्पन्न ऑपरेटर के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए, | ||
:<math>\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right).</math> | :<math>\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right).</math> | ||
लीबनिज के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं <math>y</math> बिंदु पर <math>x = a</math> दो अलग-अलग तरीकों से: | लीबनिज के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं <math>y</math> बिंदु पर <math>x = a</math> दो अलग-अलग तरीकों से: | ||
| Line 104: | Line 104: | ||
=== लैग्रेंज का अंकन === | === लैग्रेंज का अंकन === | ||
कभी-कभी प्राइम नोटेशन के रूप में जाना जाता है,<ref>{{cite web|title=विभेदन का अंकन|url=http://web.mit.edu/wwmath/calculus/differentiation/notation.html|publisher=MIT|access-date=24 October 2012|year=1998}}</ref> भेदभाव के लिए सबसे आम आधुनिक नोटेशन में से एक [[जोसेफ-लुई लाग्रेंज]] के कारण है और प्राइम (प्रतीक) का उपयोग करता है, ताकि किसी | कभी-कभी प्राइम नोटेशन के रूप में जाना जाता है,<ref>{{cite web|title=विभेदन का अंकन|url=http://web.mit.edu/wwmath/calculus/differentiation/notation.html|publisher=MIT|access-date=24 October 2012|year=1998}}</ref> भेदभाव के लिए सबसे आम आधुनिक नोटेशन में से एक [[जोसेफ-लुई लाग्रेंज]] के कारण है और प्राइम (प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके <math>f</math> निरूपित किया जाता है <math>f'</math>. इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता है | ||
:<math>(f')'=f''</math> तथा <math>(f'')'=f'''.</math> | :<math>(f')'=f''</math> तथा <math>(f'')'=f'''.</math> | ||
इस बिंदु से परे | इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक [[सबस्क्रिप्ट और सुपरस्क्रिप्ट]] में रोमन अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं: | ||
:<math>f^{\mathrm{iv}}</math> या <math>f^{(4)}.</math> | :<math>f^{\mathrm{iv}}</math> या <math>f^{(4)}.</math> | ||
बाद वाला अंकन संकेतन प्राप्त करने के लिए | बाद वाला अंकन संकेतन प्राप्त करने के लिए सामूल्य्यीकृत करता है <math>f^{(n)}</math> के n वें व्युत्पन्न के लिए <math>f</math> - यह संकेतन सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है। | ||
=== न्यूटन का अंकन === | === न्यूटन का अंकन === | ||
अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए | अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि <math>y = f(t)</math>, फिर | ||
:<math>\dot{y}</math> तथा <math>\ddot{y}</math> | :<math>\dot{y}</math> तथा <math>\ddot{y}</math> | ||
निरूपित, क्रमशः, के पहले और दूसरे | निरूपित, क्रमशः, के पहले और दूसरे व्युत्पन्न <math>y</math>. यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह आमतौर पर भौतिकी और [[अंतर ज्यामिति]] में [[अंतर समीकरण]]ों में प्रयोग किया जाता है।<ref>{{Cite book|title=आंशिक अंतर समीकरण|last=Evans|first=Lawrence|publisher=American Mathematical Society|year=1999|isbn=0-8218-0772-2|pages=63}}</ref><ref>{{Cite book|title=विभेदक ज्यामिति|last=Kreyszig|first=Erwin|publisher=Dover|year=1991|isbn=0-486-66721-9|location=New York|pages=1}}</ref> डॉट नोटेशन, हालांकि, उच्च-ऑर्डर व्युत्पन्न (ऑर्डर 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता। | ||
===यूलर का अंकन=== | ===यूलर का अंकन=== | ||
[[लियोनहार्ड यूलर]] का अंकन अवकल संकारक का उपयोग करता है <math>D</math>, जो एक समारोह पर लागू होता है <math>f</math> पहला व्युत्पन्न देने के लिए <math>Df</math>. Nth | [[लियोनहार्ड यूलर]] का अंकन अवकल संकारक का उपयोग करता है <math>D</math>, जो एक समारोह पर लागू होता है <math>f</math> पहला व्युत्पन्न देने के लिए <math>Df</math>. Nth व्युत्पन्न को निरूपित किया जाता है <math>D^nf</math>. | ||
यदि {{nowrap|1=''y'' = ''f''(''x'')}} एक आश्रित चर है, तो अक्सर स्वतंत्र चर x को स्पष्ट करने के लिए सबस्क्रिप्ट x को D से जोड़ा जाता है। | यदि {{nowrap|1=''y'' = ''f''(''x'')}} एक आश्रित चर है, तो अक्सर स्वतंत्र चर x को स्पष्ट करने के लिए सबस्क्रिप्ट x को D से जोड़ा जाता है। | ||
| Line 127: | Line 127: | ||
==गणना के नियम== | ==गणना के नियम== | ||
{{Main|Differentiation rules}} | {{Main|Differentiation rules}} | ||
एक | एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है। | ||
=== बुनियादी कार्यों के लिए नियम === | === बुनियादी कार्यों के लिए नियम === | ||
यहां सबसे | यहां सबसे सामूल्य्य बुनियादी कार्यों के व्युत्पन्न के नियम हैं, जहां एक वास्तविक संख्या है। | ||
* [[शक्ति नियम]]: | * [[शक्ति नियम]]: | ||
| Line 154: | Line 154: | ||
==={{anchor|Rules}}संयुक्त कार्यों के लिए नियम === | ==={{anchor|Rules}}संयुक्त कार्यों के लिए नियम === | ||
बुनियादी कार्यों के | बुनियादी कार्यों के व्युत्पन्न से कार्य संरचना के व्युत्पन्न को निकालने के लिए यहां कुछ सबसे बुनियादी नियम दिए गए हैं। | ||
* स्थिर नियम: यदि f(x) स्थिर है, तो | * स्थिर नियम: यदि f(x) स्थिर है, तो | ||
| Line 169: | Line 169: | ||
=== संगणना उदाहरण === | === संगणना उदाहरण === | ||
द्वारा दिए गए | द्वारा दिए गए कार्य का व्युत्पन्न | ||
: <math>f(x) = x^4 + \sin \left(x^2\right) - \ln(x) e^x + 7</math> | : <math>f(x) = x^4 + \sin \left(x^2\right) - \ln(x) e^x + 7</math> | ||
| Line 180: | Line 180: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
यहाँ दूसरे पद की गणना श्रृंखला नियम का उपयोग करके और तीसरे पद की गणना उत्पाद नियम का उपयोग करके की गई है। प्रारंभिक कार्यों x के ज्ञात | यहाँ दूसरे पद की गणना श्रृंखला नियम का उपयोग करके और तीसरे पद की गणना उत्पाद नियम का उपयोग करके की गई है। प्रारंभिक कार्यों x के ज्ञात व्युत्पन्न<sup>2</सुप>, एक्स<sup>4</sup>, sin(x), ln(x) और {{nowrap|1=exp(''x'') = ''e''<sup>''x''</sup>}}, साथ ही साथ स्थिरांक 7 का भी उपयोग किया गया था। | ||
== हाइपररियल्स के साथ परिभाषा == | == हाइपररियल्स के साथ परिभाषा == | ||
| Line 190: | Line 190: | ||
=== वेक्टर-मूल्यवान कार्य === | === वेक्टर-मूल्यवान कार्य === | ||
एक वास्तविक चर का सदिश-मूल्यवान | एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान R में सदिशों को वास्तविक संख्याएँ भेजता है<sup>एन</sup>. एक वेक्टर-मूल्यवान कार्य को इसके समन्वय कार्यों में विभाजित किया जा सकता है {{nowrap|''y''<sub>1</sub>(''t''), ''y''<sub>2</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t'')}}, जिसका अर्थ है कि {{nowrap|1='''y'''(''t'') = (''y''<sub>1</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t''))}}. इसमें शामिल है, उदाहरण के लिए, आर में [[पैरामीट्रिक वक्र]]<sup>2</sup> या आर<sup>3</उप>। समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(''t'') के व्युत्पन्न को [[वेक्टर (ज्यामितीय)]] के रूप में परिभाषित किया गया है, जिसे [[वक्रों की विभेदक ज्यामिति]] कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है, | ||
:<math>\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math> | :<math>\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math> | ||
समूल्य रूप से, | |||
:<math>\mathbf{y}'(t)=\lim_{h\to 0}\frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h},</math> | :<math>\mathbf{y}'(t)=\lim_{h\to 0}\frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h},</math> | ||
अगर सीमा मौजूद है। अंश में घटाव सदिशों का घटाव है, अदिश राशियों का नहीं। यदि y का व्युत्पन्न ''t'' के प्रत्येक | अगर सीमा मौजूद है। अंश में घटाव सदिशों का घटाव है, अदिश राशियों का नहीं। यदि y का व्युत्पन्न ''t'' के प्रत्येक मूल्य के लिए मौजूद है, तो y' एक अन्य सदिश-मूल्यवान फलन है। | ||
यदि {{nowrap|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}} R का | यदि {{nowrap|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}} R का मूल्यक आधार है<sup>n</sup>, तो 'y'(t) को इस रूप में भी लिखा जा सकता है {{nowrap|''y''<sub>1</sub>(''t'')'''e'''<sub>1</sub> + ⋯ + ''y''<sub>''n''</sub>(''t'')'''e'''<sub>''n''</sub>}}. अगर हम मूल्यते हैं कि वेक्टर-मूल्यवान कार्य का व्युत्पन्न भेदभाव संपत्ति की रैखिकता को बरकरार रखता है, तो y(''t'') का व्युत्पन्न होना चाहिए | ||
:<math>y'_1(t)\mathbf{e}_1 + \cdots + y'_n(t)\mathbf{e}_n</math> | :<math>y'_1(t)\mathbf{e}_1 + \cdots + y'_n(t)\mathbf{e}_n</math> | ||
क्योंकि प्रत्येक आधार सदिश एक स्थिर है। | क्योंकि प्रत्येक आधार सदिश एक स्थिर है। | ||
यह | यह सामूल्य्यीकरण उपयोगी है, उदाहरण के लिए, यदि y(''t'') समय ''t'' पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(''t'') समय ''t'' पर कण का वेग सदिश है। | ||
=== आंशिक | === आंशिक व्युत्पन्न === | ||
{{Main|Partial derivative}} | {{Main|Partial derivative}} | ||
मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए, | |||
:<math>f(x,y) = x^2 + xy + y^2.</math> | :<math>f(x,y) = x^2 + xy + y^2.</math> | ||
f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के परिवार के रूप में पुनर्व्याख्या की जा सकती है: | f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के परिवार के रूप में पुनर्व्याख्या की जा सकती है: | ||
:<math>f(x,y) = f_x(y) = x^2 + xy + y^2.</math> | :<math>f(x,y) = f_x(y) = x^2 + xy + y^2.</math> | ||
दूसरे शब्दों में, x का प्रत्येक | दूसरे शब्दों में, x का प्रत्येक मूल्य एक फलन चुनता है, जिसे f से निरूपित किया जाता है<sub>x</sub>, जो कि एक वास्तविक संख्या का फलन है।{{#tag:ref|This can also be expressed as the operation known as [[currying]].|group=Note}} वह है, | ||
:<math>x \mapsto f_x,</math> | :<math>x \mapsto f_x,</math> | ||
:<math>f_x(y) = x^2 + xy + y^2.</math> | :<math>f_x(y) = x^2 + xy + y^2.</math> | ||
एक बार x का | एक बार x का मूल्य चुने जाने के बाद, a कहें {{nowrap|''f''(''x'', ''y'')}} एक समारोह एफ निर्धारित करता है<sub>a</sub>जो y को भेजता है {{nowrap|''a''<sup>2</sup> + ''ay'' + ''y''<sup>2</sup>}}: | ||
:<math>f_a(y) = a^2 + ay + y^2.</math> | :<math>f_a(y) = a^2 + ay + y^2.</math> | ||
इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए एफ<sub>a</sub>केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है: | इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए एफ<sub>a</sub>केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है: | ||
:<math>f_a'(y) = a + 2y.</math> | :<math>f_a'(y) = a + 2y.</math> | ||
उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। | उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है: | ||
:<math>\frac{\partial f}{\partial y}(x,y) = x + 2y.</math> | :<math>\frac{\partial f}{\partial y}(x,y) = x + 2y.</math> | ||
यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के बजाय der , del , या आंशिक उच्चारित किया जाता है। | यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के बजाय der , del , या आंशिक उच्चारित किया जाता है। | ||
सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' {{nowrap|''f''(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} दिशा में एक्स<sub>i</sub>बिंदु पर (ए<sub>1</sub>, ..., एक<sub>''n''</sub>) के रूप में परिभाषित किया गया है: | |||
:<math>\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n) - f(a_1,\ldots,a_i,\ldots,a_n)}{h}.</math> | :<math>\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n) - f(a_1,\ldots,a_i,\ldots,a_n)}{h}.</math> | ||
उपरोक्त अंतर भागफल में, x को छोड़कर सभी चर<sub>i</sub>स्थिर रखे गए हैं। निश्चित | उपरोक्त अंतर भागफल में, x को छोड़कर सभी चर<sub>i</sub>स्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है | ||
:<math>f_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}(x_i) = f(a_1,\ldots,a_{i-1},x_i,a_{i+1},\ldots,a_n),</math> | :<math>f_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}(x_i) = f(a_1,\ldots,a_{i-1},x_i,a_{i+1},\ldots,a_n),</math> | ||
और, परिभाषा के अनुसार, | और, परिभाषा के अनुसार, | ||
:<math>\frac{df_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}}{dx_i}(a_i) = \frac{\partial f}{\partial x_i}(a_1,\ldots,a_n).</math> | :<math>\frac{df_{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n}}{dx_i}(a_i) = \frac{\partial f}{\partial x_i}(a_1,\ldots,a_n).</math> | ||
दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले इंडेक्स परिवार के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक | दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले इंडेक्स परिवार के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है। | ||
यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। होने देना {{math|''f''(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक | यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। होने देना {{math|''f''(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न {{math|∂''f'' / ∂''x''<sub>''j''</sub>}} का {{mvar|f}} बिंदु पर परिभाषित किया गया है {{math|1=''a'' = (''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}, ये आंशिक व्युत्पन्न वेक्टर को परिभाषित करते हैं | ||
:<math>\nabla f(a_1, \ldots, a_n) = \left(\frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{\partial f}{\partial x_n}(a_1, \ldots, a_n)\right),</math> | :<math>\nabla f(a_1, \ldots, a_n) = \left(\frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{\partial f}{\partial x_n}(a_1, \ldots, a_n)\right),</math> | ||
की प्रवणता कहलाती है {{math|''f''}} पर {{math|''a''}}. यदि {{math|''f''}} किसी डोमेन में हर बिंदु पर अलग-अलग होता है, तो ग्रेडियेंट एक वेक्टर-मूल्यवान | की प्रवणता कहलाती है {{math|''f''}} पर {{math|''a''}}. यदि {{math|''f''}} किसी डोमेन में हर बिंदु पर अलग-अलग होता है, तो ग्रेडियेंट एक वेक्टर-मूल्यवान कार्य होता है {{math|∇''f''}} जो बिंदु को मैप करता है {{math|(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} वेक्टर को {{math|∇''f''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}. नतीजतन, ढाल एक [[वेक्टर क्षेत्र]] निर्धारित करता है। | ||
=== दिशात्मक व्युत्पन्न === | === दिशात्मक व्युत्पन्न === | ||
{{Main|Directional derivative}} | {{Main|Directional derivative}} | ||
यदि f 'R' पर एक वास्तविक-मूल्यवान फलन है<sup>n</sup>, तो f का आंशिक | यदि f 'R' पर एक वास्तविक-मूल्यवान फलन है<sup>n</sup>, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक अवकलज f में x दिशा और y दिशा में परिवर्तन को मापता है। हालांकि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे कि विकर्ण रेखा के साथ {{nowrap|1=''y'' = ''x''}}. इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक वेक्टर चुनें | ||
:<math>\mathbf{v} = (v_1,\ldots,v_n).</math> | :<math>\mathbf{v} = (v_1,\ldots,v_n).</math> | ||
बिंदु x पर v की दिशा में 'f'' की दिशात्मक व्युत्पत्ति सीमा है | बिंदु x पर v की दिशा में 'f'' की दिशात्मक व्युत्पत्ति सीमा है | ||
:<math>D_{\mathbf{v}}{f}(\mathbf{x}) = \lim_{h \rightarrow 0}{\frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}}.</math> | :<math>D_{\mathbf{v}}{f}(\mathbf{x}) = \lim_{h \rightarrow 0}{\frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}}.</math> | ||
कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या | कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। यूनिट वेक्टर की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को चालू करने के लिए अक्सर ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए {{nowrap|1='''v''' = ''λ'''''u'''}} जहाँ u v की दिशा में एक इकाई सदिश है। स्थानापन्न {{nowrap|1=''h'' = ''k''/''λ''}} अंतर भागफल में। अंतर भागफल बन जाता है: | ||
:<math>\frac{f(\mathbf{x} + (k/\lambda)(\lambda\mathbf{u})) - f(\mathbf{x})}{k/\lambda} | :<math>\frac{f(\mathbf{x} + (k/\lambda)(\lambda\mathbf{u})) - f(\mathbf{x})}{k/\lambda} | ||
= \lambda\cdot\frac{f(\mathbf{x} + k\mathbf{u}) - f(\mathbf{x})}{k}.</math> | = \lambda\cdot\frac{f(\mathbf{x} + k\mathbf{u}) - f(\mathbf{x})}{k}.</math> | ||
यह 'यू' के संबंध में एफ के दिशात्मक व्युत्पन्न के लिए अंतर भागफल का λ गुना है। इसके अलावा, जब h शून्य की ओर प्रवृत्त होता है तो सीमा को लेना वैसा ही है जैसे कि k को शून्य की ओर ले जाने की सीमा लेना क्योंकि h और k एक दूसरे के गुणक हैं। इसलिए, {{nowrap|1=''D''<sub>'''v'''</sub>(''f'') = λ''D''<sub>'''u'''</sub>(''f'')}}. इस पुनर्विक्रय संपत्ति के कारण, दिशात्मक | यह 'यू' के संबंध में एफ के दिशात्मक व्युत्पन्न के लिए अंतर भागफल का λ गुना है। इसके अलावा, जब h शून्य की ओर प्रवृत्त होता है तो सीमा को लेना वैसा ही है जैसे कि k को शून्य की ओर ले जाने की सीमा लेना क्योंकि h और k एक दूसरे के गुणक हैं। इसलिए, {{nowrap|1=''D''<sub>'''v'''</sub>(''f'') = λ''D''<sub>'''u'''</sub>(''f'')}}. इस पुनर्विक्रय संपत्ति के कारण, दिशात्मक व्युत्पन्न को अक्सर यूनिट वैक्टर के लिए ही मूल्या जाता है। | ||
यदि f के सभी आंशिक व्युत्पन्न मौजूद हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं: | यदि f के सभी आंशिक व्युत्पन्न मौजूद हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं: | ||
:<math>D_{\mathbf{v}}{f}(\boldsymbol{x}) = \sum_{j=1}^n v_j \frac{\partial f}{\partial x_j}.</math> | :<math>D_{\mathbf{v}}{f}(\boldsymbol{x}) = \sum_{j=1}^n v_j \frac{\partial f}{\partial x_j}.</math> | ||
यह [[कुल व्युत्पन्न]] की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक | यह [[कुल व्युत्पन्न]] की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ है {{nowrap|1=''D''<sub>'''v''' + '''w'''</sub>(''f'') = ''D''<sub>'''v'''</sub>(''f'') + ''D''<sub>'''w'''</sub>(''f'')}}. | ||
वही परिभाषा तब भी काम करती है जब f 'R' में | वही परिभाषा तब भी काम करती है जब f 'R' में मूल्य वाला एक कार्य है<sup>मी</sup>. उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक अवकलज 'R' में एक सदिश है।<sup>मी</sup>. | ||
=== कुल व्युत्पन्न, कुल अंतर और जैकबियन मैट्रिक्स === | === कुल व्युत्पन्न, कुल अंतर और जैकबियन मैट्रिक्स === | ||
| Line 255: | Line 255: | ||
एकल-चर व्युत्पन्न की तरह, {{nowrap|''f'' ′('''a''')}} चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो। | एकल-चर व्युत्पन्न की तरह, {{nowrap|''f'' ′('''a''')}} चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो। | ||
यदि n और m दोनों एक हैं, तो अवकलज {{nowrap|''f'' ′(''a'')}} एक संख्या और अभिव्यक्ति है {{nowrap|''f'' ′(''a'')''v''}} दो संख्याओं का गुणनफल है। लेकिन उच्च आयामों में, यह असंभव है {{nowrap|''f'' ′('''a''')}} एक संख्या होना। यदि यह एक संख्या थी, तो {{nowrap|''f'' ′('''a''')'''v'''}} आर में एक वेक्टर होगा<sup>n</sup> जबकि अन्य पद 'R' में सदिश होंगे<sup>m</sup>, और इसलिए सूत्र का कोई अर्थ नहीं होगा। रैखिक सन्निकटन सूत्र को समझने के लिए, {{nowrap|''f'' ′('''a''')}} एक ऐसा कार्य होना चाहिए जो आर में वैक्टर भेजता है<sup>n</sup> 'R' में सदिशों के लिए<sup>मी</sup>, और {{nowrap|''f'' ′('''a''')'''v'''}} v पर मूल्यांकन किए गए इस | यदि n और m दोनों एक हैं, तो अवकलज {{nowrap|''f'' ′(''a'')}} एक संख्या और अभिव्यक्ति है {{nowrap|''f'' ′(''a'')''v''}} दो संख्याओं का गुणनफल है। लेकिन उच्च आयामों में, यह असंभव है {{nowrap|''f'' ′('''a''')}} एक संख्या होना। यदि यह एक संख्या थी, तो {{nowrap|''f'' ′('''a''')'''v'''}} आर में एक वेक्टर होगा<sup>n</sup> जबकि अन्य पद 'R' में सदिश होंगे<sup>m</sup>, और इसलिए सूत्र का कोई अर्थ नहीं होगा। रैखिक सन्निकटन सूत्र को समझने के लिए, {{nowrap|''f'' ′('''a''')}} एक ऐसा कार्य होना चाहिए जो आर में वैक्टर भेजता है<sup>n</sup> 'R' में सदिशों के लिए<sup>मी</sup>, और {{nowrap|''f'' ′('''a''')'''v'''}} v पर मूल्यांकन किए गए इस कार्य को निरूपित करना चाहिए। | ||
यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है | यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है | ||
:<math>f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) \approx f'(\mathbf{a})\mathbf{v}.</math> | :<math>f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) \approx f'(\mathbf{a})\mathbf{v}.</math> | ||
ध्यान दें कि यदि हम एक और वेक्टर w चुनते हैं, तो यह | ध्यान दें कि यदि हम एक और वेक्टर w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह v और v दोनों को प्रतिस्थापित करके एक तीसरा अनुमूल्यित समीकरण निर्धारित करता है। {{nowrap|'''a''' + '''v'''}} एक के लिए। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं | ||
:<math>f(\mathbf{a} + \mathbf{v} + \mathbf{w}) - f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a} + \mathbf{w}) + f(\mathbf{a}) | :<math>f(\mathbf{a} + \mathbf{v} + \mathbf{w}) - f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a} + \mathbf{w}) + f(\mathbf{a}) | ||
\approx f'(\mathbf{a} + \mathbf{v})\mathbf{w} - f'(\mathbf{a})\mathbf{w}.</math> | \approx f'(\mathbf{a} + \mathbf{v})\mathbf{w} - f'(\mathbf{a})\mathbf{w}.</math> | ||
अगर हम | अगर हम मूल्यते हैं कि वी छोटा है और व्युत्पन्न लगातार एक में बदलता रहता है, तो {{nowrap|''f'' ′('''a''' + '''v''')}} लगभग बराबर है {{nowrap|''f'' ′('''a''')}}, और इसलिए दाहिनी ओर लगभग शून्य है। के साथ रैखिक सन्निकटन सूत्र का उपयोग करके बाएं हाथ की ओर को एक अलग तरीके से फिर से लिखा जा सकता है {{nowrap|'''v''' + '''w'''}} वी के लिए प्रतिस्थापित। रैखिक सन्निकटन सूत्र का अर्थ है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
0 | 0 | ||
| Line 269: | Line 269: | ||
&\approx f'(\mathbf{a})(\mathbf{v} + \mathbf{w}) - f'(\mathbf{a})\mathbf{v} - f'(\mathbf{a})\mathbf{w}. | &\approx f'(\mathbf{a})(\mathbf{v} + \mathbf{w}) - f'(\mathbf{a})\mathbf{v} - f'(\mathbf{a})\mathbf{w}. | ||
\end{align}</math> | \end{align}</math> | ||
इससे पता चलता है {{nowrap|''f'' ′('''a''')}} सदिश समष्टि R से एक रैखिक परिवर्तन है<sup>n</sup> सदिश स्थान 'R' के लिए<sup>मी</sup>. वास्तव में, | इससे पता चलता है {{nowrap|''f'' ′('''a''')}} सदिश समष्टि R से एक रैखिक परिवर्तन है<sup>n</sup> सदिश स्थान 'R' के लिए<sup>मी</sup>. वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मूल्य लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, {{nowrap|''f'' ′('''a''')}} एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। वी और डब्ल्यू शून्य की ओर बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। चूंकि हम कुल व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, {{nowrap|''f'' ′('''a''')}} एक रैखिक परिवर्तन होना चाहिए। | ||
एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। हालांकि, | एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। हालांकि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि आमतौर पर वैक्टरों को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश कोडोमेन आर में स्थित है<sup>m</sup> जबकि हर 'R' डोमेन में स्थित है<sup>एन</sup>. इसके अलावा, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि {{nowrap|''f'' ′('''a''')}} सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं गायब हो जाती हैं। यदि {{nowrap|''f'' : '''R''' → '''R'''}}, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए हेरफेर किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या है {{nowrap|''f'' ′(''a'')}} ऐसा है कि | ||
:<math>\lim_{h \to 0} \frac{f(a + h) - (f(a) + f'(a)h)}{h} = 0.</math> | :<math>\lim_{h \to 0} \frac{f(a + h) - (f(a) + f'(a)h)}{h} = 0.</math> | ||
यह इसके बराबर है | यह इसके बराबर है | ||
:<math>\lim_{h \to 0} \frac{|f(a + h) - (f(a) + f'(a)h)|}{|h|} = 0</math> | :<math>\lim_{h \to 0} \frac{|f(a + h) - (f(a) + f'(a)h)|}{|h|} = 0</math> | ||
क्योंकि किसी | क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मूल्य की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक (गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है। | ||
इसलिए, "f" के कुल व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है {{nowrap|''f'' ′('''a''') : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} ऐसा है कि | इसलिए, "f" के कुल व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है {{nowrap|''f'' ′('''a''') : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} ऐसा है कि | ||
:<math>\lim_{\mathbf{h}\to 0} \frac{\lVert f(\mathbf{a} + \mathbf{h}) - (f(\mathbf{a}) + f'(\mathbf{a})\mathbf{h})\rVert}{\lVert\mathbf{h}\rVert} = 0.</math> | :<math>\lim_{\mathbf{h}\to 0} \frac{\lVert f(\mathbf{a} + \mathbf{h}) - (f(\mathbf{a}) + f'(\mathbf{a})\mathbf{h})\rVert}{\lVert\mathbf{h}\rVert} = 0.</math> | ||
यहाँ h, R में एक सदिश राशि है<sup>n</sup>, इसलिए हर में | यहाँ h, R में एक सदिश राशि है<sup>n</sup>, इसलिए हर में मूल्यक 'R' पर मूल्यक लंबाई है<sup>एन</sup>. हालांकि, f′('a')'h' 'R' में एक वेक्टर है<sup>m</sup>, और अंश में मूल्यदंड 'R' पर मूल्यक लंबाई है<sup>मी</sup>. यदि v एक वेक्टर है जो a से शुरू होता है, तो {{nowrap|''f'' ′('''a''')'''v'''}} 'f' द्वारा v का पुशफॉरवर्ड (अंतर) कहा जाता है और कभी-कभी लिखा जाता है {{nowrap|''f''<sub>∗</sub>'''v'''}}. | ||
यदि कुल व्युत्पन्न a पर मौजूद है, तो ''f'' के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर मौजूद हैं, और सभी v के लिए, {{nowrap|''f'' ′('''a''')'''v'''}} दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि {{nowrap|1=''f'' = (''f''<sub>1</sub>, ''f''<sub>2</sub>, ..., ''f''<sub>''m''</sub>)}}, तो कुल व्युत्पन्न को मैट्रिक्स (गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर ''f'' का जैकबियन आव्यूह कहा जाता है: | यदि कुल व्युत्पन्न a पर मौजूद है, तो ''f'' के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर मौजूद हैं, और सभी v के लिए, {{nowrap|''f'' ′('''a''')'''v'''}} दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि {{nowrap|1=''f'' = (''f''<sub>1</sub>, ''f''<sub>2</sub>, ..., ''f''<sub>''m''</sub>)}}, तो कुल व्युत्पन्न को मैट्रिक्स (गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर ''f'' का जैकबियन आव्यूह कहा जाता है: | ||
:<math>f'(\mathbf{a}) = \operatorname{Jac}_{\mathbf{a}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.</math> | :<math>f'(\mathbf{a}) = \operatorname{Jac}_{\mathbf{a}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.</math> | ||
कुल व्युत्पन्न एफ'('ए') का अस्तित्व सभी आंशिक | कुल व्युत्पन्न एफ'('ए') का अस्तित्व सभी आंशिक व्युत्पन्न के अस्तित्व से सख्ती से मजबूत है, लेकिन यदि आंशिक व्युत्पन्न मौजूद हैं और निरंतर हैं, तो कुल व्युत्पन्न मौजूद है, जैकबियन द्वारा दिया गया है, और लगातार निर्भर करता है एक पर'। | ||
कुल व्युत्पन्न की परिभाषा एक चर में व्युत्पन्न की परिभाषा को समाहित करती है। यही है, यदि f वास्तविक चर का वास्तविक-मूल्यवान कार्य है, तो कुल व्युत्पन्न मौजूद है यदि और केवल | कुल व्युत्पन्न की परिभाषा एक चर में व्युत्पन्न की परिभाषा को समाहित करती है। यही है, यदि f वास्तविक चर का वास्तविक-मूल्यवान कार्य है, तो कुल व्युत्पन्न मौजूद है यदि और केवल सामूल्य्य व्युत्पन्न मौजूद है। जेकोबियन मैट्रिक्स 1×1 मैट्रिक्स में कम हो जाता है जिसका एकमात्र प्रवेश व्युत्पन्न f'(x) है। यह 1×1 मैट्रिक्स उस संपत्ति को संतुष्ट करता है जो {{nowrap|''f''(''a'' + ''h'') − (''f''(''a'') + ''f'' ′(''a'')''h'')}} लगभग शून्य है, दूसरे शब्दों में कि | ||
:<math>f(a+h) \approx f(a) + f'(a)h.</math> | :<math>f(a+h) \approx f(a) + f'(a)h.</math> | ||
चर बदलने तक, यह कथन है कि function <math>x \mapsto f(a) + f'(a)(x-a)</math> एक पर एफ के लिए सबसे अच्छा रैखिक सन्निकटन है। | चर बदलने तक, यह कथन है कि function <math>x \mapsto f(a) + f'(a)(x-a)</math> एक पर एफ के लिए सबसे अच्छा रैखिक सन्निकटन है। | ||
किसी | किसी कार्य का कुल व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर मामला। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के कुल व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, कुल व्युत्पन्न स्रोत के [[स्पर्शरेखा बंडल]] से लक्ष्य के स्पर्शरेखा बंडल तक एक कार्य देता है। | ||
दूसरे, तीसरे, और उच्च-क्रम के कुल | दूसरे, तीसरे, और उच्च-क्रम के कुल व्युत्पन्न का प्राकृतिक एनालॉग एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा बंडल पर कोई कार्य नहीं है, और कुल व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का एनालॉग, जिसे [[जेट (गणित)]] कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक डेटा जैसे वैक्टर के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा बंडल पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा बंडल में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि जेट उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को [[जेट बंडल]] कहा जाता है। किसी कार्य के कुल व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के k वें ऑर्डर जेट और k से कम या उसके बराबर ऑर्डर के आंशिक व्युत्पन्न के बीच के संबंध में समूल्यांतर है। | ||
कुल व्युत्पन्न को बार-बार लेने से, 'आर' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं।<sup>पी</सुप>. kवें क्रम के कुल अवकलज की व्याख्या | कुल व्युत्पन्न को बार-बार लेने से, 'आर' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं।<sup>पी</सुप>. kवें क्रम के कुल अवकलज की व्याख्या मूल्यचित्र के रूप में की जा सकती है | ||
:<math>D^k f: \mathbb{R}^n \to L^k(\mathbb{R}^n \times \cdots \times \mathbb{R}^n, \mathbb{R}^m)</math> | :<math>D^k f: \mathbb{R}^n \to L^k(\mathbb{R}^n \times \cdots \times \mathbb{R}^n, \mathbb{R}^m)</math> | ||
जो R में एक बिंदु x लेता है<sup>n</sup> और इसे 'R' से k-रेखीय | जो R में एक बिंदु x लेता है<sup>n</sup> और इसे 'R' से k-रेखीय मूल्यचित्रों के स्थान का एक तत्व प्रदान करता है<sup>n</sup> से 'आर'<sup>m</sup> – उस बिंदु पर f के लिए सबसे अच्छा (एक निश्चित अर्थ में) k-रैखिक सन्निकटन। इसे [[विकर्ण फ़ैक्टर]] Δ के साथ प्रीकंपोज करके, {{nowrap|'''x''' → ('''x''', '''x''')}}, एक सामूल्य्यीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
f(\mathbf{x}) & \approx f(\mathbf{a}) + (D f)(\mathbf{x-a}) + \left(D^2 f\right)(\Delta(\mathbf{x-a})) + \cdots\\ | f(\mathbf{x}) & \approx f(\mathbf{a}) + (D f)(\mathbf{x-a}) + \left(D^2 f\right)(\Delta(\mathbf{x-a})) + \cdots\\ | ||
| Line 305: | Line 305: | ||
जहाँ f(a) की पहचान एक स्थिर फलन से की जाती है, {{nowrap|''x''<sub>''i''</sub> − ''a''<sub>''i''</sub>}} वेक्टर के घटक हैं {{nowrap|'''x''' − '''a'''}}, तथा {{nowrap|(''Df'')<sub>''i''</sub>}} तथा {{nowrap|(''D''<sup>2</sup>''f'')<sub>''jk''</sub>}} के घटक हैं {{nowrap|''Df''}} तथा {{nowrap|''D''<sup>2</sup>''f''}} रैखिक परिवर्तन के रूप में। | जहाँ f(a) की पहचान एक स्थिर फलन से की जाती है, {{nowrap|''x''<sub>''i''</sub> − ''a''<sub>''i''</sub>}} वेक्टर के घटक हैं {{nowrap|'''x''' − '''a'''}}, तथा {{nowrap|(''Df'')<sub>''i''</sub>}} तथा {{nowrap|(''D''<sup>2</sup>''f'')<sub>''jk''</sub>}} के घटक हैं {{nowrap|''Df''}} तथा {{nowrap|''D''<sup>2</sup>''f''}} रैखिक परिवर्तन के रूप में। | ||
== | == सामूल्य्यीकरण == | ||
{{Main|Generalizations of the derivative}} | {{Main|Generalizations of the derivative}} | ||
व्युत्पन्न की अवधारणा को कई अन्य सेटिंग्स तक बढ़ाया जा सकता है। | व्युत्पन्न की अवधारणा को कई अन्य सेटिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है। | ||
* व्युत्पन्न का एक महत्वपूर्ण | * व्युत्पन्न का एक महत्वपूर्ण सामूल्य्यीकरण [[जटिल संख्या]]ओं के जटिल कार्यों से संबंधित है, जैसे कि (एक डोमेन में) जटिल संख्या C से C तक के कार्य। इस तरह के एक समारोह के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। परिभाषा। यदि C की पहचान R से की जाती है<sup>2</sup> को एक सम्मिश्र संख्या z के रूप में लिखकर {{nowrap|''x'' + ''iy''}}, तो C से C तक एक अवकलनीय फलन निश्चित रूप से R से एक फलन के रूप में अवकलनीय है<sup>2</sup> से आर<sup>2</sup> (इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी मौजूद हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी मौजूद होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण - [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक कार्य]] देखें। | ||
* एक अन्य | * एक अन्य सामूल्य्यीकरण चिकनी कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी [[स्पर्शरेखा स्थान]] कहा जाता है: प्रोटोटाइपिकल उदाहरण 'R' में एक चिकनी सतह है।<sup>3</उप>। एक (विभेदक) मूल्यचित्र का व्युत्पन्न (या अंतर)। {{nowrap|''f'': ''M'' → ''N''}} मैनिफोल्ड्स के बीच, एम में एक बिंदु एक्स पर, फिर एक्स पर एम के स्पर्शरेखा स्थान से एफ (एक्स) पर एन के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य एम और एन के स्पर्शरेखा बंडलों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - पुशफॉरवर्ड (अंतर) और [[पुलबैक (अंतर ज्यामिति)]] देखें। | ||
* डायमेंशन (वेक्टर स्पेस) वेक्टर स्पेस जैसे [[बनच स्थान]] और फ्रेचेट स्पेस के बीच के मैप के लिए भी भेदभाव को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक | * डायमेंशन (वेक्टर स्पेस) वेक्टर स्पेस जैसे [[बनच स्थान]] और फ्रेचेट स्पेस के बीच के मैप के लिए भी भेदभाव को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूल्य्यीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है। | ||
* शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि [[कमजोर व्युत्पन्न]] के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में एम्बेड करना है जिसे वितरण का स्थान (गणित) कहा जाता है और केवल यह आवश्यक है कि एक | * शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि [[कमजोर व्युत्पन्न]] के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में एम्बेड करना है जिसे वितरण का स्थान (गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य औसत पर अलग-अलग हो। | ||
* व्युत्पन्न के गुणों ने बीजगणित और टोपोलॉजी में कई | * व्युत्पन्न के गुणों ने बीजगणित और टोपोलॉजी में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है - उदाहरण के लिए, [[अंतर बीजगणित]] देखें। | ||
* विभेदन का असतत समतुल्य [[परिमित अंतर]] है। डिफरेंशियल | * विभेदन का असतत समतुल्य [[परिमित अंतर]] है। डिफरेंशियल गणना का अध्ययन [[समय पैमाने की गणना|समय पैमूल्ये की गणना]] में परिमित अंतर के गणना के साथ एकीकृत है। | ||
* अंकगणित व्युत्पन्न भी देखें। | * अंकगणित व्युत्पन्न भी देखें। | ||
== इतिहास == | == इतिहास == | ||
{{main|History of calculus}} | {{main|History of calculus}} | ||
गणना, अपने प्रारंभिक इतिहास में इनफिनिटिमल गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा (गणित), कार्य (गणित), व्युत्पन्न, इंटीग्रल और [[अनंत श्रृंखला]] पर केंद्रित है। 17वीं शताब्दी के मध्य में [[आइजैक न्यूटन]] और गॉटफ्रीड लीबनिज ने स्वतंत्र रूप से गणना की खोज की। हालांकि, प्रत्येक आविष्कारक ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा। | |||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 11:41, 2 December 2022
| के बारे में लेखों की एक श्रृंखला का हिस्सा |
| पथरी |
|---|
गणित में, एक वास्तविक चर के एक कार्य का व्युत्पन्न एक कार्य (इनपुट मूल्य) के अपने तर्क में परिवर्तन के संबंध में कार्य मूल्य (प्रक्षेपण मूल्य) के परिवर्तन की संवेदनशीलता को मापता है। व्युत्पन्न गणना का एक मूलभूत उपकरण है। उदाहरण के लिए, समय के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का वेग है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है।
किसी चुने हुए इनपुट मूल्य पर एकल चर के कार्य का व्युत्पन्न, जब वह मौजूद होता है, उस बिंदु पर कार्य के ग्राफ़ पर स्पर्शरेखा का ढलान होता है। स्पर्श रेखा उस इनपुट मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को अक्सर परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है।
व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए सामूल्य्यीकृत किया जा सकता है। इस सामूल्य्यीकरण में, व्युत्पन्न को एक रैखिक परिवर्तन के रूप में पुनर्व्याख्या की जाती है जिसका ग्राफ (उचित अनुवाद के बाद) मूल कार्य के ग्राफ के लिए सबसे अच्छा रैखिक सन्निकटन है। जैकबियन मैट्रिक्स मैट्रिक्स (गणित) है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी गणना स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन मैट्रिक्स ग्रेडिएंट वेक्टर में कम हो जाता है।
व्युत्पन्न खोजने की प्रक्रिया को भेदभाव कहा जाता है। रिवर्स प्रोसेस को 'antiderivative' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।[Note 1]
परिभाषा
एक वास्तविक चर का एक कार्य f(x) एक बिंदु पर अवकलनीय है a किसी कार्य के अपने डोमेन का, यदि उसके डोमेन में एक खुला अंतराल है I युक्त a, और सीमा (गणित)
मौजूद। इसका मतलब है कि, हर सकारात्मक वास्तविक संख्या के लिए (यहां तक कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या मौजूद है ऐसा है कि, हर के लिए h ऐसा है कि तथा फिर परिभाषित किया गया है, और
जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं (देखें (ε, δ)-सीमा की परिभाषा)।
यदि समारोह f पर अवकलनीय है a, वह है अगर सीमा L मौजूद है, तो इस सीमा को व्युत्पन्न कहा जाता है f पर a, और निरूपित (के रूप में पढ़ेंf के प्रमुख a) या (के व्युत्पन्न के रूप में पढ़ें f इसके संबंध में x पर a,dy द्वारा dx पर a, याdy ऊपर dx पर a); देखना § Notation (details), नीचे।
निरंतरता और भिन्नता
यदि f पर अवकलनीय है a, फिर f पर भी निरंतर कार्य करना चाहिए a. एक उदाहरण के रूप में, एक बिंदु चुनें a और जाने f चरण कार्य बनें जो सभी के लिए मूल्य 1 लौटाता है x से कम a, और सभी के लिए भिन्न मूल्य 10 लौटाता है x इससे बड़ा या इसके बराबर a. f पर व्युत्पन्न नहीं हो सकता a. यदि h नकारात्मक है, तो a + h कदम के निचले हिस्से पर है, इसलिए छेदक रेखा से a प्रति a + h बहुत खड़ी है, और के रूप में h शून्य की ओर जाता है ढलान अनंत की ओर जाता है। यदि h सकारात्मक है, तो a + h सीढी के ऊँचे भाग पर है, अत: से छेदक रेखा a प्रति a + h ढलान शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा मौजूद नहीं होती है।
हालाँकि, भले ही एक बिंदु पर एक कार्य निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए, द्वारा दिया गया निरपेक्ष मूल्य कार्य f(x) = |x| पर निरंतर है x = 0, लेकिन यह वहां भिन्न नहीं है। यदि h धनात्मक है, तो छेदक रेखा का ढलान 0 से h एक है, जबकि अगर h ऋणात्मक है, तो छेदक रेखा का ढलान 0 से h एक नकारात्मक है। इसे ग्राफ़िक रूप से ग्राफ़ में किंक या कस्प के रूप में देखा जा सकता है x = 0. यहां तक कि एक चिकनी ग्राफ वाला कार्य भी उस बिंदु पर भिन्न नहीं होता है जहां इसकी लंबवत स्पर्शरेखा होती है: उदाहरण के लिए, दिया गया कार्य f(x) = x1/3 पर अवकलनीय नहीं है x = 0.
सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता।
अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या लगभग हर जगह व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एक मोनोटोन समारोह या लिप्सचिट्ज़ समारोह है, तो यह सत्य है। हालाँकि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब वीयरस्ट्रैस समारोह के रूप में जाना जाता है। 1931 में, स्टीफन बानाच ने साबित किया कि किसी बिंदु पर व्युत्पन्न वाले फ़ंक्शंस का सेट सभी निरंतर फ़ंक्शंस के स्थान पर एक अल्प सेट है।[1] अनौपचारिक रूप से, इसका मतलब यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है।
एक समारोह के रूप में व्युत्पन्न
होने देना f ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु को मैप करता है x के व्युत्पन्न के मूल्य के लिए f पर x. यह समारोह लिखा है f′ और इसे व्युत्पन्न फंक्शन या व्युत्पन्न कहा जाता है f.
कभी-कभी f इसके डोमेन के अधिकांश बिंदुओं पर व्युत्पन्न है, लेकिन सभी नहीं। वह कार्य जिसका मूल्य at a बराबरी f′(a) जब भी f′(a) परिभाषित किया गया है और कहीं और अपरिभाषित है, इसे व्युत्पन्न भी कहा जाता है f. यह अभी भी एक कार्य है, लेकिन इसका डोमेन के डोमेन से छोटा हो सकता है f.
इस विचार का उपयोग करते हुए, भेदभाव कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक ऑपरेटर (गणित) है जिसका डोमेन उन सभी कार्यों का सेट है जिनके डोमेन के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक सेट है। यदि हम इस ऑपरेटर को निरूपित करते हैं D, फिर D(f) कार्य है f′. तब से D(f) एक कार्य है, इसका मूल्यांकन एक बिंदु पर किया जा सकता है a. व्युत्पन्न समारोह की परिभाषा के द्वारा, D(f)(a) = f′(a).
तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें f(x) = 2x; f एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को इनपुट के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है:
परिचालक Dहालांकि, अलग-अलग नंबरों पर परिभाषित नहीं किया गया है। यह केवल कार्यों पर परिभाषित किया गया है:
क्योंकि का उत्पादन D एक कार्य है, का प्रक्षेपण D एक बिंदु पर मूल्यांकन किया जा सकता है। उदाहरण के लिए, कब D स्क्वायर कार्य पर लागू होता है, x ↦ x2, D दोहरीकरण समारोह को प्रक्षेपण करता है x ↦ 2xजिसे हमने नाम दिया है f(x). इस प्रक्षेपण कार्य का मूल्यांकन प्राप्त करने के लिए किया जा सकता है f(1) = 2, f(2) = 4, और इसी तरह।
उच्च व्युत्पन्न
होने देना f एक अवकलनीय कार्य हो, और चलो f ′ इसका व्युत्पन्न हो। का व्युत्पन्न f ′ (यदि है तो) लिखा हुआ है f ′′ और का दूसरा व्युत्पन्न कहा जाता है f. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह मौजूद है, लिखा गया है f ′′′ का तीसरा व्युत्पन्न कहा जाता है f. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह मौजूद है, तो nवें व्युत्पन्न के व्युत्पन्न के रूप में (n−1)वें व्युत्पन्न। इन दोहराए गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। n'}}वें अवकलज को क्रम का अवकलज भी कहा जाता है nऔर # लैग्रेंज का अंकन f (n).
यदि x(t) समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है t, फिर के उच्च-क्रम के व्युत्पन्न x भौतिकी में विशिष्ट व्याख्याएँ हैं। का पहला व्युत्पन्न x वस्तु का वेग है। का दूसरा व्युत्पन्न x त्वरण है। का तीसरा व्युत्पन्न x झटका (भौतिकी) है। और अंत में, चौथे से छठे व्युत्पन्न के x हैं उछाल|स्नैप, क्रैकल, और पॉप; खगोल भौतिकी के लिए सबसे अधिक लागू।
एक समारोह f व्युत्पन्न होने की आवश्यकता नहीं है (उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, भले ही f एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो
गणना यह दर्शाती है f एक अवकलनीय फलन है जिसका व्युत्पन्न है द्वारा दिया गया है
f'(x) पर निरपेक्ष मूल्य फलन का दुगुना है , और इसका शून्य पर व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक फलन में a हो सकता है kप्रत्येक गैर-ऋणात्मक पूर्णांक के लिए वें व्युत्पन्न k लेकिन नहीं (k + 1)वें व्युत्पन्न। एक समारोह जिसमें है k उत्तरोत्तर व्युत्पन्न कहलाते हैंk बार अलग करने योग्य। अगर इसके अलावा kवां अवकलज सतत है, तो फलन अवकलनीयता वर्ग का कहा जाता है Ck. (यह होने की तुलना में एक मजबूत स्थिति है k व्युत्पन्न, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है Smoothness § Examples।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक अवकलज होते हैं, अपरिमित रूप से अवकलनीय या चिकनापन कहलाता है।
वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मूल्यक भेदभाव नियमों द्वारा, यदि डिग्री का बहुपद n विभेदित है n समय, तो यह एक निरंतर कार्य बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे मौजूद हैं, इसलिए बहुपद सहज कार्य हैं।
एक समारोह के व्युत्पन्न f एक बिंदु पर x उस कार्य के पास बहुपद सन्निकटन प्रदान करें x. उदाहरण के लिए, यदि f तब दो बार अवकलनीय है
इस अर्थ में कि
यदि f असीम रूप से भिन्न है, तो यह टेलर श्रृंखला की शुरुआत है f पर मूल्यांकन किया गया x + h चारों ओर x.
विभक्ति बिंदु
एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।[2] एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, जैसा कि विभक्ति बिंदु के मामले में होता है x = 0 द्वारा दिए गए समारोह का , या यह अस्तित्व में विफल हो सकता है, जैसा कि विभक्ति बिंदु के मामले में है x = 0 द्वारा दिए गए समारोह का . एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर स्विच करता है।
अंकन (विवरण)
लीबनिज का अंकन
प्रतीक , , तथा 1675 में Gottfried Leibniz द्वारा पेश किए गए थे।[3] यह तब भी आमतौर पर प्रयोग किया जाता है जब समीकरण y = f(x) निर्भर और स्वतंत्र चर के बीच कार्यात्मक संबंध के रूप में देखा जाता है। फिर पहले व्युत्पन्न द्वारा निरूपित किया जाता है
और एक बार एक अतिसूक्ष्म भागफल के रूप में सोचा गया था। उच्च व्युत्पन्न्स को संकेतन का उपयोग करके व्यक्त किया जाता है
के n वें व्युत्पन्न के लिए . ये व्युत्पन्न ऑपरेटर के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए,
लीबनिज के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं बिंदु पर दो अलग-अलग तरीकों से:
लीबनिज के अंकन से विभेदीकरण (हर में) के लिए चर निर्दिष्ट करने की अनुमति मिलती है, जो आंशिक व्युत्पन्न में प्रासंगिक है। इसका उपयोग श्रृंखला नियम को लिखने के लिए भी किया जा सकता है[Note 2]
लैग्रेंज का अंकन
कभी-कभी प्राइम नोटेशन के रूप में जाना जाता है,[4] भेदभाव के लिए सबसे आम आधुनिक नोटेशन में से एक जोसेफ-लुई लाग्रेंज के कारण है और प्राइम (प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके निरूपित किया जाता है . इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता है
- तथा
इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक सबस्क्रिप्ट और सुपरस्क्रिप्ट में रोमन अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं:
- या
बाद वाला अंकन संकेतन प्राप्त करने के लिए सामूल्य्यीकृत करता है के n वें व्युत्पन्न के लिए - यह संकेतन सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है।
न्यूटन का अंकन
अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि , फिर
- तथा
निरूपित, क्रमशः, के पहले और दूसरे व्युत्पन्न . यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह आमतौर पर भौतिकी और अंतर ज्यामिति में अंतर समीकरणों में प्रयोग किया जाता है।[5][6] डॉट नोटेशन, हालांकि, उच्च-ऑर्डर व्युत्पन्न (ऑर्डर 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता।
यूलर का अंकन
लियोनहार्ड यूलर का अंकन अवकल संकारक का उपयोग करता है , जो एक समारोह पर लागू होता है पहला व्युत्पन्न देने के लिए . Nth व्युत्पन्न को निरूपित किया जाता है .
यदि y = f(x) एक आश्रित चर है, तो अक्सर स्वतंत्र चर x को स्पष्ट करने के लिए सबस्क्रिप्ट x को D से जोड़ा जाता है। इसके बाद यूलर का अंकन लिखा जाता है
- या ,
हालाँकि यह सबस्क्रिप्ट अक्सर छोड़ दिया जाता है जब चर x को समझा जाता है, उदाहरण के लिए जब यह अभिव्यक्ति में मौजूद एकमात्र स्वतंत्र चर है।
रैखिक अवकल समीकरणों को बताने और हल करने के लिए यूलर का संकेतन उपयोगी है।
गणना के नियम
एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है।
बुनियादी कार्यों के लिए नियम
यहां सबसे सामूल्य्य बुनियादी कार्यों के व्युत्पन्न के नियम हैं, जहां एक वास्तविक संख्या है।
- शक्ति नियम:
- घातीय कार्य और लघुगणक कार्य:
- त्रिकोणमितीय फलन:
- व्युत्क्रम त्रिकोणमितीय कार्य:
संयुक्त कार्यों के लिए नियम
बुनियादी कार्यों के व्युत्पन्न से कार्य संरचना के व्युत्पन्न को निकालने के लिए यहां कुछ सबसे बुनियादी नियम दिए गए हैं।
- स्थिर नियम: यदि f(x) स्थिर है, तो
- विभेदन की रैखिकता:
- सभी कार्यों f और g और सभी वास्तविक संख्याओं के लिएतथा.
- प्रॉडक्ट नियम:
- सभी कार्यों के लिए एफ और जी। एक विशेष मामले के रूप में, इस नियम में तथ्य शामिल है जब भी एक स्थिर है, क्योंकि निरंतर नियम से।
- भागफल नियम:
- सभी कार्यों के लिए एफ और जी सभी इनपुट पर जहां g ≠ 0.
- समग्र कार्यों के लिए चेन नियम: यदि , फिर
संगणना उदाहरण
द्वारा दिए गए कार्य का व्युत्पन्न
है
यहाँ दूसरे पद की गणना श्रृंखला नियम का उपयोग करके और तीसरे पद की गणना उत्पाद नियम का उपयोग करके की गई है। प्रारंभिक कार्यों x के ज्ञात व्युत्पन्न2</सुप>, एक्स4, sin(x), ln(x) और exp(x) = ex, साथ ही साथ स्थिरांक 7 का भी उपयोग किया गया था।
हाइपररियल्स के साथ परिभाषा
अति वास्तविक संख्या एक्सटेंशन के सापेक्ष R ⊂ ⁎R वास्तविक संख्याओं का, वास्तविक फलन का अवकलज y = f(x) एक वास्तविक बिंदु पर x भागफल की छाया (गणित) के रूप में परिभाषित किया जा सकता है ∆y/∆x अनंत के लिए ∆x, कहाँ पे ∆y = f(x + ∆x) − f(x). यहाँ का स्वाभाविक विस्तार है f हाइपररियल्स को अभी भी निरूपित किया गया है f. यहाँ कहा जाता है कि व्युत्पत्ति का अस्तित्व है यदि छाया चुने हुए अपरिमेय से स्वतंत्र है।
उच्च आयामों में
वेक्टर-मूल्यवान कार्य
एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान R में सदिशों को वास्तविक संख्याएँ भेजता हैएन. एक वेक्टर-मूल्यवान कार्य को इसके समन्वय कार्यों में विभाजित किया जा सकता है y1(t), y2(t), ..., yn(t), जिसका अर्थ है कि y(t) = (y1(t), ..., yn(t)). इसमें शामिल है, उदाहरण के लिए, आर में पैरामीट्रिक वक्र2 या आर3</उप>। समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(t) के व्युत्पन्न को वेक्टर (ज्यामितीय) के रूप में परिभाषित किया गया है, जिसे वक्रों की विभेदक ज्यामिति कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है,
समूल्य रूप से,
अगर सीमा मौजूद है। अंश में घटाव सदिशों का घटाव है, अदिश राशियों का नहीं। यदि y का व्युत्पन्न t के प्रत्येक मूल्य के लिए मौजूद है, तो y' एक अन्य सदिश-मूल्यवान फलन है।
यदि e1, ..., en R का मूल्यक आधार हैn, तो 'y'(t) को इस रूप में भी लिखा जा सकता है y1(t)e1 + ⋯ + yn(t)en. अगर हम मूल्यते हैं कि वेक्टर-मूल्यवान कार्य का व्युत्पन्न भेदभाव संपत्ति की रैखिकता को बरकरार रखता है, तो y(t) का व्युत्पन्न होना चाहिए
क्योंकि प्रत्येक आधार सदिश एक स्थिर है।
यह सामूल्य्यीकरण उपयोगी है, उदाहरण के लिए, यदि y(t) समय t पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(t) समय t पर कण का वेग सदिश है।
आंशिक व्युत्पन्न
मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए,
f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के परिवार के रूप में पुनर्व्याख्या की जा सकती है:
दूसरे शब्दों में, x का प्रत्येक मूल्य एक फलन चुनता है, जिसे f से निरूपित किया जाता हैx, जो कि एक वास्तविक संख्या का फलन है।[Note 3] वह है,
एक बार x का मूल्य चुने जाने के बाद, a कहें f(x, y) एक समारोह एफ निर्धारित करता हैaजो y को भेजता है a2 + ay + y2:
इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए एफaकेवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है:
उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है:
यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के बजाय der , del , या आंशिक उच्चारित किया जाता है।
सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' f(x1, …, xn) दिशा में एक्सiबिंदु पर (ए1, ..., एकn) के रूप में परिभाषित किया गया है:
उपरोक्त अंतर भागफल में, x को छोड़कर सभी चरiस्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है
और, परिभाषा के अनुसार,
दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले इंडेक्स परिवार के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है।
यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। होने देना f(x1, ..., xn) ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न ∂f / ∂xj का f बिंदु पर परिभाषित किया गया है a = (a1, ..., an), ये आंशिक व्युत्पन्न वेक्टर को परिभाषित करते हैं
की प्रवणता कहलाती है f पर a. यदि f किसी डोमेन में हर बिंदु पर अलग-अलग होता है, तो ग्रेडियेंट एक वेक्टर-मूल्यवान कार्य होता है ∇f जो बिंदु को मैप करता है (a1, ..., an) वेक्टर को ∇f(a1, ..., an). नतीजतन, ढाल एक वेक्टर क्षेत्र निर्धारित करता है।
दिशात्मक व्युत्पन्न
यदि f 'R' पर एक वास्तविक-मूल्यवान फलन हैn, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक अवकलज f में x दिशा और y दिशा में परिवर्तन को मापता है। हालांकि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे कि विकर्ण रेखा के साथ y = x. इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक वेक्टर चुनें
बिंदु x पर v की दिशा में 'f की दिशात्मक व्युत्पत्ति सीमा है
कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। यूनिट वेक्टर की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को चालू करने के लिए अक्सर ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए v = λu जहाँ u v की दिशा में एक इकाई सदिश है। स्थानापन्न h = k/λ अंतर भागफल में। अंतर भागफल बन जाता है:
यह 'यू' के संबंध में एफ के दिशात्मक व्युत्पन्न के लिए अंतर भागफल का λ गुना है। इसके अलावा, जब h शून्य की ओर प्रवृत्त होता है तो सीमा को लेना वैसा ही है जैसे कि k को शून्य की ओर ले जाने की सीमा लेना क्योंकि h और k एक दूसरे के गुणक हैं। इसलिए, Dv(f) = λDu(f). इस पुनर्विक्रय संपत्ति के कारण, दिशात्मक व्युत्पन्न को अक्सर यूनिट वैक्टर के लिए ही मूल्या जाता है।
यदि f के सभी आंशिक व्युत्पन्न मौजूद हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं:
यह कुल व्युत्पन्न की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ है Dv + w(f) = Dv(f) + Dw(f).
वही परिभाषा तब भी काम करती है जब f 'R' में मूल्य वाला एक कार्य हैमी. उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक अवकलज 'R' में एक सदिश है।मी.
कुल व्युत्पन्न, कुल अंतर और जैकबियन मैट्रिक्स
जब f 'R' के खुले उपसमुच्चय से एक फलन होn से 'आर'm, तो किसी चुनी हुई दिशा में f का दिशात्मक व्युत्पन्न उस बिंदु पर और उस दिशा में f का सर्वोत्तम रैखिक सन्निकटन है। लेकिन जब n > 1, कोई भी एकल दिशात्मक व्युत्पन्न f के व्यवहार की पूरी तस्वीर नहीं दे सकता है। कुल व्युत्पन्न एक बार में सभी दिशाओं पर विचार करके पूरी तस्वीर देता है। अर्थात, 'a' से शुरू होने वाले किसी भी सदिश 'v' के लिए, रैखिक सन्निकटन सूत्र धारण करता है:
एकल-चर व्युत्पन्न की तरह, f ′(a) चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो।
यदि n और m दोनों एक हैं, तो अवकलज f ′(a) एक संख्या और अभिव्यक्ति है f ′(a)v दो संख्याओं का गुणनफल है। लेकिन उच्च आयामों में, यह असंभव है f ′(a) एक संख्या होना। यदि यह एक संख्या थी, तो f ′(a)v आर में एक वेक्टर होगाn जबकि अन्य पद 'R' में सदिश होंगेm, और इसलिए सूत्र का कोई अर्थ नहीं होगा। रैखिक सन्निकटन सूत्र को समझने के लिए, f ′(a) एक ऐसा कार्य होना चाहिए जो आर में वैक्टर भेजता हैn 'R' में सदिशों के लिएमी, और f ′(a)v v पर मूल्यांकन किए गए इस कार्य को निरूपित करना चाहिए।
यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है
ध्यान दें कि यदि हम एक और वेक्टर w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह v और v दोनों को प्रतिस्थापित करके एक तीसरा अनुमूल्यित समीकरण निर्धारित करता है। a + v एक के लिए। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं
अगर हम मूल्यते हैं कि वी छोटा है और व्युत्पन्न लगातार एक में बदलता रहता है, तो f ′(a + v) लगभग बराबर है f ′(a), और इसलिए दाहिनी ओर लगभग शून्य है। के साथ रैखिक सन्निकटन सूत्र का उपयोग करके बाएं हाथ की ओर को एक अलग तरीके से फिर से लिखा जा सकता है v + w वी के लिए प्रतिस्थापित। रैखिक सन्निकटन सूत्र का अर्थ है:
इससे पता चलता है f ′(a) सदिश समष्टि R से एक रैखिक परिवर्तन हैn सदिश स्थान 'R' के लिएमी. वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मूल्य लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, f ′(a) एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। वी और डब्ल्यू शून्य की ओर बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। चूंकि हम कुल व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, f ′(a) एक रैखिक परिवर्तन होना चाहिए।
एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। हालांकि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि आमतौर पर वैक्टरों को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश कोडोमेन आर में स्थित हैm जबकि हर 'R' डोमेन में स्थित हैएन. इसके अलावा, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि f ′(a) सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं गायब हो जाती हैं। यदि f : R → R, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए हेरफेर किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या है f ′(a) ऐसा है कि
यह इसके बराबर है
क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मूल्य की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक (गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है।
इसलिए, "f" के कुल व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है f ′(a) : Rn → Rm ऐसा है कि
यहाँ h, R में एक सदिश राशि हैn, इसलिए हर में मूल्यक 'R' पर मूल्यक लंबाई हैएन. हालांकि, f′('a')'h' 'R' में एक वेक्टर हैm, और अंश में मूल्यदंड 'R' पर मूल्यक लंबाई हैमी. यदि v एक वेक्टर है जो a से शुरू होता है, तो f ′(a)v 'f' द्वारा v का पुशफॉरवर्ड (अंतर) कहा जाता है और कभी-कभी लिखा जाता है f∗v.
यदि कुल व्युत्पन्न a पर मौजूद है, तो f के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर मौजूद हैं, और सभी v के लिए, f ′(a)v दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि f = (f1, f2, ..., fm), तो कुल व्युत्पन्न को मैट्रिक्स (गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर f का जैकबियन आव्यूह कहा जाता है:
कुल व्युत्पन्न एफ'('ए') का अस्तित्व सभी आंशिक व्युत्पन्न के अस्तित्व से सख्ती से मजबूत है, लेकिन यदि आंशिक व्युत्पन्न मौजूद हैं और निरंतर हैं, तो कुल व्युत्पन्न मौजूद है, जैकबियन द्वारा दिया गया है, और लगातार निर्भर करता है एक पर'।
कुल व्युत्पन्न की परिभाषा एक चर में व्युत्पन्न की परिभाषा को समाहित करती है। यही है, यदि f वास्तविक चर का वास्तविक-मूल्यवान कार्य है, तो कुल व्युत्पन्न मौजूद है यदि और केवल सामूल्य्य व्युत्पन्न मौजूद है। जेकोबियन मैट्रिक्स 1×1 मैट्रिक्स में कम हो जाता है जिसका एकमात्र प्रवेश व्युत्पन्न f'(x) है। यह 1×1 मैट्रिक्स उस संपत्ति को संतुष्ट करता है जो f(a + h) − (f(a) + f ′(a)h) लगभग शून्य है, दूसरे शब्दों में कि
चर बदलने तक, यह कथन है कि function एक पर एफ के लिए सबसे अच्छा रैखिक सन्निकटन है।
किसी कार्य का कुल व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर मामला। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के कुल व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, कुल व्युत्पन्न स्रोत के स्पर्शरेखा बंडल से लक्ष्य के स्पर्शरेखा बंडल तक एक कार्य देता है।
दूसरे, तीसरे, और उच्च-क्रम के कुल व्युत्पन्न का प्राकृतिक एनालॉग एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा बंडल पर कोई कार्य नहीं है, और कुल व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का एनालॉग, जिसे जेट (गणित) कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक डेटा जैसे वैक्टर के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा बंडल पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा बंडल में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि जेट उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को जेट बंडल कहा जाता है। किसी कार्य के कुल व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के k वें ऑर्डर जेट और k से कम या उसके बराबर ऑर्डर के आंशिक व्युत्पन्न के बीच के संबंध में समूल्यांतर है।
कुल व्युत्पन्न को बार-बार लेने से, 'आर' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं।पी</सुप>. kवें क्रम के कुल अवकलज की व्याख्या मूल्यचित्र के रूप में की जा सकती है
जो R में एक बिंदु x लेता हैn और इसे 'R' से k-रेखीय मूल्यचित्रों के स्थान का एक तत्व प्रदान करता हैn से 'आर'm – उस बिंदु पर f के लिए सबसे अच्छा (एक निश्चित अर्थ में) k-रैखिक सन्निकटन। इसे विकर्ण फ़ैक्टर Δ के साथ प्रीकंपोज करके, x → (x, x), एक सामूल्य्यीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है
जहाँ f(a) की पहचान एक स्थिर फलन से की जाती है, xi − ai वेक्टर के घटक हैं x − a, तथा (Df)i तथा (D2f)jk के घटक हैं Df तथा D2f रैखिक परिवर्तन के रूप में।
सामूल्य्यीकरण
व्युत्पन्न की अवधारणा को कई अन्य सेटिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है।
- व्युत्पन्न का एक महत्वपूर्ण सामूल्य्यीकरण जटिल संख्याओं के जटिल कार्यों से संबंधित है, जैसे कि (एक डोमेन में) जटिल संख्या C से C तक के कार्य। इस तरह के एक समारोह के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। परिभाषा। यदि C की पहचान R से की जाती है2 को एक सम्मिश्र संख्या z के रूप में लिखकर x + iy, तो C से C तक एक अवकलनीय फलन निश्चित रूप से R से एक फलन के रूप में अवकलनीय है2 से आर2 (इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी मौजूद हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी मौजूद होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण - होलोमॉर्फिक कार्य देखें।
- एक अन्य सामूल्य्यीकरण चिकनी कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी स्पर्शरेखा स्थान कहा जाता है: प्रोटोटाइपिकल उदाहरण 'R' में एक चिकनी सतह है।3</उप>। एक (विभेदक) मूल्यचित्र का व्युत्पन्न (या अंतर)। f: M → N मैनिफोल्ड्स के बीच, एम में एक बिंदु एक्स पर, फिर एक्स पर एम के स्पर्शरेखा स्थान से एफ (एक्स) पर एन के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य एम और एन के स्पर्शरेखा बंडलों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - पुशफॉरवर्ड (अंतर) और पुलबैक (अंतर ज्यामिति) देखें।
- डायमेंशन (वेक्टर स्पेस) वेक्टर स्पेस जैसे बनच स्थान और फ्रेचेट स्पेस के बीच के मैप के लिए भी भेदभाव को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूल्य्यीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है।
- शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि कमजोर व्युत्पन्न के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में एम्बेड करना है जिसे वितरण का स्थान (गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य औसत पर अलग-अलग हो।
- व्युत्पन्न के गुणों ने बीजगणित और टोपोलॉजी में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है - उदाहरण के लिए, अंतर बीजगणित देखें।
- विभेदन का असतत समतुल्य परिमित अंतर है। डिफरेंशियल गणना का अध्ययन समय पैमूल्ये की गणना में परिमित अंतर के गणना के साथ एकीकृत है।
- अंकगणित व्युत्पन्न भी देखें।
इतिहास
गणना, अपने प्रारंभिक इतिहास में इनफिनिटिमल गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा (गणित), कार्य (गणित), व्युत्पन्न, इंटीग्रल और अनंत श्रृंखला पर केंद्रित है। 17वीं शताब्दी के मध्य में आइजैक न्यूटन और गॉटफ्रीड लीबनिज ने स्वतंत्र रूप से गणना की खोज की। हालांकि, प्रत्येक आविष्कारक ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा।
यह भी देखें
- डिफरेंशियल कैलकुलस # डेरिवेटिव्स के अनुप्रयोग
- स्वचालित भेदभाव
- विभेदीकरण वर्ग
- भेद नियम
- डिफरइंटीग्रल
- फ्रैक्टल व्युत्पन्न
- व्युत्पन्न के सामान्यीकरण
- डेरिवेटिव से नफरत है
- कलन का इतिहास
- अभिन्न
- अनंत
- रेखाकरण
- गणितीय विश्लेषण
- गुणात्मक प्रतिलोम
- संख्यात्मक भेदभाव
- दर (गणित)
- रैडॉन-निकोडिम प्रमेय
- सममित व्युत्पन्न
- श्वार्जियन व्युत्पन्न
टिप्पणियाँ
- ↑ Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.
- ↑ In the formulation of calculus in terms of limits, the du symbol has been assigned various meanings by various authors. Some authors do not assign a meaning to du by itself, but only as part of the symbol du/dx. Others define dx as an independent variable, and define du by du = dx⋅f′(x). In non-standard analysis du is defined as an infinitesimal. It is also interpreted as the exterior derivative of a function u. See differential (infinitesimal) for further information.
- ↑ This can also be expressed as the operation known as currying.
संदर्भ
- ↑ Banach, S. (1931), "Uber die Baire'sche Kategorie gewisser Funktionenmengen", Studia Math., 3 (3): 174–179, doi:10.4064/sm-3-1-174-179.. Cited by Hewitt, E; Stromberg, K (1963), Real and abstract analysis, Springer-Verlag, Theorem 17.8
- ↑ Apostol 1967, §4.18
- ↑ Manuscript of November 11, 1675 (Cajori vol. 2, page 204)
- ↑ "विभेदन का अंकन". MIT. 1998. Retrieved 24 October 2012.
- ↑ Evans, Lawrence (1999). आंशिक अंतर समीकरण. American Mathematical Society. p. 63. ISBN 0-8218-0772-2.
- ↑ Kreyszig, Erwin (1991). विभेदक ज्यामिति. New York: Dover. p. 1. ISBN 0-486-66721-9.
ग्रन्थसूची
प्रिंट
- Anton, Howard; Bivens, Irl; Davis, Stephen (February 2, 2005), Calculus: Early Transcendentals Single and Multivariable (8th ed.), New York: Wiley, ISBN 978-0-471-47244-5
- Apostol, Tom M. (June 1967), Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra, vol. 1 (2nd ed.), Wiley, ISBN 978-0-471-00005-1
- Apostol, Tom M. (June 1969), Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications, vol. 1 (2nd ed.), Wiley, ISBN 978-0-471-00007-5
- Courant, Richard; John, Fritz (December 22, 1998), Introduction to Calculus and Analysis, Vol. 1, Springer-Verlag, ISBN 978-3-540-65058-4
- Eves, Howard (January 2, 1990), An Introduction to the History of Mathematics (6th ed.), Brooks Cole, ISBN 978-0-03-029558-4
- Larson, Ron; Hostetler, Robert P.; Edwards, Bruce H. (February 28, 2006), Calculus: Early Transcendental Functions (4th ed.), Houghton Mifflin Company, ISBN 978-0-618-60624-5
- Spivak, Michael (September 1994), Calculus (3rd ed.), Publish or Perish, ISBN 978-0-914098-89-8
- Stewart, James (December 24, 2002), Calculus (5th ed.), Brooks Cole, ISBN 978-0-534-39339-7
- Thompson, Silvanus P. (September 8, 1998), Calculus Made Easy (Revised, Updated, Expanded ed.), New York: St. Martin's Press, ISBN 978-0-312-18548-0
ऑनलाइन किताबें
| Library resources about Derivative |
- Crowell, Benjamin (2017), Fundamentals of Calculus
- (Govt. of TN), TamilNadu Textbook Corporation (2006), Mathematics- vol.2 (PDF), archived from the original (PDF) on 2016-01-15, retrieved 2014-11-29
- Garrett, Paul (2004), Notes on First-Year Calculus, University of Minnesota
- Hussain, Faraz (2006), Understanding Calculus
- Keisler, H. Jerome (2000), Elementary Calculus: An Approach Using Infinitesimals
- Mauch, Sean (2004), Unabridged Version of Sean's Applied Math Book, archived from the original on 2006-04-15
- Sloughter, Dan (2000), Difference Equations to Differential Equations
- Strang, Gilbert (1991), Calculus
- Stroyan, Keith D. (1997), A Brief Introduction to Infinitesimal Calculus
- Wikibooks, Calculus
बाहरी संबंध
- "Derivative", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Khan Academy: "Newton, Leibniz, and Usain Bolt"
- Weisstein, Eric W. "Derivative". MathWorld.
- Online Derivative Calculator from Wolfram Alpha.