अवकलज: Difference between revisions

From Vigyanwiki
(TEXT)
No edit summary
Line 1: Line 1:


{{about|the term as used in calculus|a less technical overview of the subject|differential calculus|other uses|}}
{{about|शब्द के रूप में कलन प्रयोग किया जाता है|विषय का एक कम तकनीकी अवलोकन|अंतर कलन|अन्य उपयोग|}}
{{Short description|Instantaneous rate of change (mathematics)}}
{{Short description|Instantaneous rate of change (mathematics)}}
{{good article}}
{{good article}}
[[File:Tangent to a curve.svg|thumb|एक कार्य का लेखाचित्र, काले रंग में खींचा गया है, और उस लेखाचित्र की स्पर्श रेखा, लाल रंग में खींची गई है। [[स्पर्शरेखा]] रेखा का [[ढलान]] चिह्नित बिंदु पर कार्य के व्युत्पन्न के एकरूप है।]]
[[File:Tangent to a curve.svg|thumb|एक कार्य का लेखाचित्र, काले रंग में खींचा गया है, और उस लेखाचित्र की स्पर्श रेखा, लाल रंग में खींची गई है। [[स्पर्शरेखा]] रेखा का [[ढलान]] चिह्नित बिंदु पर कार्य के व्युत्पन्न के एकरूप है।]]
{{Calculus |differential}}
{{Calculus |differential}}
गणित में, एक वास्तविक चर के एक कार्य का व्युत्पन्न एक कार्य (निवेश मूल्य) के अपने तर्क में परिवर्तन के संबंध में कार्य मूल्य (प्रक्षेपण मूल्य) के परिवर्तन की संवेदनशीलता को मापता है। व्युत्पन्न गणना का एक मूलभूत उपकरण है। उदाहरण के लिए, [[समय]] के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का [[वेग]] है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है।
गणित में, एक वास्तविक चर के एक कार्य का व्युत्पन्न एक कार्य(निवेश मूल्य) के अपने तर्क में परिवर्तन के संबंध में कार्य मूल्य(प्रक्षेपण मूल्य) के परिवर्तन की संवेदनशीलता को मापता है। व्युत्पन्न गणना का एक मूलभूत उपकरण है। उदाहरण के लिए, [[समय]] के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का [[वेग]] है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है।


किसी सुचयनित निवेश मूल्य पर एकल चर के कार्य का व्युत्पन्न, जब वह उपस्थित होता है, उस बिंदु पर कार्य के लेखाचित्र पर [[स्पर्शरेखा]] का ढलान होता है। स्पर्श रेखा उस निवेश मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को प्रायः परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है।
किसी सुचयनित निवेश मूल्य पर एकल चर के कार्य का व्युत्पन्न, जब वह उपस्थित होता है, उस बिंदु पर कार्य के लेखाचित्र पर [[स्पर्शरेखा]] का ढलान होता है। स्पर्श रेखा उस निवेश मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को प्रायः परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है।


व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए सामूल्य्यीकृत किया जा सकता है। इस सामूल्य्यीकरण में, व्युत्पन्न को एक [[रैखिक परिवर्तन]] के रूप में पुनर्व्याख्या की जाती है जिसका लेखाचित्र (उचित अनुवाद के बाद) मूल कार्य के लेखाचित्र के लिए सबसे अच्छा [[रैखिक सन्निकटन]] है। [[जैकबियन मैट्रिक्स|जैकबियन आव्यूह]] [[मैट्रिक्स (गणित)|(गणित)]] है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी [[गणना]] स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन आव्यूह [[ग्रेडिएंट वेक्टर|प्रवणता संवाहक]] में कम हो जाता है।
व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए समूहीकृत किया जा सकता है। इस सामूहीकरण में, व्युत्पन्न को एक [[रैखिक परिवर्तन]] के रूप में पुनर्व्याख्या की जाती है जिसका लेखाचित्र(उचित अनुवाद के बाद) मूल कार्य के लेखाचित्र के लिए सबसे अच्छा [[रैखिक सन्निकटन]] है। [[जैकबियन मैट्रिक्स|जैकबियन आव्यूह]]([[मैट्रिक्स (गणित)|गणित)]] है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी [[गणना]] स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन आव्यूह [[ग्रेडिएंट वेक्टर|प्रवणता संवाहक]] में कम हो जाता है।


व्युत्पन्न खोजने की प्रक्रिया को विवेक कहा जाता है। विपत्ति प्रक्रिया को '[[antiderivative|विरोधी विशिष्टीकरण]] ' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।{{#tag:ref|Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.|group=Note}}
व्युत्पन्न खोजने की प्रक्रिया को विवेक कहा जाता है। विपत्ति प्रक्रिया को '[[antiderivative|विरोधी विशिष्टीकरण]] ' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।{{#tag:ref|Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.|group=Note}}
== परिभाषा ==
== परिभाषा ==
एक वास्तविक चर का एक कार्य {{math|1=''f''(''x'')}} एक बिंदु पर अवकलनीय है {{mvar|a}} किसी कार्य के अपने अधि क्षेत्र  का, यदि उसके अधि क्षेत्र  में एक [[खुला अंतराल]] है {{mvar|I}} युक्त {{mvar|a}}, और [[सीमा (गणित)]]
एक वास्तविक चर का एक कार्य {{math|1=''f''(''x'')}} एक बिंदु पर अवकलनीय है {{mvar|a}} किसी कार्य के अपने अधिक्षेत्र का, यदि उसके अधिक्षेत्र में एक [[खुला अंतराल]] है {{mvar|I}} युक्त {{mvar|a}}, और [[सीमा (गणित)|सीमा(गणित)]]
:<math>L=\lim_{h \to 0}\frac{f(a+h)-f(a)}h </math>
:<math>L=\lim_{h \to 0}\frac{f(a+h)-f(a)}h </math>
उपस्थित। इसका उद्देश्य है कि, हर सकारात्मक [[वास्तविक संख्या]] के लिए <math>\varepsilon</math> (यहां तक ​​कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या उपस्थित है <math>\delta</math> ऐसा है कि, हर के लिए {{mvar|h}} ऐसा है कि <math>|h| < \delta</math> तथा <math>h\ne 0</math> फिर <math>f(a+h)</math> परिभाषित किया गया है, और
इसका उद्देश्य है कि, हर सकारात्मक [[वास्तविक संख्या]] के लिए <math>\varepsilon</math>(यहां तक ​​कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या उपस्थित है <math>\delta</math> ऐसा है कि, हर के लिए {{mvar|h}} ऐसा है कि <math>|h| < \delta</math> तथा <math>h\ne 0</math> फिर <math>f(a+h)</math> परिभाषित किया गया है, और
:<math>\left|L-\frac{f(a+h)-f(a)}h\right|<\varepsilon,</math>
:<math>\left|L-\frac{f(a+h)-f(a)}h\right|<\varepsilon,</math>
जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं (देखें (ε, δ)-सीमा की परिभाषा)।
जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं(देखें(ε, δ)-सीमा की परिभाषा)।


यदि समारोह {{mvar|f}} पर अवकलनीय है {{mvar|a}}, वह अगर सीमा {{mvar|L}} उपस्थित है, तो इस सीमा को व्युत्पन्न कहा जाता है {{mvar|f}} पर {{mvar|a}}, और निरूपित <math>f'(a)</math> (के रूप में पढ़ें {{math|''f''}} के प्रमुख {{math|''a''}}) या <math display="inline">\frac{df}{dx}(a)</math> (के व्युत्पन्न के रूप में पढ़ें {{math|''f''}} इसके संबंध में {{math|''x''}} पर {{mvar|a}},{{math|''dy''}} द्वारा {{math|''dx''}} पर {{mvar|a}}, या {{math|''dy''}} ऊपर {{math|''dx''}} पर {{mvar|a}}); देखना {{slink|| प्रतीकांकन (सूचना )}}, नीचे।
यदि समारोह {{mvar|f}} पर अवकलनीय है {{mvar|a}}, वह अगर सीमा {{mvar|L}} उपस्थित है, तो इस सीमा को व्युत्पन्न कहा जाता है {{mvar|f}} पर {{mvar|a}}, और निरूपित <math>f'(a)</math>(के रूप में पढ़ें {{math|''f''}} के प्रमुख {{math|''a''}}) या <math display="inline">\frac{df}{dx}(a)</math>(के व्युत्पन्न के रूप में पढ़ें {{math|''f''}} इसके संबंध में {{math|''x''}} पर {{mvar|a}},{{math|''dy''}} द्वारा {{math|''dx''}} पर {{mvar|a}}, या {{math|''dy''}} ऊपर {{math|''dx''}} पर {{mvar|a}}); देखना {{slink|| प्रतीकांकन (सूचना )}}, नीचे।


== निरंतरता और भिन्नता ==
== निरंतरता और भिन्नता ==


[[File:Right-continuous.svg|thumb|right|इस कार्य का चिह्नित बिंदु पर कोई व्युत्पन्न नहीं है, क्योंकि कार्य वहां निरंतर नहीं है (विशेष रूप से, इसमें [[कूदना बंद करो]] है)।]]यदि {{math|''f''}} पर अवकलनीय है {{math|''a''}}, फिर {{math|''f''}} पर भी [[निरंतर कार्य]] करना चाहिए {{math|''a''}}. एक उदाहरण के रूप में, एक बिंदु चुनें {{math|''a''}} और जाने {{math|''f''}} चरण कार्य बनें जो सभी के लिए मूल्य 1 लौटाता है {{math|''x''}} से कम {{math|''a''}}, और सभी के लिए भिन्न मूल्य 10 लौटाता है {{math|''x''}} इससे बड़ा या इसके एकरूप {{math|''a''}}. {{math|''f''}} पर व्युत्पन्न नहीं हो सकता {{math|''a''}}. यदि {{math|''h''}} नकारात्मक है, तो {{math|''a'' + ''h''}} कदम के निचले हिस्से पर है, इसलिए छेदक रेखा से {{math|''a''}} प्रति {{math|''a'' + ''h''}} बहुत खड़ी है, और रूप में {{math|''h''}} शून्य की शैली में जाता है ढलान अनंत की शैली जाता है। यदि {{math|''h''}} सकारात्मक है, तो {{math|''a'' + ''h''}} सीढी के ऊँचे भाग पर है, अत: से छेदक रेखा {{math|''a''}} प्रति {{math|''a'' + ''h''}} ढलान शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा उपस्थित नहीं होती है।
[[File:Right-continuous.svg|thumb|right|इस कार्य का चिह्नित बिंदु पर कोई व्युत्पन्न नहीं है, क्योंकि कार्य वहां निरंतर नहीं है(विशेष रूप से, इसमें [[कूदना बंद करो]] है)।]]यदि {{math|''f''}} पर अवकलनीय है {{math|''a''}}, फिर {{math|''f''}} पर भी [[निरंतर कार्य]] करना चाहिए {{math|''a''}}. एक उदाहरण के रूप में, एक बिंदु चुनें {{math|''a''}} और जाने {{math|''f''}} चरण कार्य बनें जो सभी के लिए मूल्य 1 लौटाता है {{math|''x''}} से कम {{math|''a''}}, और सभी के लिए भिन्न मूल्य 10 लौटाता है {{math|''x''}} इससे बड़ा या इसके एकरूप {{math|''a''}}. {{math|''f''}} पर व्युत्पन्न नहीं हो सकता {{math|''a''}}. यदि {{math|''h''}} नकारात्मक है, तो {{math|''a'' + ''h''}} कदम के निचले हिस्से पर है, इसलिए छेदक रेखा से {{math|''a''}} प्रति {{math|''a'' + ''h''}} बहुत खड़ी है, और रूप में {{math|''h''}} शून्य की शैली में जाता है ढलान अनंत की शैली जाता है। यदि {{math|''h''}} सकारात्मक है, तो {{math|''a'' + ''h''}} सीढी के ऊँचे भाग पर है, अत: से छेदक रेखा {{math|''a''}} प्रति {{math|''a'' + ''h''}} ढलान शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा उपस्थित नहीं होती है।


[[File:Absolute value.svg|right|thumb|निरपेक्ष मूल्य फलन निरंतर है, लेकिन पर अवकलनीय होने में विफल रहता है {{math|''x'' {{=}} 0}} चूँकि स्पर्शरेखा ढलान बाईं शैली से उसी मूल्य तक नहीं पहुँचती है जैसा कि वे दाईं शैली से करते हैं।]]यद्यपि, समान ही एक बिंदु पर एक कार्य निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए, द्वारा दिया गया निरपेक्ष मूल्य कार्य {{math|''f''(''x'') {{=}} {{abs|''x''}} }} पर निरंतर है {{math|''x'' {{=}} 0}}, लेकिन यह वहां भिन्न नहीं है। यदि {{math|''h''}} धनात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक है, जबकि अगर {{math|''h''}} ऋणात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक नकारात्मक है। इसे लेखाचित्रिक रूप से लेखाचित्र में व्याकुंचन या संक्रांति के रूप में देखा जा सकता है {{math|''x'' {{=}} 0}}. यहां तक ​​​​कि एक सुचारू लेखाचित्र वाला कार्य भी उस बिंदु पर भिन्न नहीं होता है जहां इसकी [[लंबवत स्पर्शरेखा]] होती है: उदाहरण के लिए, दिया गया कार्य {{math|''f''(''x'') {{=}} ''x''<sup>1/3</sup>}} पर अवकलनीय नहीं है {{math|''x'' {{=}} 0}}.
[[File:Absolute value.svg|right|thumb|निरपेक्ष मूल्य फलन निरंतर है, लेकिन पर अवकलनीय होने में विफल रहता है {{math|''x'' {{=}} 0}} चूँकि स्पर्शरेखा ढलान बाईं शैली से उसी मूल्य तक नहीं पहुँचती है जैसा कि वे दाईं शैली से करते हैं।]]यद्यपि, समान ही एक बिंदु पर एक कार्य निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए, द्वारा दिया गया निरपेक्ष मूल्य कार्य {{math|''f''(''x'') {{=}} {{abs|''x''}} }} पर निरंतर है {{math|''x'' {{=}} 0}}, लेकिन यह वहां भिन्न नहीं है। यदि {{math|''h''}} धनात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक है, जबकि अगर {{math|''h''}} ऋणात्मक है, तो छेदक रेखा का ढलान 0 से {{math|''h''}} एक नकारात्मक है। इसे लेखाचित्रिक रूप से लेखाचित्र में व्याकुंचन या संक्रांति के रूप में देखा जा सकता है {{math|''x'' {{=}} 0}}. यहां तक ​​​​कि एक सुचारू लेखाचित्र वाला कार्य भी उस बिंदु पर भिन्न नहीं होता है जहां इसकी [[लंबवत स्पर्शरेखा]] होती है: उदाहरण के लिए, दिया गया कार्य {{math|''f''(''x'') {{=}} ''x''<sup>1/3</sup>}} पर अवकलनीय नहीं है {{math|''x'' {{=}} 0}}.


सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता।
सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता।


अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या इतस्ततः [[लगभग हर जगह|हर जगह]] व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एक [[मोनोटोन समारोह|एकदिष्ट समारोह]] या [[लिप्सचिट्ज़ समारोह]] है, तो यह सत्य है। यद्यपि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब [[वीयरस्ट्रैस समारोह]] के रूप में जाना जाता है। 1931 में, [[स्टीफन बानाच]] ने सिद्ध किया कि किसी बिंदु पर व्युत्पन्न वाले कार्य का निर्धारित सभी निरंतर कार्य के स्थान पर एक [[अल्प सेट|अल्प निर्धारित]] है।<ref>{{Citation|author=Banach, S.|title=Uber die Baire'sche Kategorie gewisser Funktionenmengen|journal=Studia Math.|issue=3|year=1931|volume=3|pages=174–179|doi=10.4064/sm-3-1-174-179|postscript=.|url=https://scholar.google.com/scholar?output=instlink&q=info:SkKdCEmUd6QJ:scholar.google.com/&hl=en&as_sdt=0,50&scillfp=3432975470163241186&oi=lle|doi-access=free}}.  Cited by {{Citation|author1=Hewitt, E |author2=Stromberg, K|title=Real and abstract analysis|publisher=Springer-Verlag|year=1963|pages=Theorem 17.8|no-pp=true}}</ref> अनौपचारिक रूप से, इसका उद्देश्य यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है।
अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या इतस्ततः [[लगभग हर जगह|हर जगह]] व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एक [[मोनोटोन समारोह|एकदिष्ट समारोह]] या [[लिप्सचिट्ज़ समारोह]] है, तो यह सत्य है। यद्यपि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब [[वीयरस्ट्रैस समारोह]] के रूप में जाना जाता है। 1931 में, [[स्टीफन बानाच]] ने सिद्ध किया कि किसी बिंदु पर व्युत्पन्न वाले कार्य का निर्धारित सभी निरंतर कार्य के स्थान पर एक [[अल्प सेट|अल्प निर्धारित]] है।<ref>{{Citation|author=Banach, S.|title=Uber die Baire'sche Kategorie gewisser Funktionenmengen|journal=Studia Math.|issue=3|year=1931|volume=3|pages=174–179|doi=10.4064/sm-3-1-174-179|postscript=.|url=https://scholar.google.com/scholar?output=instlink&q=info:SkKdCEmUd6QJ:scholar.google.com/&hl=en&as_sdt=0,50&scillfp=3432975470163241186&oi=lle|doi-access=free}}.  Cited by {{Citation|author1=Hewitt, E |author2=Stromberg, K|title=Real and abstract analysis|publisher=Springer-Verlag|year=1963|pages=Theorem 17.8|no-pp=true}}</ref> अनौपचारिक रूप से, इसका उद्देश्य यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है।


== एक समारोह के रूप में व्युत्पन्न == <!-- Removing "The derivative as a" completely changes the meaning -->
== एक समारोह के रूप में व्युत्पन्न == <!-- Removing "The derivative as a" completely changes the meaning -->
[[File:Tangent function animation.gif|thumb|अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के एकरूप है:<math>\sin \left(x^2\right) + 2x^2 \cos\left(x^2\right)</math>]]होने देना {{math|''f''}} ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु को मानचित्र करता है {{mvar|x}} के व्युत्पन्न के मूल्य के लिए {{mvar|f}} पर {{mvar|x}}. यह समारोह लिखा है {{math|''f''{{′}}}} और इसे व्युत्पन्न कार्य या व्युत्पन्न कहा जाता है {{math|''f''}}.
[[File:Tangent function animation.gif|thumb|अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के एकरूप है:<math>\sin \left(x^2\right) + 2x^2 \cos\left(x^2\right)</math>]]होने देना {{math|''f''}} ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु को मानचित्र करता है {{mvar|x}} के व्युत्पन्न के मूल्य के लिए {{mvar|f}} पर {{mvar|x}}. यह समारोह लिखा है {{math|''f''{{′}}}} और इसे व्युत्पन्न कार्य या व्युत्पन्न कहा जाता है {{math|''f''}}.


कभी-कभी {{math|''f''}} इसके अधि क्षेत्र  के अधिकांश बिंदुओं पर व्युत्पन्न है, लेकिन सभी नहीं। वह कार्य जिसका मूल्य at {{mvar|a}} एकरूपी {{math|''f''{{′}}(''a'')}} जब भी {{math|''f''{{′}}(''a'')}} परिभाषित किया गया है और कहीं और अपरिभाषित है, इसे व्युत्पन्न भी कहा जाता है {{math|''f''}}. यह अभी भी एक कार्य है, लेकिन इसका अधि क्षेत्र  के अधि क्षेत्र  से छोटा हो सकता है {{math|''f''}}.
कभी-कभी {{math|''f''}} इसके अधिक्षेत्र के अधिकांश बिंदुओं पर व्युत्पन्न है, लेकिन सभी नहीं। वह कार्य जिसका मूल्य at {{mvar|a}} एकरूपी {{math|''f''{{′}}(''a'')}} जब भी {{math|''f''{{′}}(''a'')}} परिभाषित किया गया है और कहीं और अपरिभाषित है, इसे व्युत्पन्न भी कहा जाता है {{math|''f''}}. यह अभी भी एक कार्य है, लेकिन इसका अधिक्षेत्र के अधिक्षेत्र से छोटा हो सकता है {{math|''f''}}.


इस विचार का उपयोग करते हुए, विवेक कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक [[ऑपरेटर (गणित)|संचालक (गणित)]] है जिसका अधि क्षेत्र उन सभी कार्यों का निर्धारित है जिनके अधि क्षेत्र  के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक निर्धारित है। यदि हम इस संचालक को निरूपित करते हैं {{math|''D''}}, फिर {{math|''D''(''f'')}} कार्य है {{math|''f''{{′}}}}. तब से {{math|''D''(''f'')}} एक कार्य है, इसका मूल्यांकन एक बिंदु पर किया जा सकता है {{mvar|a}}. व्युत्पन्न समारोह की परिभाषा के द्वारा, {{math|''D''(''f'')(''a'') {{=}} ''f''{{′}}(''a'')}}.
इस विचार का उपयोग करते हुए, विवेक कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक [[ऑपरेटर (गणित)|संचालक(गणित)]] है जिसका अधिक्षेत्र उन सभी कार्यों का निर्धारित है जिनके अधिक्षेत्र के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक निर्धारित है। यदि हम इस संचालक को निरूपित करते हैं {{math|''D''}}, फिर {{math|''D''(''f'')}} कार्य है {{math|''f''{{′}}}}. तब से {{math|''D''(''f'')}} एक कार्य है, इसका मूल्यांकन एक बिंदु पर किया जा सकता है {{mvar|a}}. व्युत्पन्न समारोह की परिभाषा के द्वारा, {{math|''D''(''f'')(''a'') {{=}} ''f''{{′}}(''a'')}}.


तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें {{math|''f''(''x'') {{=}} 2''x''}}; {{math|''f''}} एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को निवेश के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है:
तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें {{math|''f''(''x'') {{=}} 2''x''}}; {{math|''f''}} एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को निवेश के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है:
Line 50: Line 50:
  D\left(x \mapsto x^2\right) &= (x \mapsto 2\cdot x).
  D\left(x \mapsto x^2\right) &= (x \mapsto 2\cdot x).
\end{align}</math>
\end{align}</math>
क्योंकि का उत्पादन {{math|''D''}} एक कार्य है, का प्रक्षेपण {{math|''D''}} एक बिंदु पर मूल्यांकन किया जा सकता है। उदाहरण के लिए, कब {{math|''D''}} चौकोर कार्य पर लागू होता है, {{math|''x'' ↦ ''x''<sup>2</sup>}}, {{math|''D''}} दोहरीकरण समारोह को प्रक्षेपण करता है {{math|''x'' ↦ 2''x''}} जिसे हमने नाम दिया है {{math|''f''(''x'')}}. इस प्रक्षेपण कार्य का मूल्यांकन प्राप्त करने के लिए किया जा सकता है {{math|''f''(1) {{=}} 2}}, {{math|''f''(2) {{=}} 4}}, और इसी तरह।
क्योंकि का उत्पादन {{math|''D''}} एक कार्य है, का प्रक्षेपण {{math|''D''}} एक बिंदु पर मूल्यांकन किया जा सकता है। उदाहरण के लिए, कब {{math|''D''}} चौकोर कार्य पर लागू होता है, {{math|''x'' ↦ ''x''<sup>2</sup>}}, {{math|''D''}} दोहरीकरण समारोह को प्रक्षेपण करता है {{math|''x'' ↦ 2''x''}} जिसे हमने नाम दिया है {{math|''f''(''x'')}}. इस प्रक्षेपण कार्य का मूल्यांकन प्राप्त करने के लिए किया जा सकता है {{math|''f''(1) {{=}} 2}}, {{math|''f''(2) {{=}} 4}}, और इसी तरह।


==उच्च व्युत्पन्न ==
==उच्च व्युत्पन्न ==


होने देना {{math|''f''}} एक अवकलनीय कार्य हो, और चलो {{math|''f'' ′}} इसका व्युत्पन्न हो। का व्युत्पन्न {{math|''f'' ′}} (यदि है तो) लिखा हुआ है {{math|''f'' ′′}} और का [[दूसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह उपस्थित है, लिखा गया है {{math|''f'' ′′′}} का [[तीसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह उपस्थित है, तो {{math|''n''}}वें व्युत्पन्न के व्युत्पन्न के रूप में {{math|(''n''−1)}}वें व्युत्पन्न। इन पुनरावर्ती गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। {{math|''n''}}'}}वें अवकलज को क्रम का अवकलज भी कहा जाता है {{math|''n''}} और # लैग्रेंज का अंकन {{math|''f'' <sup>(''n'')</sup>}}.
होने देना {{math|''f''}} एक अवकलनीय कार्य हो, और चलो {{math|''f'' ′}} इसका व्युत्पन्न हो। का व्युत्पन्न {{math|''f'' ′}}(यदि है तो) लिखा हुआ है {{math|''f'' ′′}} और का [[दूसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह उपस्थित है, लिखा गया है {{math|''f'' ′′′}} का [[तीसरा व्युत्पन्न]] कहा जाता है {{math|f}}. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह उपस्थित है, तो {{math|''n''}}वें व्युत्पन्न के व्युत्पन्न के रूप में {{math|(''n''−1)}}वें व्युत्पन्न। इन पुनरावर्ती गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। {{math|''n''}}'}}वें अवकलज को क्रम का अवकलज भी कहा जाता है {{math|''n''}} और # लैग्रेंज का अंकन {{math|''f'' <sup>(''n'')</sup>}}.


यदि {{math|''x''(''t'')}} समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है {{math|''t''}}, फिर के उच्च-क्रम के व्युत्पन्न {{math|''x''}} भौतिकी में विशिष्ट व्याख्याएँ हैं। पहला व्युत्पन्न {{math|''x''}} वस्तु का वेग है। दूसरा व्युत्पन्न {{math|''x''}} [[त्वरण]] है। तीसरा व्युत्पन्न {{math|''x''}} [[झटका (भौतिकी)]] है। और अंत में, चौथे से छठे व्युत्पन्न के {{math|''x''}} हैं उछाल, गुर्राना, भड़कना, और लोकप्रिय; [[खगोल भौतिकी]] के लिए सबसे अधिक लागू।
यदि {{math|''x''(''t'')}} समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है {{math|''t''}}, फिर के उच्च-क्रम के व्युत्पन्न {{math|''x''}} भौतिकी में विशिष्ट व्याख्याएँ हैं। पहला व्युत्पन्न {{math|''x''}} वस्तु का वेग है। दूसरा व्युत्पन्न {{math|''x''}} [[त्वरण]] है। तीसरा व्युत्पन्न {{math|''x''}} [[झटका (भौतिकी)|झटका(भौतिकी)]] है। और अंत में, चौथे से छठे व्युत्पन्न के {{math|''x''}} हैं उछाल, गुर्राना, भड़कना, और लोकप्रिय; [[खगोल भौतिकी]] के लिए सबसे अधिक लागू।


एक समारोह {{math|''f''}} व्युत्पन्न होने की आवश्यकता नहीं है (उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, समान ही {{math|''f''}} एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो
एक समारोह {{math|''f''}} व्युत्पन्न होने की आवश्यकता नहीं है(उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, समान ही {{math|''f''}} एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो
:<math>f(x) = \begin{cases} +x^2, & \text{if }x\ge 0 \\ -x^2, & \text{if }x \le 0.\end{cases}</math>
:<math>f(x) = \begin{cases} +x^2, & \text{if }x\ge 0 \\ -x^2, & \text{if }x \le 0.\end{cases}</math>
गणना यह दर्शाती है {{math|''f''}} एक अवकलनीय फलन है जिसका व्युत्पन्न है <math>x</math> द्वारा दिया गया है
गणना यह दर्शाती है {{math|''f''}} एक अवकलनीय फलन है जिसका व्युत्पन्न है <math>x</math> द्वारा दिया गया है
:<math>f'(x) = \begin{cases} +2x, & \text{if }x\ge 0 \\ -2x, & \text{if }x \le 0.\end{cases}</math>
:<math>f'(x) = \begin{cases} +2x, & \text{if }x\ge 0 \\ -2x, & \text{if }x \le 0.\end{cases}</math>
{{math|''f'''(''x'')}} पर निरपेक्ष मूल्य फलन का दुगुना है <math>x</math>, और इसका शून्य पर व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक फलन में a हो सकता है {{math|''k''}}प्रत्येक गैर-ऋणात्मक पूर्णांक के लिए वें व्युत्पन्न {{math|''k''}} लेकिन नहीं {{math|(''k'' + 1)}}वें व्युत्पन्न। एक समारोह जिसमें है {{math|''k''}} उत्तरोत्तर व्युत्पन्न कहलाते हैं{{math|k}} बार अलग करने योग्य है। अगर इसके अपवाद {{math|''k''}}वां अवकलज सतत है, तो फलन अवकलनीयता वर्ग का कहा जाता है {{math|''C<sup>k</sup>''}}. (यह होने की तुलना में एक मजबूत स्थिति है {{math|''k''}} व्युत्पन्न, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है {{slink| सहजता|उदहारण}}।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक अवकलज होते हैं, अपरिमित रूप से अवकलनीय या सहजता कहलाता है।
{{math|''f'''(''x'')}} पर निरपेक्ष मूल्य फलन का दुगुना है <math>x</math>, और इसका शून्य पर व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक फलन में a हो सकता है {{math|''k''}}प्रत्येक गैर-ऋणात्मक पूर्णांक के लिए वें व्युत्पन्न {{math|''k''}} लेकिन नहीं {{math|(''k'' + 1)}}वें व्युत्पन्न। एक समारोह जिसमें है {{math|''k''}} उत्तरोत्तर व्युत्पन्न कहलाते हैं{{math|k}} बार अलग करने योग्य है। अगर इसके अपवाद {{math|''k''}}वां अवकलज सतत है, तो फलन अवकलनीयता वर्ग का कहा जाता है {{math|''C<sup>k</sup>''}}.(यह होने की तुलना में एक मजबूत स्थिति है {{math|''k''}} व्युत्पन्न, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है {{slink| सहजता|उदहारण}}।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक अवकलज होते हैं, अपरिमित रूप से अवकलनीय या सहजता कहलाता है।


वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मूल्यक [[भेदभाव नियम|विवेक नियमों]] द्वारा, यदि श्रेणी का बहुपद {{math|''n''}} विभेदित है {{math|''n''}} समय, तो यह एक [[निरंतर कार्य]] बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे उपस्थित हैं, इसलिए बहुपद सहज कार्य हैं।
वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मूल्यक [[भेदभाव नियम|विवेक नियमों]] द्वारा, यदि श्रेणी का बहुपद {{math|''n''}} विभेदित है {{math|''n''}} समय, तो यह एक [[निरंतर कार्य]] बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे उपस्थित हैं, इसलिए बहुपद सहज कार्य हैं।


एक समारोह के व्युत्पन्न {{math|''f''}} एक बिंदु पर {{math|''x''}} उस कार्य के पास बहुपद सन्निकटन प्रदान करें {{math|''x''}}. उदाहरण के लिए, यदि {{math|''f''}} तब दो बार अवकलनीय है
एक समारोह के व्युत्पन्न {{math|''f''}} एक बिंदु पर {{math|''x''}} उस कार्य के पास बहुपद सन्निकटन प्रदान करें {{math|''x''}}. उदाहरण के लिए, यदि {{math|''f''}} तब दो बार अवकलनीय है
:<math> f(x+h) \approx f(x) + f'(x)h + \tfrac{1}{2} f''(x) h^2</math>
:<math> f(x+h) \approx f(x) + f'(x)h + \tfrac{1}{2} f''(x) h^2</math>
इस अर्थ में कि
इस अर्थ में कि
:<math> \lim_{h\to 0}\frac{f(x+h) - f(x) - f'(x)h - \frac{1}{2} f''(x) h^2}{h^2} = 0.</math>
:<math> \lim_{h\to 0}\frac{f(x+h) - f(x) - f'(x)h - \frac{1}{2} f''(x) h^2}{h^2} = 0.</math>
यदि {{math|''f''}} असीम रूप से भिन्न है, तो यह [[टेलर श्रृंखला]] की शुरुआत है {{math|''f''}} पर मूल्यांकन किया गया {{math|''x'' + ''h''}} चारों शैली {{math|''x''}}.
यदि {{math|''f''}} असीम रूप से भिन्न है, तो यह [[टेलर श्रृंखला]] की शुरुआत है {{math|''f''}} पर मूल्यांकन किया गया {{math|''x'' + ''h''}} चारों शैली {{math|''x''}}.


===विभक्ति बिंदु===
===विभक्ति बिंदु===
{{Main|विभक्ति  उल्लेख}}
{{Main|विभक्ति  उल्लेख}}


एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।<ref>{{harvnb|Apostol|1967|loc=§4.18}}</ref> एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, जैसा कि विभक्ति बिंदु के मामले में होता है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^3</math>, या यह अस्तित्व में विफल हो सकता है, जैसा कि विभक्ति बिंदु के मामले में है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^\frac{1}{3}</math>. एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर विपर्येण करता है।
एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।<ref>{{harvnb|Apostol|1967|loc=§4.18}}</ref> एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, जैसा कि विभक्ति बिंदु के मामले में होता है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^3</math>, या यह अस्तित्व में विफल हो सकता है, जैसा कि विभक्ति बिंदु के मामले में है {{math|''x'' {{=}} 0}} द्वारा दिए गए समारोह का <math>f(x) = x^\frac{1}{3}</math>. एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर विपर्येण करता है।


== अंकन (विवरण) ==
== अंकन(विवरण) ==
{{Main| अंकन पद्धति  के प्रति विशिष्टीकरण }}
{{Main| अंकन पद्धति  के प्रति विशिष्टीकरण }}


Line 90: Line 90:
\text{  or  }
\text{  or  }
\frac{d^n}{dx^n}f</math>
\frac{d^n}{dx^n}f</math>
के n वें व्युत्पन्न के लिए <math>y = f(x)</math>. ये व्युत्पन्न संचालक के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए,
के n वें व्युत्पन्न के लिए <math>y = f(x)</math>. ये व्युत्पन्न संचालक के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए,
:<math>\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right).</math>
:<math>\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right).</math>
Leibniz's के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं <math>y</math> बिंदु पर <math>x = a</math> दो अलग-अलग तरीकों से:
Leibniz's के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं <math>y</math> बिंदु पर <math>x = a</math> दो अलग-अलग तरीकों से:


: <math>\left.\frac{dy}{dx}\right|_{x=a} = \frac{dy}{dx}(a).</math>
: <math>\left.\frac{dy}{dx}\right|_{x=a} = \frac{dy}{dx}(a).</math>
Leibniz's के अंकन से विभेदीकरण (हर में) के लिए चर निर्दिष्ट करने की अनुमति मिलती है, जो आंशिक व्युत्पन्न में प्रासंगिक है। इसकी उपयोग [[श्रृंखला नियम]] को लिखने के लिए भी की जा सकती है{{#tag:ref|In the formulation of calculus in terms of limits, the ''du'' symbol has been assigned various meanings by various authors.  Some authors do not assign a meaning to ''du'' by itself, but only as part of the symbol ''du''/''dx''.  Others define ''dx'' as an independent variable, and define ''du'' by {{nowrap|1=''du'' = ''dx''⋅''f''{{′}}(''x'')}}.  In [[non-standard analysis]] ''du'' is defined as an infinitesimal. It is also interpreted as the [[exterior derivative]] of a function ''u''. See [[differential (infinitesimal)]] for further information.|group=Note}}
Leibniz's के अंकन से विभेदीकरण(हर में) के लिए चर निर्दिष्ट करने की अनुमति मिलती है, जो आंशिक व्युत्पन्न में प्रासंगिक है। इसकी उपयोग [[श्रृंखला नियम]] को लिखने के लिए भी की जा सकती है{{#tag:ref|In the formulation of calculus in terms of limits, the ''du'' symbol has been assigned various meanings by various authors.  Some authors do not assign a meaning to ''du'' by itself, but only as part of the symbol ''du''/''dx''.  Others define ''dx'' as an independent variable, and define ''du'' by {{nowrap|1=''du'' = ''dx''⋅''f''{{′}}(''x'')}}.  In [[non-standard analysis]] ''du'' is defined as an infinitesimal. It is also interpreted as the [[exterior derivative]] of a function ''u''. See [[differential (infinitesimal)]] for further information.|group=Note}}
: <math>\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.</math>
: <math>\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.</math>
=== लैग्रेंज का अंकन ===
=== लैग्रेंज का अंकन ===
कभी-कभी मुख्य अंकन पद्धति के रूप में जाना जाता है,<ref>{{cite web|title=विभेदन का अंकन|url=http://web.mit.edu/wwmath/calculus/differentiation/notation.html|publisher=MIT|access-date=24 October 2012|year=1998}}</ref> विवेक के लिए सबसे सामान्य आधुनिक अंकन पद्धति में से एक [[जोसेफ-लुई लाग्रेंज]] के कारण है और मुख्य (प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके <math>f</math> निरूपित किया जाता है <math>f'</math>. इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता है
कभी-कभी मुख्य अंकन पद्धति के रूप में जाना जाता है,<ref>{{cite web|title=विभेदन का अंकन|url=http://web.mit.edu/wwmath/calculus/differentiation/notation.html|publisher=MIT|access-date=24 October 2012|year=1998}}</ref> विवेक के लिए सबसे सामान्य आधुनिक अंकन पद्धति में से एक [[जोसेफ-लुई लाग्रेंज]] के कारण है और मुख्य(प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके <math>f</math> निरूपित किया जाता है <math>f'</math>. इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता है
:<math>(f')'=f''</math> तथा <math>(f'')'=f'''.</math>
:<math>(f')'=f''</math> तथा <math>(f'')'=f'''.</math>
इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक [[सबस्क्रिप्ट और सुपरस्क्रिप्ट|अधिलेख]] में प्राचीन रोमी अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं:
इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक [[सबस्क्रिप्ट और सुपरस्क्रिप्ट|अधिलेख]] में प्राचीन रोमी अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं:
:<math>f^{\mathrm{iv}}</math> या <math>f^{(4)}.</math>
:<math>f^{\mathrm{iv}}</math> या <math>f^{(4)}.</math>
बाद वाला अंकन संकेतन प्राप्त करने के लिए सामूल्य्यीकृत करता है <math>f^{(n)}</math> के n वें व्युत्पन्न के लिए <math>f</math> - यह संकेतन सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है।
बाद वाला अंकन संकेतन प्राप्त करने के लिए समूहीकृत करता है <math>f^{(n)}</math> के n वें व्युत्पन्न के लिए <math>f</math> - यह संकेतन सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है।


=== न्यूटन का अंकन ===
=== न्यूटन का अंकन ===
अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि <math>y = f(t)</math>, फिर
अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि <math>y = f(t)</math>, फिर
:<math>\dot{y}</math> तथा <math>\ddot{y}</math>
:<math>\dot{y}</math> तथा <math>\ddot{y}</math>
निरूपित, क्रमशः, के पहले और दूसरे व्युत्पन्न <math>y</math>. यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह सामान्यतः पर भौतिकी और [[अंतर ज्यामिति]] में [[अंतर समीकरण|अंतर समीकरणों]] में प्रयोग किया जाता है।<ref>{{Cite book|title=आंशिक अंतर समीकरण|last=Evans|first=Lawrence|publisher=American Mathematical Society|year=1999|isbn=0-8218-0772-2|pages=63}}</ref><ref>{{Cite book|title=विभेदक ज्यामिति|last=Kreyszig|first=Erwin|publisher=Dover|year=1991|isbn=0-486-66721-9|location=New York|pages=1}}</ref> डॉट अंकन पद्धति , यद्यपि उच्च-अनुक्रम व्युत्पन्न (अनुक्रम 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता।
निरूपित, क्रमशः, के पहले और दूसरे व्युत्पन्न <math>y</math>. यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह सामान्यतः पर भौतिकी और [[अंतर ज्यामिति]] में [[अंतर समीकरण|अंतर समीकरणों]] में प्रयोग किया जाता है।<ref>{{Cite book|title=आंशिक अंतर समीकरण|last=Evans|first=Lawrence|publisher=American Mathematical Society|year=1999|isbn=0-8218-0772-2|pages=63}}</ref><ref>{{Cite book|title=विभेदक ज्यामिति|last=Kreyszig|first=Erwin|publisher=Dover|year=1991|isbn=0-486-66721-9|location=New York|pages=1}}</ref> डॉट अंकन पद्धति , यद्यपि उच्च-अनुक्रम व्युत्पन्न(अनुक्रम 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता।


===यूलर का अंकन===
===यूलर का अंकन===
Line 121: Line 121:
==गणना के नियम==
==गणना के नियम==
{{Main|विशिष्टीकरण के नियम}}
{{Main|विशिष्टीकरण के नियम}}
एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है।
एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है।


=== मूलतत्त्व कार्यों के लिए नियम ===
=== मूलतत्त्व कार्यों के लिए नियम ===
Line 152: Line 152:
* [[विभेदन की रैखिकता:]]
* [[विभेदन की रैखिकता:]]
*: <math>(\alpha f + \beta g)' = \alpha f' + \beta g' </math> सभी कार्यों f और g और सभी वास्तविक संख्याओं के लिए<math>\alpha</math>तथा<math>\beta</math>.
*: <math>(\alpha f + \beta g)' = \alpha f' + \beta g' </math> सभी कार्यों f और g और सभी वास्तविक संख्याओं के लिए<math>\alpha</math>तथा<math>\beta</math>.
* [[प्रॉडक्ट नियम|उत्पादन नियम]]:
* [[प्रॉडक्ट नियम|उत्पादन नियम]]:
*: <math>(fg)' = f 'g + fg' </math> सभी कार्यों के लिए ''f'' और ''g''। एक विशेष मामले के रूप में, इस नियम में तथ्य शामिल है <math>(\alpha f)' = \alpha f'</math> जब भी <math>\alpha</math> एक स्थिर है, क्योंकि <math>\alpha' f = 0 \cdot f = 0</math> निरंतर नियम से।
*: <math>(fg)' = f 'g + fg' </math> सभी कार्यों के लिए ''f'' और ''g''। एक विशेष मामले के रूप में, इस नियम में तथ्य शामिल है <math>(\alpha f)' = \alpha f'</math> जब भी <math>\alpha</math> एक स्थिर है, क्योंकि <math>\alpha' f = 0 \cdot f = 0</math> निरंतर नियम से।
* [[भागफल नियम]]:
* [[भागफल नियम]]:
*: <math>\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}</math> सभी कार्यों के लिए ''f'' और ''g'' सभी निवेश पर जहां {{nowrap|''g'' ≠ 0}}.
*: <math>\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}</math> सभी कार्यों के लिए ''f'' और ''g'' सभी निवेश पर जहां {{nowrap|''g'' ≠ 0}}.
* [[समग्र कार्यों]] के लिए चेन नियम: यदि <math>f(x) = h(g(x))</math>, फिर
* [[समग्र कार्यों]] के लिए चेन नियम: यदि <math>f(x) = h(g(x))</math>, फिर
*: <math>f'(x) = h'(g(x)) \cdot g'(x). </math>
*: <math>f'(x) = h'(g(x)) \cdot g'(x). </math>
=== संगणना उदाहरण ===
=== संगणना उदाहरण ===
द्वारा दिए गए कार्य का व्युत्पन्न
द्वारा दिए गए कार्य का व्युत्पन्न


: <math>f(x) = x^4 + \sin \left(x^2\right) - \ln(x) e^x + 7</math>
: <math>f(x) = x^4 + \sin \left(x^2\right) - \ln(x) e^x + 7</math>
Line 173: Line 173:


== हाइपररियल्स के साथ परिभाषा ==
== हाइपररियल्स के साथ परिभाषा ==
[[अति वास्तविक संख्या]] विस्तारण के सापेक्ष {{math|'''R''' ⊂ {{sup|⁎}}'''R'''}} वास्तविक संख्याओं का, वास्तविक फलन का अवकलज {{math|''y'' {{=}} ''f''(''x'')}} एक वास्तविक बिंदु पर {{math|''x''}} भागफल की [[छाया (गणित)]] के रूप में परिभाषित किया जा सकता है {{math|{{sfrac|∆''y''|∆''x''}}}} अनंत के लिए {{math|∆''x''}}, कहाँ पे {{math|∆''y'' {{=}} ''f''(''x'' + ∆''x'') − ''f''(''x'')}}. यहाँ का स्वाभाविक विस्तार है {{math|''f''}} हाइपररियल्स को अभी भी निरूपित किया गया है {{math|''f''}}. यहाँ कहा जाता है कि व्युत्पत्ति का अस्तित्व है यदि छाया सुचयनित अपरिमेय से स्वतंत्र है।
[[अति वास्तविक संख्या]] विस्तारण के सापेक्ष {{math|'''R''' ⊂ {{sup|⁎}}'''R'''}} वास्तविक संख्याओं का, वास्तविक फलन का अवकलज {{math|''y'' {{=}} ''f''(''x'')}} एक वास्तविक बिंदु पर {{math|''x''}} भागफल की [[छाया (गणित)|छाया(गणित)]] के रूप में परिभाषित किया जा सकता है {{math|{{sfrac|∆''y''|∆''x''}}}} अनंत के लिए {{math|∆''x''}}, कहाँ पे {{math|∆''y'' {{=}} ''f''(''x'' + ∆''x'') − ''f''(''x'')}}. यहाँ का स्वाभाविक विस्तार है {{math|''f''}} हाइपररियल्स को अभी भी निरूपित किया गया है {{math|''f''}}. यहाँ कहा जाता है कि व्युत्पत्ति का अस्तित्व है यदि छाया सुचयनित अपरिमेय से स्वतंत्र है।


== उच्च आयामों में ==
== उच्च आयामों में ==
Line 179: Line 179:


=== संवाहक -मूल्यवान कार्य ===
=== संवाहक -मूल्यवान कार्य ===
एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान '''R'''<sup>''n''</sup> में सदिशों को वास्तविक संख्याएँ भेजता है, एक संवाहक -मूल्यवान कार्य को इसके समन्वय कार्यों में विभाजित किया जा सकता है {{nowrap|''y''<sub>1</sub>(''t''), ''y''<sub>2</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t'')}}, जिसका अर्थ है कि {{nowrap|1='''y'''(''t'') = (''y''<sub>1</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t''))}}. इसमें शामिल है, उदाहरण के लिए, [[पैरामीट्रिक वक्र|प्राचलिक वक्र]] '''R'''<sup>2</sup> या '''R'''<sup>3। <big>समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(''t'') के व्युत्पन्न को [[वेक्टर (ज्यामितीय)|संवाहक (ज्यामितीय)]] के रूप में परिभाषित किया गया है, जिसे [[वक्रों की विभेदक ज्यामिति]] कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है</big>,</sup>
एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान '''R'''<sup>''n''</sup> में सदिशों को वास्तविक संख्याएँ भेजता है, एक संवाहक -मूल्यवान कार्य को इसके समन्वय कार्यों में विभाजित किया जा सकता है {{nowrap|''y''<sub>1</sub>(''t''), ''y''<sub>2</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t'')}}, जिसका अर्थ है कि {{nowrap|1='''y'''(''t'') = (''y''<sub>1</sub>(''t''), ..., ''y''<sub>''n''</sub>(''t''))}}. इसमें शामिल है, उदाहरण के लिए, [[पैरामीट्रिक वक्र|प्राचलिक वक्र]] '''R'''<sup>2</sup> या '''R'''<sup>3। <big>समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(''t'') के व्युत्पन्न को [[वेक्टर (ज्यामितीय)|संवाहक(ज्यामितीय)]] के रूप में परिभाषित किया गया है, जिसे [[वक्रों की विभेदक ज्यामिति]] कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है</big>,</sup>
:<math>\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math>
:<math>\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math>
समूल्य रूप से,
समूल्य रूप से,
Line 190: Line 190:
क्योंकि प्रत्येक आधार सदिश एक स्थिर है।
क्योंकि प्रत्येक आधार सदिश एक स्थिर है।


यह सामूल्य्यीकरण उपयोगी है, उदाहरण के लिए, यदि y(''t'') समय ''t'' पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(''t'') समय ''t'' पर कण का वेग सदिश है।
यह सामूहीकरण उपयोगी है, उदाहरण के लिए, यदि y(''t'') समय ''t'' पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(''t'') समय ''t'' पर कण का वेग सदिश है।


=== '''आंशिक व्युत्पन्न''' ===
=== '''आंशिक व्युत्पन्न''' ===
Line 196: Line 196:
मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए,
मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए,
:<math>f(x,y) = x^2 + xy + y^2.</math>
:<math>f(x,y) = x^2 + xy + y^2.</math>
f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के पूर्णके रूप में पुनर्व्याख्या की जा सकती है:
f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के पूर्णके रूप में पुनर्व्याख्या की जा सकती है:
:<math>f(x,y) = f_x(y) = x^2 + xy + y^2.</math>
:<math>f(x,y) = f_x(y) = x^2 + xy + y^2.</math>
दूसरे शब्दों में, x का प्रत्येक मूल्य एक फलन चुनता है, जिसे f से निरूपित किया जाता है ''f<sub>x</sub>'' जो कि एक वास्तविक संख्या का फलन है।{{#tag:ref|This can also be expressed as the operation known as [[currying]].|group=Note}} वह है,
दूसरे शब्दों में, x का प्रत्येक मूल्य एक फलन चुनता है, जिसे f से निरूपित किया जाता है ''f<sub>x</sub>'' जो कि एक वास्तविक संख्या का फलन है।{{#tag:ref|This can also be expressed as the operation known as [[currying]].|group=Note}} वह है,
Line 205: Line 205:
इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए ''f<sub>a</sub>'' केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है:
इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए ''f<sub>a</sub>'' केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है:
:<math>f_a'(y) = a + 2y.</math>
:<math>f_a'(y) = a + 2y.</math>
उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है:
उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है:
:<math>\frac{\partial f}{\partial y}(x,y) = x + 2y.</math>
:<math>\frac{\partial f}{\partial y}(x,y) = x + 2y.</math>
यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के स्थान पर der , del , या आंशिक उच्चारित किया जाता है।
यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के स्थान पर der , del , या आंशिक उच्चारित किया जाता है।


सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' {{nowrap|''f''(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} दिशा में एक्स ''x<sub>i</sub>'' बिंदु पर (''a''<sub>1</sub>, ..., ''a<sub>n</sub>'') के रूप में परिभाषित किया गया है:
सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' {{nowrap|''f''(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} दिशा में एक्स ''x<sub>i</sub>'' बिंदु पर(''a''<sub>1</sub>, ..., ''a<sub>n</sub>'') के रूप में परिभाषित किया गया है:
:<math>\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n) - f(a_1,\ldots,a_i,\ldots,a_n)}{h}.</math>
:<math>\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n) - f(a_1,\ldots,a_i,\ldots,a_n)}{h}.</math>
उपरोक्त अंतर भागफल में, ''x<sub>i</sub>'' को छोड़कर सभी चर स्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है
उपरोक्त अंतर भागफल में, ''x<sub>i</sub>'' को छोड़कर सभी चर स्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है
Line 217: Line 217:
दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले अनुक्रमणिका के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है।
दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले अनुक्रमणिका के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है।


यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। {{math|''f''(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न {{math|∂''f'' / ∂''x''<sub>''j''</sub>}} का {{mvar|f}} बिंदु पर परिभाषित किया गया है {{math|1=''a'' = (''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}, ये आंशिक व्युत्पन्न संवाहक को परिभाषित करते हैं
यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। {{math|''f''(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न {{math|∂''f'' / ∂''x''<sub>''j''</sub>}} का {{mvar|f}} बिंदु पर परिभाषित किया गया है {{math|1=''a'' = (''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}, ये आंशिक व्युत्पन्न संवाहक को परिभाषित करते हैं
:<math>\nabla f(a_1, \ldots, a_n) = \left(\frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{\partial f}{\partial x_n}(a_1, \ldots, a_n)\right),</math>
:<math>\nabla f(a_1, \ldots, a_n) = \left(\frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{\partial f}{\partial x_n}(a_1, \ldots, a_n)\right),</math>
की प्रवणता कहलाती है {{math|''f''}} पर {{math|''a''}}. यदि {{math|''f''}} किसी अधि क्षेत्र  में हर बिंदु पर अलग-अलग होता है, तो प्रवणता एक संवाहक-मूल्यवान कार्य होता है {{math|∇''f''}} जो बिंदु को मानचित्र करता है {{math|(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} संवाहक को {{math|∇''f''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}. नतीजतन, ढाल एक [[वेक्टर क्षेत्र|संवाहक क्षेत्र]] निर्धारित करता है।
की प्रवणता कहलाती है {{math|''f''}} पर {{math|''a''}}. यदि {{math|''f''}} किसी अधिक्षेत्र में हर बिंदु पर अलग-अलग होता है, तो प्रवणता एक संवाहक-मूल्यवान कार्य होता है {{math|∇''f''}} जो बिंदु को मानचित्र करता है {{math|(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} संवाहक को {{math|∇''f''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}}. नतीजतन, ढाल एक [[वेक्टर क्षेत्र|संवाहक क्षेत्र]] निर्धारित करता है।


=== '''दिशात्मक व्युत्पन्न''' ===
=== '''दिशात्मक व्युत्पन्न''' ===
{{Main|Directional derivative}}
{{Main|Directional derivative}}
यदि f ''''R'''<sup>n</sup>' पर एक वास्तविक-मूल्यवान फलन है, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक अवकलज f में x दिशा और y दिशा में परिवर्तन को मापता है। यद्यपि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे कि विकर्ण रेखा के साथ {{nowrap|1=''y'' = ''x''}}. इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक संवाहक चुनें
यदि f ''''R'''<sup>n</sup>' पर एक वास्तविक-मूल्यवान फलन है, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक अवकलज f में x दिशा और y दिशा में परिवर्तन को मापता है। यद्यपि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे कि विकर्ण रेखा के साथ {{nowrap|1=''y'' = ''x''}}. इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक संवाहक चुनें
:<math>\mathbf{v} = (v_1,\ldots,v_n).</math>
:<math>\mathbf{v} = (v_1,\ldots,v_n).</math>
बिंदु x पर v की दिशा में 'f'' की दिशात्मक व्युत्पत्ति सीमा है
बिंदु x पर v की दिशा में 'f'' की दिशात्मक व्युत्पत्ति सीमा है
:<math>D_{\mathbf{v}}{f}(\mathbf{x}) = \lim_{h \rightarrow 0}{\frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}}.</math>
:<math>D_{\mathbf{v}}{f}(\mathbf{x}) = \lim_{h \rightarrow 0}{\frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}}.</math>
कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। ईकाई संवाहक की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को संचालन करने के लिए प्रायः ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए {{nowrap|1='''v''' = ''λ'''''u'''}} जहाँ u, v की दिशा में एक इकाई सदिश है। स्थानापन्न {{nowrap|1=''h'' = ''k''/''λ''}} अंतर भागफल में अंतर भागफल बन जाता है:
कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। ईकाई संवाहक की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को संचालन करने के लिए प्रायः ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए {{nowrap|1='''v''' = ''λ'''''u'''}} जहाँ u, v की दिशा में एक इकाई सदिश है। स्थानापन्न {{nowrap|1=''h'' = ''k''/''λ''}} अंतर भागफल में अंतर भागफल बन जाता है:
:<math>\frac{f(\mathbf{x} + (k/\lambda)(\lambda\mathbf{u})) - f(\mathbf{x})}{k/\lambda}
:<math>\frac{f(\mathbf{x} + (k/\lambda)(\lambda\mathbf{u})) - f(\mathbf{x})}{k/\lambda}
= \lambda\cdot\frac{f(\mathbf{x} + k\mathbf{u}) - f(\mathbf{x})}{k}.</math>
= \lambda\cdot\frac{f(\mathbf{x} + k\mathbf{u}) - f(\mathbf{x})}{k}.</math>
Line 234: Line 234:
यदि f के सभी आंशिक व्युत्पन्न उपस्थित हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं:
यदि f के सभी आंशिक व्युत्पन्न उपस्थित हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं:
:<math>D_{\mathbf{v}}{f}(\boldsymbol{x}) = \sum_{j=1}^n v_j \frac{\partial f}{\partial x_j}.</math>
:<math>D_{\mathbf{v}}{f}(\boldsymbol{x}) = \sum_{j=1}^n v_j \frac{\partial f}{\partial x_j}.</math>
यह   [[कुल व्युत्पन्न|पूर्ण व्युत्पन्न]] की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ है {{nowrap|1=''D''<sub>'''v''' + '''w'''</sub>(''f'') = ''D''<sub>'''v'''</sub>(''f'') + ''D''<sub>'''w'''</sub>(''f'')}}.
यह [[कुल व्युत्पन्न|पूर्ण व्युत्पन्न]] की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ है {{nowrap|1=''D''<sub>'''v''' + '''w'''</sub>(''f'') = ''D''<sub>'''v'''</sub>(''f'') + ''D''<sub>'''w'''</sub>(''f'')}}.


वही परिभाषा तब भी काम करती है जब f ''''R'''<sup>''m''</sup>' में मूल्य वाला कार्य है उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक अवकलज ''''R'''<sup>''m''</sup>' में एक सदिश है।
वही परिभाषा तब भी काम करती है जब f ''''R'''<sup>''m''</sup>' में मूल्य वाला कार्य है उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक अवकलज ''''R'''<sup>''m''</sup>' में एक सदिश है।


=== पूर्ण व्युत्पन्न, पूर्णअंतर और जैकबियन आव्यूह ===
=== पूर्ण व्युत्पन्न, पूर्णअंतर और जैकबियन आव्यूह ===
{{Main| संपूर्ण अवकलज}}
{{Main| संपूर्ण अवकलज}}


जब f ''''R'''<sup>''n''</sup>' के खुले उपसमुच्चय एक फलन से ''''R'''<sup>''m''</sup>', तो किसी चुनी हुई दिशा में f का दिशात्मक व्युत्पन्न उस बिंदु पर और उस दिशा में f का सर्वोत्तम रैखिक सन्निकटन है। लेकिन जब {{nowrap|''n'' &gt; 1}}, कोई भी एकल दिशात्मक व्युत्पन्न f के व्यवहार का पूरा चित्र नहीं दे सकता है।   पूर्ण व्युत्पन्न एक बार में सभी दिशाओं पर विचार करके पूरा चित्र देता है। अर्थात, 'a' से शुरू होने वाले किसी भी सदिश 'v' के लिए, रैखिक सन्निकटन सूत्र धारण करता है:
जब f ''''R'''<sup>''n''</sup>' के खुले उपसमुच्चय एक फलन से ''''R'''<sup>''m''</sup>', तो किसी चुनी हुई दिशा में f का दिशात्मक व्युत्पन्न उस बिंदु पर और उस दिशा में f का सर्वोत्तम रैखिक सन्निकटन है। लेकिन जब {{nowrap|''n'' &gt; 1}}, कोई भी एकल दिशात्मक व्युत्पन्न f के व्यवहार का पूरा चित्र नहीं दे सकता है। पूर्ण व्युत्पन्न एक बार में सभी दिशाओं पर विचार करके पूरा चित्र देता है। अर्थात, 'a' से शुरू होने वाले किसी भी सदिश 'v' के लिए, रैखिक सन्निकटन सूत्र धारण करता है:
:<math>f(\mathbf{a} + \mathbf{v}) \approx f(\mathbf{a}) + f'(\mathbf{a})\mathbf{v}.</math>
:<math>f(\mathbf{a} + \mathbf{v}) \approx f(\mathbf{a}) + f'(\mathbf{a})\mathbf{v}.</math>
एकल-चर व्युत्पन्न की तरह, {{nowrap|''f''&thinsp;&prime;('''a''')}} चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो।
एकल-चर व्युत्पन्न की तरह, {{nowrap|''f''&thinsp;&prime;('''a''')}} चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो।
Line 249: Line 249:
यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है
यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है
:<math>f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) \approx f'(\mathbf{a})\mathbf{v}.</math>
:<math>f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a}) \approx f'(\mathbf{a})\mathbf{v}.</math>
ध्यान दें कि यदि हम एक और संवाहक w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह '''w''' और v दोनों को प्रतिस्थापित करके एक तीसरा अनुमूल्यित समीकरण निर्धारित करता है {{nowrap|'''a''' + '''v'''}}, '''a''' के लिए। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं
ध्यान दें कि यदि हम एक और संवाहक w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह '''w''' और v दोनों को प्रतिस्थापित करके एक तीसरा अनुमूल्यित समीकरण निर्धारित करता है {{nowrap|'''a''' + '''v'''}}, '''a''' के लिए। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं
:<math>f(\mathbf{a} + \mathbf{v} + \mathbf{w}) - f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a} + \mathbf{w}) + f(\mathbf{a})
:<math>f(\mathbf{a} + \mathbf{v} + \mathbf{w}) - f(\mathbf{a} + \mathbf{v}) - f(\mathbf{a} + \mathbf{w}) + f(\mathbf{a})
\approx f'(\mathbf{a} + \mathbf{v})\mathbf{w} - f'(\mathbf{a})\mathbf{w}.</math>
\approx f'(\mathbf{a} + \mathbf{v})\mathbf{w} - f'(\mathbf{a})\mathbf{w}.</math>
Line 259: Line 259:
&\approx f'(\mathbf{a})(\mathbf{v} + \mathbf{w}) - f'(\mathbf{a})\mathbf{v} - f'(\mathbf{a})\mathbf{w}.
&\approx f'(\mathbf{a})(\mathbf{v} + \mathbf{w}) - f'(\mathbf{a})\mathbf{v} - f'(\mathbf{a})\mathbf{w}.
\end{align}</math>
\end{align}</math>
इससे पता चलता है {{nowrap|''f''&thinsp;′('''a''')}} सदिश समष्टि '''R'''<sup>''n''</sup> से एक रैखिक परिवर्तन है सदिश स्थान ''''R'''<sup>''m''</sup>' के लिए। वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मान लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, {{nowrap|''f''&thinsp;′('''a''')}} एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। '''v''' और '''w''' शून्य की शैली बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। अतः हम   पूर्ण व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, {{nowrap|''f''&thinsp;′('''a''')}} एक रैखिक परिवर्तन होना चाहिए।
इससे पता चलता है {{nowrap|''f''&thinsp;′('''a''')}} सदिश समष्टि '''R'''<sup>''n''</sup> से एक रैखिक परिवर्तन है सदिश स्थान ''''R'''<sup>''m''</sup>' के लिए। वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मान लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, {{nowrap|''f''&thinsp;′('''a''')}} एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। '''v''' और '''w''' शून्य की शैली बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। अतः हम पूर्ण व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, {{nowrap|''f''&thinsp;′('''a''')}} एक रैखिक परिवर्तन होना चाहिए।


एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। यद्यपि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि सामान्यतः पर संवाहक को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश को अधि क्षेत्र '''R'''<sup>''m''</sup> में स्थित है जबकि हर ''''R'''<sup>''n''</sup>' अधि क्षेत्र  में स्थित है, इसके अपवाद, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि {{nowrap|''f''&thinsp;′('''a''')}} सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं अन्तेर्ध्यान हो जाती हैं। यदि {{nowrap|''f'' : '''R''' → '''R'''}}, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए युक्तियोजित किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या है {{nowrap|''f''&thinsp;′(''a'')}} ऐसा है कि
एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। यद्यपि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि सामान्यतः पर संवाहक को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश को अधिक्षेत्र '''R'''<sup>''m''</sup> में स्थित है जबकि हर ''''R'''<sup>''n''</sup>' अधिक्षेत्र में स्थित है, इसके अपवाद, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि {{nowrap|''f''&thinsp;′('''a''')}} सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं अन्तेर्ध्यान हो जाती हैं। यदि {{nowrap|''f'' : '''R''' → '''R'''}}, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए युक्तियोजित किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या है {{nowrap|''f''&thinsp;′(''a'')}} ऐसा है कि
:<math>\lim_{h \to 0} \frac{f(a + h) - (f(a) + f'(a)h)}{h} = 0.</math>
:<math>\lim_{h \to 0} \frac{f(a + h) - (f(a) + f'(a)h)}{h} = 0.</math>
यह इसके एकरूप है
यह इसके एकरूप है
:<math>\lim_{h \to 0} \frac{|f(a + h) - (f(a) + f'(a)h)|}{|h|} = 0</math>
:<math>\lim_{h \to 0} \frac{|f(a + h) - (f(a) + f'(a)h)|}{|h|} = 0</math>
क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मान की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक (गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है।
क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मान की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक(गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है।


इसलिए, "f" के   पूर्ण व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है {{nowrap|''f''&thinsp;′('''a''') : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} ऐसा है कि
इसलिए, "f" के पूर्ण व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है {{nowrap|''f''&thinsp;′('''a''') : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} ऐसा है कि
:<math>\lim_{\mathbf{h}\to 0} \frac{\lVert f(\mathbf{a} + \mathbf{h}) - (f(\mathbf{a}) + f'(\mathbf{a})\mathbf{h})\rVert}{\lVert\mathbf{h}\rVert} = 0.</math>
:<math>\lim_{\mathbf{h}\to 0} \frac{\lVert f(\mathbf{a} + \mathbf{h}) - (f(\mathbf{a}) + f'(\mathbf{a})\mathbf{h})\rVert}{\lVert\mathbf{h}\rVert} = 0.</math>
यहाँ h, '''R'''<sup>''n''</sup> में एक सदिश राशि है, इसलिए हर में मूल्यक '<nowiki/>'''R'''<sup>''n''</sup>' पर मूल्यक लंबाई है. यद्यपि, f′('a')'h' ''''R'''<sup>''m''</sup>' में एक संवाहक है, और अंश में मूल्यदंड ''''R'''<sup>''m''</sup>' पर मूल्यक लंबाई है, यदि v एक संवाहक है जो a से शुरू होता है, तो {{nowrap|''f''&thinsp;′('''a''')'''v'''}} 'f' द्वारा v का बाध्य अग्रसर ''f'' (अंतर) कहा जाता है और कभी-कभी लिखा जाता है {{nowrap|''f''<sub>∗</sub>'''v'''}}.
यहाँ h, '''R'''<sup>''n''</sup> में एक सदिश राशि है, इसलिए हर में मूल्यक ''''R'''<sup>''n''</sup>' पर मूल्यक लंबाई है. यद्यपि, f′('a')'h' ''''R'''<sup>''m''</sup>' में एक संवाहक है, और अंश में मूल्यदंड ''''R'''<sup>''m''</sup>' पर मूल्यक लंबाई है, यदि v एक संवाहक है जो a से शुरू होता है, तो {{nowrap|''f''&thinsp;′('''a''')'''v'''}} 'f' द्वारा v का बाध्य अग्रसर ''f''(अंतर) कहा जाता है और कभी-कभी लिखा जाता है {{nowrap|''f''<sub>∗</sub>'''v'''}}.


यदि पूर्ण व्युत्पन्न a पर उपस्थित है, तो ''f'' के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर उपस्थित हैं, और सभी v के लिए, {{nowrap|''f''&thinsp;′('''a''')'''v'''}} दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि {{nowrap|1=''f'' = (''f''<sub>1</sub>, ''f''<sub>2</sub>, ..., ''f''<sub>''m''</sub>)}}, तो पूर्ण व्युत्पन्न को आव्यूह (गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर ''f'' का जैकबियन आव्यूह कहा जाता है:
यदि पूर्ण व्युत्पन्न a पर उपस्थित है, तो ''f'' के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर उपस्थित हैं, और सभी v के लिए, {{nowrap|''f''&thinsp;′('''a''')'''v'''}} दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि {{nowrap|1=''f'' = (''f''<sub>1</sub>, ''f''<sub>2</sub>, ..., ''f''<sub>''m''</sub>)}}, तो पूर्ण व्युत्पन्न को आव्यूह(गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर ''f'' का जैकबियन आव्यूह कहा जाता है:


:<math>f'(\mathbf{a}) = \operatorname{Jac}_{\mathbf{a}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.</math>
:<math>f'(\mathbf{a}) = \operatorname{Jac}_{\mathbf{a}} = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.</math>
Line 283: Line 283:
किसी कार्य का पूर्ण व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर विभक्ति। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के पूर्ण व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, पूर्ण व्युत्पन्न स्रोत के [[स्पर्शरेखा बंडल|स्पर्शरेखा समूह]] से लक्ष्य के स्पर्शरेखा समूह तक एक कार्य देता है।
किसी कार्य का पूर्ण व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर विभक्ति। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के पूर्ण व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, पूर्ण व्युत्पन्न स्रोत के [[स्पर्शरेखा बंडल|स्पर्शरेखा समूह]] से लक्ष्य के स्पर्शरेखा समूह तक एक कार्य देता है।


दूसरे, तीसरे, और उच्च-क्रम के पूर्ण व्युत्पन्न का प्राकृतिक समधर्मी एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा समूह पर कोई कार्य नहीं है, और पूर्ण व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का समधर्मी , जिसे [[जेट (गणित)|धारा (गणित)]] कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक आँकड़े जैसे संवाहक के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा समूह पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा समूह में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि धारा उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को [[जेट बंडल|धारा समूह]] कहा जाता है। किसी कार्य के पूर्ण व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के k वें अनुक्रम धारा और k से कम या उसके एकरूप अनुक्रम ''k'' आंशिक व्युत्पन्न के बीच के संबंध में समूल्यांतर है।
दूसरे, तीसरे, और उच्च-क्रम के पूर्ण व्युत्पन्न का प्राकृतिक समधर्मी एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा समूह पर कोई कार्य नहीं है, और पूर्ण व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का समधर्मी , जिसे [[जेट (गणित)|धारा(गणित)]] कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक आँकड़े जैसे संवाहक के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा समूह पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा समूह में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि धारा उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को [[जेट बंडल|धारा समूह]] कहा जाता है। किसी कार्य के पूर्ण व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के k वें अनुक्रम धारा और k से कम या उसके एकरूप अनुक्रम ''k'' आंशिक व्युत्पन्न के बीच के संबंध में समूल्यांतर है।


पूर्ण व्युत्पन्न को बार-बार लेने से, '<nowiki/>'''R'''<sup>''n''</sup>' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं। <small>'''R'''''p''. ''k''th क्रम के पूर्ण अवकलज की व्याख्या मूल्यचित्र के रूप में की जा सकती है</small>
पूर्ण व्युत्पन्न को बार-बार लेने से, '<nowiki/>'''R'''<sup>''n''</sup>' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं। <small>'''R'''''p''. ''k''th क्रम के पूर्ण अवकलज की व्याख्या मूल्यचित्र के रूप में की जा सकती है</small>
:<math>D^k f: \mathbb{R}^n \to L^k(\mathbb{R}^n \times \cdots \times \mathbb{R}^n, \mathbb{R}^m)</math>
:<math>D^k f: \mathbb{R}^n \to L^k(\mathbb{R}^n \times \cdots \times \mathbb{R}^n, \mathbb{R}^m)</math>
जो '''R'''<sup>''n''</sup> में एक बिंदु x लेता है और इसे '<nowiki/>'''R'''<sup>''n''</sup> ' से k-रेखीय मूल्यचित्रों के स्थान का एक तत्व प्रदान करता है से ''''R'''<sup>''m''</sup> '– उस बिंदु पर f के लिए सबसे अच्छा (एक निश्चित अर्थ में) k-रैखिक सन्निकटन है। इसे [[विकर्ण फ़ैक्टर|विकर्ण मानचित्र]] Δ के साथ पूर्वसंरचना करके, {{nowrap|'''x''' → ('''x''', '''x''')}}, एक सामूल्य्यीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है
जो '''R'''<sup>''n''</sup> में एक बिंदु x लेता है और इसे ''''R'''<sup>''n''</sup> ' से k-रेखीय मूल्यचित्रों के स्थान का एक तत्व प्रदान करता है से ''''R'''<sup>''m''</sup> '– उस बिंदु पर f के लिए सबसे अच्छा(एक निश्चित अर्थ में) k-रैखिक सन्निकटन है। इसे [[विकर्ण फ़ैक्टर|विकर्ण मानचित्र]] Δ के साथ पूर्वसंरचना करके, {{nowrap|'''x''' → ('''x''', '''x''')}}, एक समूहीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है
:<math>\begin{align}
:<math>\begin{align}
  f(\mathbf{x}) & \approx f(\mathbf{a}) + (D f)(\mathbf{x-a}) + \left(D^2 f\right)(\Delta(\mathbf{x-a})) + \cdots\\
  f(\mathbf{x}) & \approx f(\mathbf{a}) + (D f)(\mathbf{x-a}) + \left(D^2 f\right)(\Delta(\mathbf{x-a})) + \cdots\\
Line 293: Line 293:
  & = f(\mathbf{a}) + \sum_i (D f)_i (x_i-a_i) + \sum_{j, k} \left(D^2 f\right)_{j k} (x_j-a_j) (x_k-a_k) + \cdots
  & = f(\mathbf{a}) + \sum_i (D f)_i (x_i-a_i) + \sum_{j, k} \left(D^2 f\right)_{j k} (x_j-a_j) (x_k-a_k) + \cdots
\end{align}</math>
\end{align}</math>
जहाँ f(a) की निर्धारित एक स्थिर फलन से की जाती है, {{nowrap|''x''<sub>''i''</sub> − ''a''<sub>''i''</sub>}} संवाहक के घटक हैं {{nowrap|'''x''' − '''a'''}}, तथा {{nowrap|(''Df'')<sub>''i''</sub>}} तथा {{nowrap|(''D''<sup>2</sup>''f'')<sub>''jk''</sub>}} के घटक हैं {{nowrap|''Df''}} तथा {{nowrap|''D''<sup>2</sup>''f''}} रैखिक परिवर्तन के रूप में।
जहाँ f(a) की निर्धारित एक स्थिर फलन से की जाती है, {{nowrap|''x''<sub>''i''</sub> − ''a''<sub>''i''</sub>}} संवाहक के घटक हैं {{nowrap|'''x''' − '''a'''}}, तथा {{nowrap|(''Df'')<sub>''i''</sub>}} तथा {{nowrap|(''D''<sup>2</sup>''f'')<sub>''jk''</sub>}} के घटक हैं {{nowrap|''Df''}} तथा {{nowrap|''D''<sup>2</sup>''f''}} रैखिक परिवर्तन के रूप में।


== सामूल्य्यीकरण ==
== सामूहीकरण ==
{{Main| सामान्यीकरण का व्युत्पन्न}}
{{Main| सामान्यीकरण का व्युत्पन्न}}


व्युत्पन्न की अवधारणा को कई अन्य निर्धारितिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है।
व्युत्पन्न की अवधारणा को कई अन्य निर्धारितिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है।
* व्युत्पन्न का एक महत्वपूर्ण सामूल्य्यीकरण [[जटिल संख्या|जटिल संख्याओं]] के जटिल कार्यों से संबंधित है, जैसे कि (एक अधि क्षेत्र  में) जटिल संख्या C से C तक के कार्य। इस तरह के एक समारोह के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। परिभाषा यदि C की निर्धारित '''R'''<sup>2</sup> से की जाती है तो एक सम्मिश्र संख्या z के रूप में लिखकर {{nowrap|''x'' + ''iy''}}, तो C से C तक एक अवकलनीय फलन निश्चित रूप से '''R'''<sup>2</sup> से एक फलन के रूप में अवकलनीय है से '''R'''<sup>2</sup> (इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी उपस्थित हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी उपस्थित होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण - [[होलोमॉर्फिक फ़ंक्शन|पूर्णसममितिक कार्य]] देखें।
* व्युत्पन्न का एक महत्वपूर्ण सामूहीकरण [[जटिल संख्या|जटिल संख्याओं]] के जटिल कार्यों से संबंधित है, जैसे कि(एक अधिक्षेत्र में) जटिल संख्या C से C तक के कार्य। इस तरह के एक समारोह के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। परिभाषा यदि C की निर्धारित '''R'''<sup>2</sup> से की जाती है तो एक सम्मिश्र संख्या z के रूप में लिखकर {{nowrap|''x'' + ''iy''}}, तो C से C तक एक अवकलनीय फलन निश्चित रूप से '''R'''<sup>2</sup> से एक फलन के रूप में अवकलनीय है से '''R'''<sup>2</sup>(इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी उपस्थित हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी उपस्थित होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण - [[होलोमॉर्फिक फ़ंक्शन|पूर्णसममितिक कार्य]] देखें।
* एक अन्य सामूल्य्यीकरण सुचारू कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी [[स्पर्शरेखा स्थान]] कहा जाता है: प्रोटोटाइपिकल उदाहरण ''''R'''<sup>3</sup>' में एक सुचारू सतह है। <sup><big>एक (विभेदक) मूल्यचित्र का व्युत्पन्न (या अंतर)। {{nowrap|''f'': ''M'' → ''N''}} मैनिफोल्ड्स के बीच, ''M'' में एक बिंदु ''x'' पर, फिर ''x'' पर ''M'' के स्पर्शरेखा स्थान से ''f''(''x'')) पर ''N'' के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य ''M'' और ''N'' के स्पर्शरेखा समूहों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - प्रेरित अग्रसर (अंतर) और [[पुलबैक (अंतर ज्यामिति)|ऐंठनापार्श्व (अंतर ज्यामिति)]] देखें।</big>
* एक अन्य सामूहीकरण सुचारू कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी [[स्पर्शरेखा स्थान]] कहा जाता है: प्रोटोटाइपिकल उदाहरण ''''R'''<sup>3</sup>' में एक सुचारू सतह है। <sup><big>एक(विभेदक) मूल्यचित्र का व्युत्पन्न(या अंतर)। {{nowrap|''f'': ''M'' → ''N''}} मैनिफोल्ड्स के बीच, ''M'' में एक बिंदु ''x'' पर, फिर ''x'' पर ''M'' के स्पर्शरेखा स्थान से ''f''(''x'')) पर ''N'' के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य ''M'' और ''N'' के स्पर्शरेखा समूहों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - प्रेरित अग्रसर(अंतर) और [[पुलबैक (अंतर ज्यामिति)|ऐंठनापार्श्व(अंतर ज्यामिति)]] देखें।</big>
* आयाम (संवाहक स्थल) संवाहक स्थल जैसे [[बनच स्थान]] और फ्रेचेट स्थल के बीच के मानचित्र के लिए भी विवेक को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूल्य्यीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है।
* आयाम(संवाहक स्थल) संवाहक स्थल जैसे [[बनच स्थान]] और फ्रेचेट स्थल के बीच के मानचित्र के लिए भी विवेक को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूहीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है।
* शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि [[कमजोर व्युत्पन्न]] के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में स्थापित करना है जिसे वितरण का स्थान (गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य सामान्य पर अलग-अलग हो।
* शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि [[कमजोर व्युत्पन्न]] के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में स्थापित करना है जिसे वितरण का स्थान(गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य सामान्य पर अलग-अलग हो।
* व्युत्पन्न के गुणों ने बीजगणित और सांस्थिति में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है - उदाहरण के लिए, [[अंतर बीजगणित]] देखें।
* व्युत्पन्न के गुणों ने बीजगणित और सांस्थिति में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है - उदाहरण के लिए, [[अंतर बीजगणित]] देखें।
* विभेदन का असतत समतुल्य [[परिमित अंतर]] है। अंतरीय गणना का अध्ययन [[समय पैमाने की गणना|समय पैमूल्ये की गणना]] में परिमित अंतर के गणना के साथ एकीकृत है।
* विभेदन का असतत समतुल्य [[परिमित अंतर]] है। अंतरीय गणना का अध्ययन [[समय पैमाने की गणना|समय पैमूल्ये की गणना]] में परिमित अंतर के गणना के साथ एकीकृत है।
* अंकगणित व्युत्पन्न भी देखें।
* अंकगणित व्युत्पन्न भी देखें।


Line 310: Line 310:
{{main| इतिहास की  गणना}}
{{main| इतिहास की  गणना}}


गणना, अपने प्रारंभिक इतिहास में अत्यंत सूक्ष्म गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा (गणित), कार्य (गणित), व्युत्पन्न, संपूर्ण और [[अनंत श्रृंखला]] पर केंद्रित है। 17वीं शताब्दी के मध्य में [[आइजैक न्यूटन]] और [[गॉटफ्रीड लीबनिज]] ने स्वतंत्र रूप से गणना की खोज की। यद्यपि, प्रत्येक आविष्कार ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा।
गणना, अपने प्रारंभिक इतिहास में अत्यंत सूक्ष्म गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा(गणित), कार्य(गणित), व्युत्पन्न, संपूर्ण और [[अनंत श्रृंखला]] पर केंद्रित है। 17वीं शताब्दी के मध्य में [[आइजैक न्यूटन]] और [[गॉटफ्रीड लीबनिज]] ने स्वतंत्र रूप से गणना की खोज की। यद्यपि, प्रत्येक आविष्कार ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 11:38, 5 December 2022

एक कार्य का लेखाचित्र, काले रंग में खींचा गया है, और उस लेखाचित्र की स्पर्श रेखा, लाल रंग में खींची गई है। स्पर्शरेखा रेखा का ढलान चिह्नित बिंदु पर कार्य के व्युत्पन्न के एकरूप है।

गणित में, एक वास्तविक चर के एक कार्य का व्युत्पन्न एक कार्य(निवेश मूल्य) के अपने तर्क में परिवर्तन के संबंध में कार्य मूल्य(प्रक्षेपण मूल्य) के परिवर्तन की संवेदनशीलता को मापता है। व्युत्पन्न गणना का एक मूलभूत उपकरण है। उदाहरण के लिए, समय के संबंध में गतिमूल्य वस्तु की स्थिति का व्युत्पन्न वस्तु का वेग है: यह मापता है कि समय बढ़ने पर वस्तु की स्थिति कितनी जल्दी बदल जाती है।

किसी सुचयनित निवेश मूल्य पर एकल चर के कार्य का व्युत्पन्न, जब वह उपस्थित होता है, उस बिंदु पर कार्य के लेखाचित्र पर स्पर्शरेखा का ढलान होता है। स्पर्श रेखा उस निवेश मूल्य के पास कार्य का सबसे अच्छा रेखीय सन्निकटन है। इस कारण से, व्युत्पन्न को प्रायः परिवर्तन की तात्कालिक दर के रूप में वर्णित किया जाता है, आश्रित चर में तात्कालिक परिवर्तन का अनुपात स्वतंत्र चर के अनुपात में होता है।

व्युत्पन्न को कई वास्तविक चरों के कार्य करने के लिए समूहीकृत किया जा सकता है। इस सामूहीकरण में, व्युत्पन्न को एक रैखिक परिवर्तन के रूप में पुनर्व्याख्या की जाती है जिसका लेखाचित्र(उचित अनुवाद के बाद) मूल कार्य के लेखाचित्र के लिए सबसे अच्छा रैखिक सन्निकटन है। जैकबियन आव्यूह(गणित) है जो स्वतंत्र और निर्भर चर के विकल्प द्वारा दिए गए आधार के संबंध में इस रैखिक परिवर्तन का प्रतिनिधित्व करता है। इसकी गणना स्वतंत्र चर के संबंध में आंशिक व्युत्पन्न के संदर्भ में की जा सकती है। कई चरों के वास्तविक-मूल्यवान कार्य के लिए, जेकोबियन आव्यूह प्रवणता संवाहक में कम हो जाता है।

व्युत्पन्न खोजने की प्रक्रिया को विवेक कहा जाता है। विपत्ति प्रक्रिया को 'विरोधी विशिष्टीकरण ' कहा जाता है। कलन का मूलभूत प्रमेय प्रतिविभेदन को समाकलन से संबंधित करता है। विभेदीकरण और एकीकरण एकल-चर कलन में दो मूलभूत संचालन का गठन करते हैं।[Note 1]

परिभाषा

एक वास्तविक चर का एक कार्य f(x) एक बिंदु पर अवकलनीय है a किसी कार्य के अपने अधिक्षेत्र का, यदि उसके अधिक्षेत्र में एक खुला अंतराल है I युक्त a, और सीमा(गणित)

इसका उद्देश्य है कि, हर सकारात्मक वास्तविक संख्या के लिए (यहां तक ​​कि बहुत छोटा), वहाँ एक सकारात्मक वास्तविक संख्या उपस्थित है ऐसा है कि, हर के लिए h ऐसा है कि तथा फिर परिभाषित किया गया है, और

जहां लंबवत पट्टियां निरपेक्ष मूल्य दर्शाती हैं(देखें(ε, δ)-सीमा की परिभाषा)।

यदि समारोह f पर अवकलनीय है a, वह अगर सीमा L उपस्थित है, तो इस सीमा को व्युत्पन्न कहा जाता है f पर a, और निरूपित (के रूप में पढ़ें f के प्रमुख a) या (के व्युत्पन्न के रूप में पढ़ें f इसके संबंध में x पर a,dy द्वारा dx पर a, या dy ऊपर dx पर a); देखना § प्रतीकांकन (सूचना ), नीचे।

निरंतरता और भिन्नता

इस कार्य का चिह्नित बिंदु पर कोई व्युत्पन्न नहीं है, क्योंकि कार्य वहां निरंतर नहीं है(विशेष रूप से, इसमें कूदना बंद करो है)।

यदि f पर अवकलनीय है a, फिर f पर भी निरंतर कार्य करना चाहिए a. एक उदाहरण के रूप में, एक बिंदु चुनें a और जाने f चरण कार्य बनें जो सभी के लिए मूल्य 1 लौटाता है x से कम a, और सभी के लिए भिन्न मूल्य 10 लौटाता है x इससे बड़ा या इसके एकरूप a. f पर व्युत्पन्न नहीं हो सकता a. यदि h नकारात्मक है, तो a + h कदम के निचले हिस्से पर है, इसलिए छेदक रेखा से a प्रति a + h बहुत खड़ी है, और रूप में h शून्य की शैली में जाता है ढलान अनंत की शैली जाता है। यदि h सकारात्मक है, तो a + h सीढी के ऊँचे भाग पर है, अत: से छेदक रेखा a प्रति a + h ढलान शून्य है। नतीजतन, छेदक रेखाएँ किसी एक ढलान तक नहीं पहुँचती हैं, इसलिए अंतर भागफल की सीमा उपस्थित नहीं होती है।

निरपेक्ष मूल्य फलन निरंतर है, लेकिन पर अवकलनीय होने में विफल रहता है x = 0 चूँकि स्पर्शरेखा ढलान बाईं शैली से उसी मूल्य तक नहीं पहुँचती है जैसा कि वे दाईं शैली से करते हैं।

यद्यपि, समान ही एक बिंदु पर एक कार्य निरंतर हो, यह वहाँ भिन्न नहीं हो सकता है। उदाहरण के लिए, द्वारा दिया गया निरपेक्ष मूल्य कार्य f(x) = |x| पर निरंतर है x = 0, लेकिन यह वहां भिन्न नहीं है। यदि h धनात्मक है, तो छेदक रेखा का ढलान 0 से h एक है, जबकि अगर h ऋणात्मक है, तो छेदक रेखा का ढलान 0 से h एक नकारात्मक है। इसे लेखाचित्रिक रूप से लेखाचित्र में व्याकुंचन या संक्रांति के रूप में देखा जा सकता है x = 0. यहां तक ​​​​कि एक सुचारू लेखाचित्र वाला कार्य भी उस बिंदु पर भिन्न नहीं होता है जहां इसकी लंबवत स्पर्शरेखा होती है: उदाहरण के लिए, दिया गया कार्य f(x) = x1/3 पर अवकलनीय नहीं है x = 0.

सारांश में, एक ऐसा फलन जिसमें एक अवकलज होता है, सतत होता है, लेकिन ऐसे सतत फलन होते हैं जिनका कोई अवकलज नहीं होता।

अभ्यास में होने वाले अधिकांश कार्यों में सभी बिंदुओं पर या इतस्ततः हर जगह व्युत्पन्न होते हैं। गणना के इतिहास के आरंभ में, कई गणितज्ञों ने यह मूल्य लिया था कि एक सतत फलन अधिकांश बिंदुओं पर अवकलनीय था। हल्की परिस्थितियों में, उदाहरण के लिए यदि कार्य एक एकदिष्ट समारोह या लिप्सचिट्ज़ समारोह है, तो यह सत्य है। यद्यपि, 1872 में वेइरस्ट्रास ने एक ऐसे कार्य का पहला उदाहरण पाया जो हर जगह निरंतर है लेकिन कहीं भी भिन्न नहीं है। यह उदाहरण अब वीयरस्ट्रैस समारोह के रूप में जाना जाता है। 1931 में, स्टीफन बानाच ने सिद्ध किया कि किसी बिंदु पर व्युत्पन्न वाले कार्य का निर्धारित सभी निरंतर कार्य के स्थान पर एक अल्प निर्धारित है।[1] अनौपचारिक रूप से, इसका उद्देश्य यह है कि किसी भी यादृच्छिक निरंतर कार्यों का एक बिंदु पर भी व्युत्पन्न होता है।

एक समारोह के रूप में व्युत्पन्न

File:Tangent function animation.gif
अवकलनीय फलन के विभिन्न बिंदुओं पर व्युत्पन्न। इस मामले में, व्युत्पन्न के एकरूप है:

होने देना f ऐसा फलन हो जिसका फलन के अपने क्षेत्र में प्रत्येक बिंदु पर एक अवकलज हो। हम तब एक कार्य को परिभाषित कर सकते हैं जो हर बिंदु को मानचित्र करता है x के व्युत्पन्न के मूल्य के लिए f पर x. यह समारोह लिखा है f और इसे व्युत्पन्न कार्य या व्युत्पन्न कहा जाता है f.

कभी-कभी f इसके अधिक्षेत्र के अधिकांश बिंदुओं पर व्युत्पन्न है, लेकिन सभी नहीं। वह कार्य जिसका मूल्य at a एकरूपी f(a) जब भी f(a) परिभाषित किया गया है और कहीं और अपरिभाषित है, इसे व्युत्पन्न भी कहा जाता है f. यह अभी भी एक कार्य है, लेकिन इसका अधिक्षेत्र के अधिक्षेत्र से छोटा हो सकता है f.

इस विचार का उपयोग करते हुए, विवेक कार्यों का एक कार्य बन जाता है: व्युत्पन्न एक संचालक(गणित) है जिसका अधिक्षेत्र उन सभी कार्यों का निर्धारित है जिनके अधिक्षेत्र के प्रत्येक बिंदु पर व्युत्पन्न हैं और जिनकी सीमा कार्यों का एक निर्धारित है। यदि हम इस संचालक को निरूपित करते हैं D, फिर D(f) कार्य है f. तब से D(f) एक कार्य है, इसका मूल्यांकन एक बिंदु पर किया जा सकता है a. व्युत्पन्न समारोह की परिभाषा के द्वारा, D(f)(a) = f(a).

तुलना के लिए, द्वारा दिए गए दोहरीकरण समारोह पर विचार करें f(x) = 2x; f एक वास्तविक संख्या का वास्तविक-मूल्यवान कार्य है, जिसका अर्थ है कि यह संख्याओं को निवेश के रूप में लेता है और संख्याओं को प्रक्षेपण के रूप में रखता है:

परिचालक D यद्यपि, अलग-अलग अंको पर परिभाषित नहीं किया गया है। यह केवल कार्यों पर परिभाषित किया गया है:

क्योंकि का उत्पादन D एक कार्य है, का प्रक्षेपण D एक बिंदु पर मूल्यांकन किया जा सकता है। उदाहरण के लिए, कब D चौकोर कार्य पर लागू होता है, xx2, D दोहरीकरण समारोह को प्रक्षेपण करता है x ↦ 2x जिसे हमने नाम दिया है f(x). इस प्रक्षेपण कार्य का मूल्यांकन प्राप्त करने के लिए किया जा सकता है f(1) = 2, f(2) = 4, और इसी तरह।

उच्च व्युत्पन्न

होने देना f एक अवकलनीय कार्य हो, और चलो f इसका व्युत्पन्न हो। का व्युत्पन्न f(यदि है तो) लिखा हुआ है f ′′ और का दूसरा व्युत्पन्न कहा जाता है f. इसी प्रकार, दूसरे व्युत्पन्न का व्युत्पन्न, यदि यह उपस्थित है, लिखा गया है f ′′′ का तीसरा व्युत्पन्न कहा जाता है f. इस प्रक्रिया को जारी रखते हुए, परिभाषित किया जा सकता है, यदि यह उपस्थित है, तो nवें व्युत्पन्न के व्युत्पन्न के रूप में (n−1)वें व्युत्पन्न। इन पुनरावर्ती गए व्युत्पन्न को उच्च-क्रम व्युत्पन्न कहा जाता है। n'}}वें अवकलज को क्रम का अवकलज भी कहा जाता है n और # लैग्रेंज का अंकन f (n).

यदि x(t) समय पर किसी वस्तु की स्थिति का प्रतिनिधित्व करता है t, फिर के उच्च-क्रम के व्युत्पन्न x भौतिकी में विशिष्ट व्याख्याएँ हैं। पहला व्युत्पन्न x वस्तु का वेग है। दूसरा व्युत्पन्न x त्वरण है। तीसरा व्युत्पन्न x झटका(भौतिकी) है। और अंत में, चौथे से छठे व्युत्पन्न के x हैं उछाल, गुर्राना, भड़कना, और लोकप्रिय; खगोल भौतिकी के लिए सबसे अधिक लागू।

एक समारोह f व्युत्पन्न होने की आवश्यकता नहीं है(उदाहरण के लिए, यदि यह निरंतर नहीं है)। इसी तरह, समान ही f एक व्युत्पन्न है, इसका दूसरा व्युत्पन्न नहीं हो सकता है। उदाहरण के लिए, चलो

गणना यह दर्शाती है f एक अवकलनीय फलन है जिसका व्युत्पन्न है द्वारा दिया गया है

f'(x) पर निरपेक्ष मूल्य फलन का दुगुना है , और इसका शून्य पर व्युत्पन्न नहीं है। समूल्य उदाहरण दिखाते हैं कि एक फलन में a हो सकता है kप्रत्येक गैर-ऋणात्मक पूर्णांक के लिए वें व्युत्पन्न k लेकिन नहीं (k + 1)वें व्युत्पन्न। एक समारोह जिसमें है k उत्तरोत्तर व्युत्पन्न कहलाते हैंk बार अलग करने योग्य है। अगर इसके अपवाद kवां अवकलज सतत है, तो फलन अवकलनीयता वर्ग का कहा जाता है Ck.(यह होने की तुलना में एक मजबूत स्थिति है k व्युत्पन्न, जैसा कि दूसरे उदाहरण द्वारा दिखाया गया है सहजता § उदहारण।) एक ऐसा फलन जिसके अपरिमित रूप से अनेक अवकलज होते हैं, अपरिमित रूप से अवकलनीय या सहजता कहलाता है।

वास्तविक रेखा पर, प्रत्येक बहुपद फलन अपरिमित रूप से अवकलनीय होता है। मूल्यक विवेक नियमों द्वारा, यदि श्रेणी का बहुपद n विभेदित है n समय, तो यह एक निरंतर कार्य बन जाता है। इसके बाद के सभी व्युत्पन्न समूल्य रूप से शून्य हैं। विशेष रूप से, वे उपस्थित हैं, इसलिए बहुपद सहज कार्य हैं।

एक समारोह के व्युत्पन्न f एक बिंदु पर x उस कार्य के पास बहुपद सन्निकटन प्रदान करें x. उदाहरण के लिए, यदि f तब दो बार अवकलनीय है

इस अर्थ में कि

यदि f असीम रूप से भिन्न है, तो यह टेलर श्रृंखला की शुरुआत है f पर मूल्यांकन किया गया x + h चारों शैली x.

विभक्ति बिंदु

एक बिंदु जहां किसी कार्य का दूसरा व्युत्पन्न संकेत बदलता है, एक विभक्ति बिंदु कहलाता है।[2] एक विभक्ति बिंदु पर, दूसरा व्युत्पन्न शून्य हो सकता है, जैसा कि विभक्ति बिंदु के मामले में होता है x = 0 द्वारा दिए गए समारोह का , या यह अस्तित्व में विफल हो सकता है, जैसा कि विभक्ति बिंदु के मामले में है x = 0 द्वारा दिए गए समारोह का . एक मोड़ बिंदु पर, एक कार्य उत्तल कार्य होने से अवतल कार्य या इसके विपरीत होने पर विपर्येण करता है।

अंकन(विवरण)

लीबनिज का अंकन

प्रतीक , , तथा 1675 में Gottfried Wilhelm Leibniz द्वारा पेश किए गए थे।[3] यह तब भी सामान्यतः प्रयोग किया जाता है जब समीकरण y = f(x) निर्भर और स्वतंत्र चर के बीच कार्यात्मक संबंध के रूप में देखा जाता है। फिर पहले व्युत्पन्न द्वारा निरूपित किया जाता है

और एक बार एक अतिसूक्ष्म भागफल के रूप में सोचा गया था। उच्च व्युत्पन्न्स को संकेतन का उपयोग करके व्यक्त किया जाता है

के n वें व्युत्पन्न के लिए . ये व्युत्पन्न संचालक के कई अनुप्रयोगों के लिए संक्षिप्त रूप हैं। उदाहरण के लिए,

Leibniz's के अंकन के साथ, हम का व्युत्पन्न लिख सकते हैं बिंदु पर दो अलग-अलग तरीकों से:

Leibniz's के अंकन से विभेदीकरण(हर में) के लिए चर निर्दिष्ट करने की अनुमति मिलती है, जो आंशिक व्युत्पन्न में प्रासंगिक है। इसकी उपयोग श्रृंखला नियम को लिखने के लिए भी की जा सकती है[Note 2]

लैग्रेंज का अंकन

कभी-कभी मुख्य अंकन पद्धति के रूप में जाना जाता है,[4] विवेक के लिए सबसे सामान्य आधुनिक अंकन पद्धति में से एक जोसेफ-लुई लाग्रेंज के कारण है और मुख्य(प्रतीक) का उपयोग करता है, ताकि किसी कार्य का व्युत्पन्न हो सके निरूपित किया जाता है . इसी तरह, दूसरे और तीसरे व्युत्पन्न को निरूपित किया जाता है

तथा

इस बिंदु से परे व्युत्पन्न की संख्या को निरूपित करने के लिए, कुछ लेखक अधिलेख में प्राचीन रोमी अंकों का उपयोग करते हैं, जबकि अन्य संख्या को कोष्ठक में रखते हैं:

या

बाद वाला अंकन संकेतन प्राप्त करने के लिए समूहीकृत करता है के n वें व्युत्पन्न के लिए - यह संकेतन सबसे उपयोगी होता है जब हम व्युत्पन्न के बारे में एक कार्य के रूप में बात करना चाहते हैं, क्योंकि इस मामले में लाइबनिज संकेतन बोझिल हो सकता है।

न्यूटन का अंकन

अवकलन के लिए न्यूटन के अंकन, जिसे डॉट संकेतन भी कहा जाता है, समय व्युत्पन्न का प्रतिनिधित्व करने के लिए कार्य नाम पर एक बिंदु रखता है। यदि , फिर

तथा

निरूपित, क्रमशः, के पहले और दूसरे व्युत्पन्न . यह संकेतन विशेष रूप से समय या चाप की लंबाई के संबंध में व्युत्पन्न के लिए उपयोग किया जाता है। यह सामान्यतः पर भौतिकी और अंतर ज्यामिति में अंतर समीकरणों में प्रयोग किया जाता है।[5][6] डॉट अंकन पद्धति , यद्यपि उच्च-अनुक्रम व्युत्पन्न(अनुक्रम 4 या अधिक) के लिए असहनीय हो जाता है और कई स्वतंत्र चर के साथ काम नहीं कर सकता।

यूलर का अंकन

लियोनहार्ड यूलर का अंकन अवकल संकारक का उपयोग करता है , जो एक समारोह पर लागू होता है पहला व्युत्पन्न देने के लिए . Nth व्युत्पन्न को निरूपित किया जाता है .

यदि y = f(x) एक आश्रित चर है, तो प्रायः स्वतंत्र चर x को स्पष्ट करने के लिए पादांक x को D से जोड़ा जाता है। इसके बाद यूलर का अंकन लिखा जाता है

या ,

यद्यपि यह पादांक प्रायः छोड़ दिया जाता है जब चर x को समझा जाता है, उदाहरण के लिए जब यह अभिव्यक्ति में उपस्थित एकमात्र स्वतंत्र चर है।

रैखिक अवकल समीकरणों को बताने और हल करने के लिए यूलर का संकेतन उपयोगी है।

गणना के नियम

एक कार्य के व्युत्पन्न, सिद्धांत रूप में, अंतर भागफल पर विचार करके और इसकी सीमा की गणना करके परिभाषा से गणना की जा सकती है। व्यवहार में, एक बार कुछ सरल कार्यों के व्युत्पन्न ज्ञात हो जाने के बाद, सरल कार्यों से अधिक जटिल कार्यों के व्युत्पन्न प्राप्त करने के लिए अन्य कार्यों के व्युत्पन्न को नियमों का उपयोग करके अधिक आसानी से गणना की जाती है।

मूलतत्त्व कार्यों के लिए नियम

यहां सबसे सामूल्य्य मूलतत्त्व कार्यों के व्युत्पन्न के नियम हैं, जहां एक वास्तविक संख्या है।

  • शक्ति नियम:
  • घातांकीकार्य और लघुगणक कार्य:
  • त्रिकोणमितीय फलन:
  • व्युत्क्रम त्रिकोणमितीय कार्य:

संयुक्त कार्यों के लिए नियम

मूलतत्त्व कार्यों के व्युत्पन्न से कार्य संरचना के व्युत्पन्न को निकालने के लिए यहां कुछ सबसे मूलतत्त्व नियम दिए गए हैं।

  • स्थिर नियम: यदि f(x) स्थिर है, तो
  • विभेदन की रैखिकता:
    सभी कार्यों f और g और सभी वास्तविक संख्याओं के लिएतथा.
  • उत्पादन नियम:
    सभी कार्यों के लिए f और g। एक विशेष मामले के रूप में, इस नियम में तथ्य शामिल है जब भी एक स्थिर है, क्योंकि निरंतर नियम से।
  • भागफल नियम:
    सभी कार्यों के लिए f और g सभी निवेश पर जहां g ≠ 0.
  • समग्र कार्यों के लिए चेन नियम: यदि , फिर

संगणना उदाहरण

द्वारा दिए गए कार्य का व्युत्पन्न

है

यहाँ दूसरे पद की गणना श्रृंखला नियम का उपयोग करके और तीसरे पद की गणना उत्पाद नियम का उपयोग करके की गई है। प्रारंभिक कार्यों x के ज्ञात व्युत्पन्न2</सुप>, एक्स4, sin(x), ln(x) और exp(x) = ex, साथ ही साथ स्थिरांक 7 का भी उपयोग किया गया था।

हाइपररियल्स के साथ परिभाषा

अति वास्तविक संख्या विस्तारण के सापेक्ष RR वास्तविक संख्याओं का, वास्तविक फलन का अवकलज y = f(x) एक वास्तविक बिंदु पर x भागफल की छाया(गणित) के रूप में परिभाषित किया जा सकता है y/x अनंत के लिए x, कहाँ पे y = f(x + ∆x) − f(x). यहाँ का स्वाभाविक विस्तार है f हाइपररियल्स को अभी भी निरूपित किया गया है f. यहाँ कहा जाता है कि व्युत्पत्ति का अस्तित्व है यदि छाया सुचयनित अपरिमेय से स्वतंत्र है।

उच्च आयामों में

संवाहक -मूल्यवान कार्य

एक वास्तविक चर का सदिश-मूल्यवान कार्य y कुछ सदिश स्थान Rn में सदिशों को वास्तविक संख्याएँ भेजता है, एक संवाहक -मूल्यवान कार्य को इसके समन्वय कार्यों में विभाजित किया जा सकता है y1(t), y2(t), ..., yn(t), जिसका अर्थ है कि y(t) = (y1(t), ..., yn(t)). इसमें शामिल है, उदाहरण के लिए, प्राचलिक वक्र R2 या R3। समन्वय कार्य वास्तविक मूल्यवान कार्य हैं, इसलिए व्युत्पन्न की उपरोक्त परिभाषा उन पर लागू होती है। Y(t) के व्युत्पन्न को संवाहक(ज्यामितीय) के रूप में परिभाषित किया गया है, जिसे वक्रों की विभेदक ज्यामिति कहा जाता है, जिसके निर्देशांक समन्वय कार्यों के व्युत्पन्न हैं। वह है,

समूल्य रूप से,

अगर सीमा उपस्थित है। अंश में घटाव सदिशों का घटाव है, अदिश राशियों का नहीं। यदि y का व्युत्पन्न t के प्रत्येक मूल्य के लिए उपस्थित है, तो y' एक अन्य सदिश-मूल्यवान फलन है।

यदि e1, ..., en Rnका मूल्यक आधार है, तो 'y'(t) को इस रूप में भी लिखा जा सकता है y1(t)e1 + ⋯ + yn(t)en. अगर हम गृहीत हैं कि संवाहक-मूल्यवान कार्य का व्युत्पन्न विवेक संपत्ति की रैखिकता को बरकरार रखता है, तो y(t) का व्युत्पन्न होना चाहिए

क्योंकि प्रत्येक आधार सदिश एक स्थिर है।

यह सामूहीकरण उपयोगी है, उदाहरण के लिए, यदि y(t) समय t पर किसी कण का स्थिति सदिश है; तब व्युत्पन्न y′(t) समय t पर कण का वेग सदिश है।

आंशिक व्युत्पन्न

मूल्य लीजिए कि f एक ऐसा फलन है जो एक से अधिक चरों पर निर्भर करता है—उदाहरण के लिए,

f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के पूर्णके रूप में पुनर्व्याख्या की जा सकती है:

दूसरे शब्दों में, x का प्रत्येक मूल्य एक फलन चुनता है, जिसे f से निरूपित किया जाता है fx जो कि एक वास्तविक संख्या का फलन है।[Note 3] वह है,

एक बार x का मूल्य चुने जाने के बाद, a कहें f(x, y) एक समारोह fa निर्धारित करता है जो y को भेजता है a2 + ay + y2:

इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए fa केवल एक वास्तविक चर का फलन है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है:

उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। व्युत्पन्न को एक साथ एक कार्य में इकट्ठा करना एक ऐसा कार्य देता है जो y दिशा में f की भिन्नता का वर्णन करता है:

यह y के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे 'आंशिक व्युत्पन्न प्रतीक' कहा जाता है। अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी dee के स्थान पर der , del , या आंशिक उच्चारित किया जाता है।

सामूल्य्य तौर पर, किसी कार्य का 'आंशिक व्युत्पन्न' f(x1, …, xn) दिशा में एक्स xi बिंदु पर(a1, ..., an) के रूप में परिभाषित किया गया है:

उपरोक्त अंतर भागफल में, xi को छोड़कर सभी चर स्थिर रखे गए हैं। निश्चित मूल्यों का वह विकल्प एक चर के कार्य को निर्धारित करता है

और, परिभाषा के अनुसार,

दूसरे शब्दों में, ऊपर दिए गए उदाहरण की तरह ही एक-चर वाले अनुक्रमणिका के अलग-अलग विकल्प कार्य करते हैं। यह अभिव्यक्ति यह भी दर्शाती है कि आंशिक व्युत्पन्न की गणना एक-चर व्युत्पन्न की गणना को कम कर देती है।

यह कई वास्तविक चरों के कार्यों के अध्ययन के लिए मौलिक है। f(x1, ..., xn) ऐसा वास्तविक मूल्यवान कार्य हो। यदि सभी आंशिक व्युत्पन्न f / ∂xj का f बिंदु पर परिभाषित किया गया है a = (a1, ..., an), ये आंशिक व्युत्पन्न संवाहक को परिभाषित करते हैं

की प्रवणता कहलाती है f पर a. यदि f किसी अधिक्षेत्र में हर बिंदु पर अलग-अलग होता है, तो प्रवणता एक संवाहक-मूल्यवान कार्य होता है f जो बिंदु को मानचित्र करता है (a1, ..., an) संवाहक को f(a1, ..., an). नतीजतन, ढाल एक संवाहक क्षेत्र निर्धारित करता है।

दिशात्मक व्युत्पन्न

यदि f 'Rn' पर एक वास्तविक-मूल्यवान फलन है, तो f का आंशिक व्युत्पन्न निर्देशांक अक्षों की दिशा में इसकी भिन्नता को मापता है। उदाहरण के लिए, यदि f, x और y का एक फलन है, तो इसका आंशिक अवकलज f में x दिशा और y दिशा में परिवर्तन को मापता है। यद्यपि, वे सीधे किसी अन्य दिशा में f की भिन्नता को मापते नहीं हैं, जैसे कि विकर्ण रेखा के साथ y = x. इन्हें दिशात्मक व्युत्पन्न का उपयोग करके मापा जाता है। एक संवाहक चुनें

बिंदु x पर v की दिशा में 'f की दिशात्मक व्युत्पत्ति सीमा है

कुछ मामलों में सदिश की लंबाई बदलने के बाद दिशात्मक व्युत्पन्न की गणना या अनुमूल्य लगाना आसान हो सकता है। ईकाई संवाहक की दिशा में एक दिशात्मक व्युत्पन्न की गणना में समस्या को संचालन करने के लिए प्रायः ऐसा किया जाता है। यह कैसे काम करता है यह देखने के लिए, मूल्य लीजिए v = λu जहाँ u, v की दिशा में एक इकाई सदिश है। स्थानापन्न h = k/λ अंतर भागफल में अंतर भागफल बन जाता है:

यह 'u' के संबंध में f के दिशात्मक व्युत्पन्न के लिए अंतर भागफल का λ गुना है। इसके अपवाद, जब h शून्य की शैली प्रवृत्त होता है तो सीमा को लेना वैसा ही है जैसे कि k को शून्य की शैली ले जाने की सीमा लेना क्योंकि h और k एक दूसरे के गुणक हैं। इसलिए, Dv(f) = λDu(f). इस पुनर्विक्रय संपत्ति के कारण, दिशात्मक व्युत्पन्न को प्रायः ईकाई संवाहक के लिए ही मूल्या जाता है।

यदि f के सभी आंशिक व्युत्पन्न उपस्थित हैं और 'x' पर निरंतर हैं, तो वे सूत्र द्वारा 'v' दिशा में f का दिशात्मक व्युत्पन्न निर्धारित करते हैं:

यह पूर्ण व्युत्पन्न की परिभाषा का परिणाम है। यह इस प्रकार है कि दिशात्मक व्युत्पन्न v में रैखिक मूल्यचित्र है, जिसका अर्थ है Dv + w(f) = Dv(f) + Dw(f).

वही परिभाषा तब भी काम करती है जब f 'Rm' में मूल्य वाला कार्य है उपरोक्त परिभाषा सदिशों के प्रत्येक घटक पर लागू होती है। इस स्थिति में, दिशात्मक अवकलज 'Rm' में एक सदिश है।

पूर्ण व्युत्पन्न, पूर्णअंतर और जैकबियन आव्यूह

जब f 'Rn' के खुले उपसमुच्चय एक फलन से 'Rm', तो किसी चुनी हुई दिशा में f का दिशात्मक व्युत्पन्न उस बिंदु पर और उस दिशा में f का सर्वोत्तम रैखिक सन्निकटन है। लेकिन जब n > 1, कोई भी एकल दिशात्मक व्युत्पन्न f के व्यवहार का पूरा चित्र नहीं दे सकता है। पूर्ण व्युत्पन्न एक बार में सभी दिशाओं पर विचार करके पूरा चित्र देता है। अर्थात, 'a' से शुरू होने वाले किसी भी सदिश 'v' के लिए, रैखिक सन्निकटन सूत्र धारण करता है:

एकल-चर व्युत्पन्न की तरह, f ′(a) चुना जाता है ताकि इस सन्निकटन में त्रुटि यथासंभव कम हो।

यदि n और m दोनों एक हैं, तो अवकलज f ′(a) एक संख्या और अभिव्यक्ति है f ′(a)v दो संख्याओं का गुणनफल है। लेकिन उच्च आयामों में, यह असंभव है f ′(a) एक संख्या होना। यदि यह एक संख्या थी, तो f ′(a)v Rn में एक संवाहक होगा जबकि अन्य पद 'Rm' में सदिश होंगे, और इसलिए सूत्र का कोई अर्थ नहीं होगा। रैखिक सन्निकटन सूत्र को समझने के लिए, f ′(a) एक ऐसा कार्य होना चाहिए जो Rn में संवाहकभेजता है 'Rm' में सदिशों के लिए, और f ′(a)v v पर मूल्यांकन किए गए इस कार्य को निरूपित करना चाहिए।

यह निर्धारित करने के लिए कि यह किस प्रकार का कार्य है, ध्यान दें कि रैखिक सन्निकटन सूत्र को फिर से लिखा जा सकता है

ध्यान दें कि यदि हम एक और संवाहक w चुनते हैं, तो यह अनुमूल्यित समीकरण v के लिए w को प्रतिस्थापित करके एक और अनुमूल्यित समीकरण निर्धारित करता है। यह w और v दोनों को प्रतिस्थापित करके एक तीसरा अनुमूल्यित समीकरण निर्धारित करता है a + v, a के लिए। इन दो नए समीकरणों को घटाने पर, हम प्राप्त करते हैं

अगर हम गृहीत हैं कि v छोटा है और व्युत्पन्न लगातार a में बदलता रहता है, तो f ′(a + v) इतस्ततः एकरूप है f ′(a), और इसलिए दाहिनी शैलीइतस्ततः शून्य है। रैखिक सन्निकटन सूत्र का उपयोग करके बाएं हाथ की शैली को एक अलग तरीके से फिर से लिखा जा सकता है v + w, v के लिए प्रतिस्थापित। रैखिक सन्निकटन सूत्र का अर्थ है:

इससे पता चलता है f ′(a) सदिश समष्टि Rn से एक रैखिक परिवर्तन है सदिश स्थान 'Rm' के लिए। वास्तव में, अनुमूल्यों में त्रुटि को मापकर इसे एक सटीक व्युत्पत्ति बनाना संभव है। मान लें कि इन रैखिक सन्निकटन सूत्र में त्रुटि एक स्थिर समय से बंधी है ||'v'||, जहां स्थिरांक 'v' से स्वतंत्र है, लेकिन लगातार 'a' पर निर्भर करता है। फिर, एक उपयुक्त त्रुटि शब्द जोड़ने के बाद, उपरोक्त सभी अनुमूल्यित समूल्यताएं असमूल्यताओं के रूप में फिर से लिखी जा सकती हैं। विशेष रूप से, f ′(a) एक छोटी त्रुटि अवधि तक एक रैखिक परिवर्तन है। v और w शून्य की शैली बढ़ने की सीमा में, इसलिए यह एक रैखिक परिवर्तन होना चाहिए। अतः हम पूर्ण व्युत्पन्न को एक सीमा लेकर परिभाषित करते हैं क्योंकि v शून्य हो जाता है, f ′(a) एक रैखिक परिवर्तन होना चाहिए।

एक चर में, तथ्य यह है कि व्युत्पन्न सबसे अच्छा रैखिक सन्निकटन है, इस तथ्य से व्यक्त किया जाता है कि यह अंतर भागफलों की सीमा है। यद्यपि, सामूल्य्य अंतर भागफल उच्च आयामों में समझ में नहीं आता है क्योंकि सामान्यतः पर संवाहक को विभाजित करना संभव नहीं होता है। विशेष रूप से, अंतर भागफल के अंश और हर एक ही सदिश स्थान में भी नहीं हैं: अंश को अधिक्षेत्र Rm में स्थित है जबकि हर 'Rn' अधिक्षेत्र में स्थित है, इसके अपवाद, व्युत्पन्न एक रैखिक परिवर्तन है, अंश और भाजक दोनों से एक अलग प्रकार की वस्तु। सटीक विचार करने के लिए कि f ′(a) सबसे अच्छा रैखिक सन्निकटन है, एक-चर व्युत्पन्न के लिए एक अलग सूत्र को अनुकूलित करना आवश्यक है जिसमें ये समस्याएं अन्तेर्ध्यान हो जाती हैं। यदि f : RR, तो व्युत्पन्न की सामूल्य्य परिभाषा को यह दिखाने के लिए युक्तियोजित किया जा सकता है कि a पर f का व्युत्पन्न अद्वितीय संख्या है f ′(a) ऐसा है कि

यह इसके एकरूप है

क्योंकि किसी कार्य की सीमा शून्य हो जाती है यदि और केवल यदि कार्य के पूर्ण मान की सीमा शून्य हो जाती है। यह अंतिम सूत्र मूल्यक(गणित) के साथ पूर्ण मूल्यों को बदलकर कई-चर स्थिति में अनुकूलित किया जा सकता है।

इसलिए, "f" के पूर्ण व्युत्पन्न की परिभाषा यह है कि यह अद्वितीय रैखिक परिवर्तन है f ′(a) : RnRm ऐसा है कि

यहाँ h, Rn में एक सदिश राशि है, इसलिए हर में मूल्यक 'Rn' पर मूल्यक लंबाई है. यद्यपि, f′('a')'h' 'Rm' में एक संवाहक है, और अंश में मूल्यदंड 'Rm' पर मूल्यक लंबाई है, यदि v एक संवाहक है जो a से शुरू होता है, तो f ′(a)v 'f' द्वारा v का बाध्य अग्रसर f(अंतर) कहा जाता है और कभी-कभी लिखा जाता है fv.

यदि पूर्ण व्युत्पन्न a पर उपस्थित है, तो f के सभी आंशिक व्युत्पन्न और दिशात्मक व्युत्पन्न a पर उपस्थित हैं, और सभी v के लिए, f ′(a)v दिशा 'v' में f का दिशात्मक व्युत्पन्न है। यदि हम समन्वय फलन का उपयोग करके f लिखते हैं, ताकि f = (f1, f2, ..., fm), तो पूर्ण व्युत्पन्न को आव्यूह(गणित) के रूप में आंशिक व्युत्पन्न का उपयोग करके व्यक्त किया जा सकता है। इस आव्यूह को a पर f का जैकबियन आव्यूह कहा जाता है:

पूर्ण व्युत्पन्न एफ'('ए') का अस्तित्व सभी आंशिक व्युत्पन्न के अस्तित्व से दृढता से मजबूत है, लेकिन यदि आंशिक व्युत्पन्न उपस्थित हैं और निरंतर हैं, तो पूर्ण व्युत्पन्न उपस्थित है, जैकबियन द्वारा दिया गया है, और लगातार निर्भर करता है a पर।

पूर्ण व्युत्पन्न की परिभाषा एक चर में व्युत्पन्न की परिभाषा को समाहित करती है। यदि f वास्तविक चर का वास्तविक-मूल्यवान कार्य है, तो पूर्ण व्युत्पन्न उपस्थित है और केवल सामूल्य्य व्युत्पन्न उपस्थित है। जेकोबियन आव्यूह 1×1 आव्यूह में कम हो जाता है जिसका एकमात्र प्रवेश व्युत्पन्न f'(x) है। यह 1×1 आव्यूह उस संपत्ति को संतुष्ट करता है जो f(a + h) − (f(a) + f ′(a)h)इतस्ततः शून्य है, दूसरे शब्दों में कि

चर बदलने तक, यह कथन है कि कार्य a पर f के लिए सबसे अच्छा रैखिक सन्निकटन है।

किसी कार्य का पूर्ण व्युत्पन्न उसी तरह एक और कार्य नहीं देता है जैसे एक-चर विभक्ति। ऐसा इसलिए है क्योंकि एक बहु-परिवर्तनीय कार्य के पूर्ण व्युत्पन्न को एकल-चर कार्य के व्युत्पन्न की तुलना में अधिक जानकारी दर्ज करनी होती है। इसके बजाय, पूर्ण व्युत्पन्न स्रोत के स्पर्शरेखा समूह से लक्ष्य के स्पर्शरेखा समूह तक एक कार्य देता है।

दूसरे, तीसरे, और उच्च-क्रम के पूर्ण व्युत्पन्न का प्राकृतिक समधर्मी एक रैखिक परिवर्तन नहीं है, स्पर्शरेखा समूह पर कोई कार्य नहीं है, और पूर्ण व्युत्पन्न को बार-बार लेकर नहीं बनाया गया है। एक उच्च-क्रम व्युत्पन्न का समधर्मी , जिसे धारा(गणित) कहा जाता है, एक रैखिक परिवर्तन नहीं हो सकता है क्योंकि उच्च-क्रम के व्युत्पन्न सूक्ष्म ज्यामितीय जानकारी को दर्शाते हैं, जैसे अवतलता, जिसे रैखिक आँकड़े जैसे संवाहक के रूप में वर्णित नहीं किया जा सकता है। यह स्पर्शरेखा समूह पर एक कार्य नहीं हो सकता क्योंकि स्पर्शरेखा समूह में केवल आधार स्थान और दिशात्मक व्युत्पन्न के लिए जगह होती है। क्योंकि धारा उच्च-क्रम की जानकारी प्राप्त करते हैं, वे तर्क के रूप में दिशा में उच्च-क्रम परिवर्तन का प्रतिनिधित्व करने वाले अतिरिक्त निर्देशांक लेते हैं। इन अतिरिक्त निर्देशांकों द्वारा निर्धारित स्थान को धारा समूह कहा जाता है। किसी कार्य के पूर्ण व्युत्पन्न और आंशिक व्युत्पन्न के बीच का संबंध किसी कार्य के k वें अनुक्रम धारा और k से कम या उसके एकरूप अनुक्रम k आंशिक व्युत्पन्न के बीच के संबंध में समूल्यांतर है।

पूर्ण व्युत्पन्न को बार-बार लेने से, 'Rn' के लिए विशिष्ट फ्रेचेट व्युत्पन्न के उच्च संस्करण प्राप्त होते हैं। Rp. kth क्रम के पूर्ण अवकलज की व्याख्या मूल्यचित्र के रूप में की जा सकती है

जो Rn में एक बिंदु x लेता है और इसे 'Rn ' से k-रेखीय मूल्यचित्रों के स्थान का एक तत्व प्रदान करता है से 'Rm '– उस बिंदु पर f के लिए सबसे अच्छा(एक निश्चित अर्थ में) k-रैखिक सन्निकटन है। इसे विकर्ण मानचित्र Δ के साथ पूर्वसंरचना करके, x → (x, x), एक समूहीकृत टेलर श्रृंखला के रूप में शुरू किया जा सकता है

जहाँ f(a) की निर्धारित एक स्थिर फलन से की जाती है, xiai संवाहक के घटक हैं xa, तथा (Df)i तथा (D2f)jk के घटक हैं Df तथा D2f रैखिक परिवर्तन के रूप में।

सामूहीकरण

व्युत्पन्न की अवधारणा को कई अन्य निर्धारितिंग्स तक बढ़ाया जा सकता है। सामूल्य्य सूत्र यह है कि किसी बिंदु पर किसी कार्य का व्युत्पन्न उस बिंदु पर कार्य के रैखिक सन्निकटन के रूप में कार्य करता है।

  • व्युत्पन्न का एक महत्वपूर्ण सामूहीकरण जटिल संख्याओं के जटिल कार्यों से संबंधित है, जैसे कि(एक अधिक्षेत्र में) जटिल संख्या C से C तक के कार्य। इस तरह के एक समारोह के व्युत्पन्न की धारणा वास्तविक चर को जटिल चर के साथ बदलकर प्राप्त की जाती है। परिभाषा यदि C की निर्धारित R2 से की जाती है तो एक सम्मिश्र संख्या z के रूप में लिखकर x + iy, तो C से C तक एक अवकलनीय फलन निश्चित रूप से R2 से एक फलन के रूप में अवकलनीय है से R2(इस अर्थ में कि इसके आंशिक व्युत्पन्न सभी उपस्थित हैं), लेकिन इसका विलोम सामूल्य्य रूप से सत्य नहीं है: जटिल व्युत्पन्न केवल तभी उपस्थित होता है जब वास्तविक व्युत्पन्न जटिल रैखिक होता है और यह आंशिक व्युत्पन्न के बीच संबंधों को लागू करता है जिसे कॉची- कहा जाता है। रीमैन समीकरण - पूर्णसममितिक कार्य देखें।
  • एक अन्य सामूहीकरण सुचारू कई गुना के बीच कार्य करता है। सहज रूप से इस तरह के कई गुना M बोलना एक ऐसा स्थान है जिसे प्रत्येक बिंदु x के पास एक सदिश स्थान द्वारा अनुमूल्यित किया जा सकता है जिसे इसकी स्पर्शरेखा स्थान कहा जाता है: प्रोटोटाइपिकल उदाहरण 'R3' में एक सुचारू सतह है। एक(विभेदक) मूल्यचित्र का व्युत्पन्न(या अंतर)। f: MN मैनिफोल्ड्स के बीच, M में एक बिंदु x पर, फिर x पर M के स्पर्शरेखा स्थान से f(x)) पर N के स्पर्शरेखा स्थान पर एक रैखिक नक्शा है। व्युत्पन्न कार्य M और N के स्पर्शरेखा समूहों के बीच एक नक्शा बन जाता है। यह परिभाषा अंतर ज्यामिति में मौलिक है और इसके कई उपयोग हैं - प्रेरित अग्रसर(अंतर) और ऐंठनापार्श्व(अंतर ज्यामिति) देखें।
  • आयाम(संवाहक स्थल) संवाहक स्थल जैसे बनच स्थान और फ्रेचेट स्थल के बीच के मानचित्र के लिए भी विवेक को परिभाषित किया जा सकता है। दोनों दिशात्मक व्युत्पत्ति का एक सामूहीकरण है, जिसे गेटॉक्स व्युत्पन्न कहा जाता है, और अंतर का, जिसे फ्रेचेट व्युत्पन्न कहा जाता है।
  • शास्त्रीय व्युत्पन्न की एक कमी यह है कि बहुत से कार्य भिन्न नहीं होते हैं। फिर भी, व्युत्पन्न की धारणा को विस्तारित करने का एक तरीका है ताकि कमजोर व्युत्पन्न के रूप में जाने वाली अवधारणा का उपयोग करके सभी निरंतर कार्य कार्यों और कई अन्य कार्यों को अलग किया जा सके। विचार निरंतर कार्यों को एक बड़े स्थान में स्थापित करना है जिसे वितरण का स्थान(गणित) कहा जाता है और केवल यह आवश्यक है कि एक कार्य सामान्य पर अलग-अलग हो।
  • व्युत्पन्न के गुणों ने बीजगणित और सांस्थिति में कई समूल्य वस्तुओं के परिचय और अध्ययन को प्रेरित किया है - उदाहरण के लिए, अंतर बीजगणित देखें।
  • विभेदन का असतत समतुल्य परिमित अंतर है। अंतरीय गणना का अध्ययन समय पैमूल्ये की गणना में परिमित अंतर के गणना के साथ एकीकृत है।
  • अंकगणित व्युत्पन्न भी देखें।

इतिहास

गणना, अपने प्रारंभिक इतिहास में अत्यंत सूक्ष्म गणना के रूप में जाना जाता है, एक गणित अनुशासन है जो सीमा(गणित), कार्य(गणित), व्युत्पन्न, संपूर्ण और अनंत श्रृंखला पर केंद्रित है। 17वीं शताब्दी के मध्य में आइजैक न्यूटन और गॉटफ्रीड लीबनिज ने स्वतंत्र रूप से गणना की खोज की। यद्यपि, प्रत्येक आविष्कार ने दावा किया कि दूसरे ने लीबनिज-न्यूटन कैलकुस विवाद में अपना काम चुरा लिया जो उनके जीवन के अंत तक जारी रहा।

यह भी देखें


टिप्पणियाँ

  1. Differential calculus, as discussed in this article, is a very well established mathematical discipline for which there are many sources. See Apostol 1967, Apostol 1969, and Spivak 1994.
  2. In the formulation of calculus in terms of limits, the du symbol has been assigned various meanings by various authors. Some authors do not assign a meaning to du by itself, but only as part of the symbol du/dx. Others define dx as an independent variable, and define du by du = dxf(x). In non-standard analysis du is defined as an infinitesimal. It is also interpreted as the exterior derivative of a function u. See differential (infinitesimal) for further information.
  3. This can also be expressed as the operation known as currying.


संदर्भ

  1. Banach, S. (1931), "Uber die Baire'sche Kategorie gewisser Funktionenmengen", Studia Math., 3 (3): 174–179, doi:10.4064/sm-3-1-174-179.. Cited by Hewitt, E; Stromberg, K (1963), Real and abstract analysis, Springer-Verlag, Theorem 17.8
  2. Apostol 1967, §4.18
  3. Manuscript of November 11, 1675 (Cajori vol. 2, page 204)
  4. "विभेदन का अंकन". MIT. 1998. Retrieved 24 October 2012.
  5. Evans, Lawrence (1999). आंशिक अंतर समीकरण. American Mathematical Society. p. 63. ISBN 0-8218-0772-2.
  6. Kreyszig, Erwin (1991). विभेदक ज्यामिति. New York: Dover. p. 1. ISBN 0-486-66721-9.


ग्रन्थसूची

प्रिंट


ऑनलाइन किताबें


बाहरी संबंध