अनुक्रम सीमा
This article needs additional citations for verification. (May 2017) (Learn how and when to remove this template message) |
| n | n sin(1/n) |
|---|---|
| 1 | 0.841471 |
| 2 | 0.958851 |
| ... | |
| 10 | 0.998334 |
| ... | |
| 100 | 0.999983 |
सकारात्मक पूर्णांक के रूप में बड़ा और बड़ा हो जाता है, मूल्य के करीब हो जाता है . हम कहते हैं कि अनुक्रम की सीमा बराबरी .
गणित में, एक अनुक्रम की सीमा वह मान है जो किसी अनुक्रम के पदों की ओर प्रवृत्त होता है, और अक्सर इसका उपयोग करके निरूपित किया जाता है प्रतीक (जैसे, ).[1] यदि ऐसी सीमा मौजूद है, तो अनुक्रम को अभिसरण कहा जाता है।[2] एक क्रम जो अभिसरण नहीं करता है उसे अपसारी कहा जाता है।[3] एक अनुक्रम की सीमा को मौलिक धारणा कहा जाता है जिस पर संपूर्ण गणितीय विश्लेषण अंततः टिका होता है।[1]
सीमाओं को किसी भी मीट्रिक स्थान या टोपोलॉजिकल स्पेस में परिभाषित किया जा सकता है, लेकिन आमतौर पर वास्तविक संख्या में पहली बार सामना किया जाता है।
इतिहास
एलिया के यूनानी दार्शनिक ज़ेनो ज़ेनो के विरोधाभासों को सूत्रबद्ध करने के लिए प्रसिद्ध हैं।
ल्यूसिपस, डेमोक्रिटस, एंटिफॉन (व्यक्ति), कनिडस के यूडोक्सस और आर्किमिडीज ने थकावट की विधि विकसित की, जो एक क्षेत्र या मात्रा निर्धारित करने के लिए सन्निकटन के अनंत अनुक्रम का उपयोग करता है। आर्किमिडीज योग करने में सफल रहे जिसे अब ज्यामितीय श्रृंखला कहा जाता है।
ग्रेगोइरे डी सेंट-विंसेंट ने अपने काम ओपस जियोमीट्रिक श्रंखला1647) में एक ज्यामितीय श्रृंखला की सीमा (टर्मिनस) की पहली परिभाषा दी: एक प्रगति का टर्मिनस श्रृंखला का अंत है, जिस तक कोई भी प्रगति नहीं पहुंच सकती है, भले ही वह अनंत में जारी है, लेकिन जिस तक वह किसी दिए गए खंड की तुलना में अधिक निकट पहुंच सकती है।[4] आइजैक न्यूटन ने एनालिसिस विथ इनफिनिट सीरीज़ (1669 में लिखा गया, पांडुलिपि में परिचालित, 1711 में प्रकाशित), मेथड ऑफ़ फ्लक्सियन्स एंड इनफिनिट सीरीज़ (1671 में लिखा गया, 1736 में अंग्रेजी अनुवाद में प्रकाशित, लैटिन मूल बहुत बाद में प्रकाशित) पर अपने कार्यों में श्रृंखला के साथ निपटा ) और ट्रैक्टेटस डी क्वाडराटुरा कर्वारम (1693 में लिखा गया, 1704 में उनके ऑप्टिक्स के परिशिष्ट के रूप में प्रकाशित)। बाद के कार्य में, न्यूटन (x + o) के द्विपद विस्तार पर विचार करता हैn, जिसके बाद वह सीमा को 0 की ओर ले जाने के लिए रेखीय बनाता है।
18वीं शताब्दी में, लियोनहार्ड यूलर जैसे गणितज्ञ सही समय पर रुक कर कुछ भिन्न श्रृंखलाओं का योग करने में सफल रहे; जब तक इसकी गणना की जा सकती है, तब तक उन्हें इस बात की ज्यादा परवाह नहीं थी कि कोई सीमा मौजूद है या नहीं। सदी के अंत में, जोसेफ लुइस लाग्रेंज ने अपने थ्योरी डेस फोंक्शन्स एनालिटिक्स (1797) में कहा कि कठोरता की कमी ने कलन में आगे के विकास को रोक दिया। कार्ल फ्रेडरिक गॉस ने हाइपरज्यामितीय श्रृंखला (1813) के अपने एट्यूड में पहली बार उन परिस्थितियों की जांच की जिसके तहत एक श्रृंखला एक सीमा तक परिवर्तित हो गई।
एक सीमा की आधुनिक परिभाषा (किसी भी ε के लिए एक इंडेक्स एन मौजूद है ताकि ...) बर्नार्ड बोलजानो (डेर बिनोमिशे लेहर्सत्ज़, प्राग 1816, जो उस समय बहुत कम ध्यान दिया गया था) और 1870 के दशक में कार्ल वीयरस्ट्रास द्वारा दिया गया था। .
वास्तविक संख्या
उदाहरण
- यदि निरंतर सी के लिए, फिर .[proof 1][5]
- यदि , फिर .[proof 2][5]*यदि जब सम है, और जब अजीब है, तो . (यह तथ्य कि जब भी विषम है अप्रासंगिक है।)
- किसी भी वास्तविक संख्या को देखते हुए, कोई आसानी से एक अनुक्रम का निर्माण कर सकता है जो दशमलव सन्निकटन लेकर उस संख्या में परिवर्तित हो जाता है। उदाहरण के लिए, अनुक्रम में विलीन हो जाता है . ध्यान दें कि दशमलव प्रतिनिधित्व द्वारा परिभाषित पिछले अनुक्रम की सीमा है
- किसी क्रम की सीमा का पता लगाना हमेशा स्पष्ट नहीं होता है। दो उदाहरण हैं (जिसकी सीमा ई (गणितीय स्थिरांक) है) और अंकगणितीय-ज्यामितीय माध्य है। ऐसी सीमाओं की स्थापना में निचोड़ प्रमेय अक्सर उपयोगी होता है।
परिभाषा
हम बुलाते है अनुक्रम की सीमा , जो लिखा है
- , या
- ,
यदि निम्न स्थिति होती है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या मौजूद है जैसे कि, हर प्राकृतिक संख्या के लिए , अपने पास .[6]
दूसरे शब्दों में, निकटता के हर उपाय के लिए , अनुक्रम की शर्तें अंततः सीमा के करीब हैं। क्रम कहा जाता है कि सीमा तक अभिसरण या प्रवृत्ति होती है .
प्रतीकात्मक रूप से, यह है:
- .
यदि एक क्रम किसी सीमा में समा जाता है , तो यह अभिसारी है और एकमात्र सीमा है; अन्यथा भिन्न है। एक अनुक्रम जिसकी सीमा शून्य है, उसे कभी-कभी शून्य अनुक्रम कहा जाता है।
चित्रण
- Folgenglieder im KOSY.svg
Example of a sequence which converges to the limit .
- Epsilonschlauch.svg
Regardless which we have, there is an index , so that the sequence lies afterwards completely in the epsilon tube .
- Epsilonschlauch klein.svg
There is also for a smaller an index , so that the sequence is afterwards inside the epsilon tube .
- Epsilonschlauch2.svg
For each there are only finitely many sequence members outside the epsilon tube.
गुण
वास्तविक अनुक्रमों की सीमाओं के कुछ अन्य महत्वपूर्ण गुणों में निम्नलिखित शामिल हैं:
- जब यह मौजूद होता है, तो अनुक्रम की सीमा अद्वितीय होती है।[5]*क्रमों की सीमाएँ सामान्य अंकगणित#अंकगणितीय संक्रियाओं के संबंध में अच्छा व्यवहार करती हैं। यदि तथा मौजूद है, तो
- किसी भी सतत फलन f के लिए, यदि मौजूद है, तो भी मौजूद है। वास्तव में, कोई भी वास्तविक-मूल्यवान फ़ंक्शन (गणित) f निरंतर है अगर और केवल अगर यह अनुक्रमों की सीमाओं को संरक्षित करता है (हालांकि निरंतरता के अधिक सामान्य विचारों का उपयोग करते समय यह जरूरी नहीं है)।
- यदि सभी के लिए कुछ से बड़ा , फिर .
- (निचोड़ प्रमेय) यदि सभी के लिए कुछ से बड़ा , तथा , फिर .
- (मोनोटोन अभिसरण प्रमेय) यदि अनुक्रम है#बाध्य और अनुक्रम#सभी के लिए बढ़ता और घटता है कुछ से बड़ा , तो यह अभिसरण है।
- एक अनुक्रम अभिसारी है यदि और केवल यदि प्रत्येक अनुवर्ती अभिसरण है।
- यदि किसी अनुक्रम के प्रत्येक अनुवर्ती का अपना स्वयं का अनुक्रम होता है जो एक ही बिंदु पर अभिसरण करता है, तो मूल अनुक्रम उस बिंदु पर परिवर्तित हो जाता है।
बोझिल औपचारिक परिभाषा का सीधे उपयोग करने की आवश्यकता के बिना, इन गुणों का व्यापक रूप से सीमा साबित करने के लिए उपयोग किया जाता है। उदाहरण के लिए, एक बार यह सिद्ध हो जाने पर , यह दिखाना आसान हो जाता है—उपरोक्त गुणों का उपयोग करके — कि (ऐसा मानते हुए ).
अनंत सीमा
एक क्रम कहा जाता है कि अनंत की ओर प्रवृत्त होता है, लिखा हुआ है
- , या
- ,
यदि निम्नलिखित धारण करता है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि हर प्राकृतिक संख्या के लिए , अपने पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से बड़े होते हैं .
प्रतीकात्मक रूप से, यह है:
- .
इसी तरह, हम कहते हैं कि एक अनुक्रम माइनस इनफिनिटी की ओर जाता है, लिखित
- , या
- ,
यदि निम्नलिखित धारण करता है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि हर प्राकृतिक संख्या के लिए , अपने पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से छोटे होते हैं .
प्रतीकात्मक रूप से, यह है:
- .
यदि कोई अनुक्रम अनंत या माइनस अनंत की ओर जाता है, तो यह अपसारी है। हालाँकि, एक अपसारी अनुक्रम को प्लस या माइनस इन्फिनिटी और अनुक्रम की आवश्यकता नहीं है ऐसा ही एक उदाहरण देता है।
मीट्रिक रिक्त स्थान
परिभाषा
एक बिंदु मीट्रिक स्थान का क्रम की सीमा है यदि:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि, हर प्राकृतिक संख्या के लिए , अपने पास .
प्रतीकात्मक रूप से, यह है:
- .
यह वास्तविक संख्याओं के लिए दी गई परिभाषा से मेल खाता है जब तथा .
गुण
- जब यह अस्तित्व में होता है, तो एक अनुक्रम की सीमा अद्वितीय होती है, क्योंकि अलग-अलग बिंदुओं को कुछ सकारात्मक दूरी से अलग किया जाता है, इसलिए इस दूरी के आधे से कम, अनुक्रम शब्द दूरी के भीतर नहीं हो सकते दोनों बिंदुओं का।
- किसी भी सतत फलन f के लिए, यदि मौजूद है, तो . वास्तव में, एक फलन (गणित) f निरंतर है यदि और केवल यदि यह अनुक्रमों की सीमाओं को संरक्षित करता है।
कॉची सीक्वेंस
टोपोलॉजिकल स्पेस
परिभाषा
एक बिंदु टोपोलॉजिकल स्पेस की एक हैlimitयाlimit point[7][8] अनुक्रम का यदि:
- हर टोपोलॉजिकल पड़ोस के लिए का , कुछ मौजूद है ऐसा कि प्रत्येक के लिए , अपने पास .[9]
यह मीट्रिक रिक्त स्थान के लिए दी गई परिभाषा से मेल खाता है, यदि एक मीट्रिक स्थान है और द्वारा उत्पन्न टोपोलॉजी है .
अंकों के अनुक्रम की एक सीमा एक टोपोलॉजिकल स्पेस में एक फ़ंक्शन की सीमा का एक विशेष मामला है # टोपोलॉजिकल रिक्त स्थान पर कार्य: एक फ़ंक्शन का डोमेन है अंतरिक्ष में , सजातीय रूप से विस्तारित वास्तविक संख्या प्रणाली की प्रेरित टोपोलॉजी के साथ, एक फ़ंक्शन की रेंज है , और फ़ंक्शन तर्क आदत है , जो इस स्थान में एक सेट का एक सीमा बिंदु है .
गुण
हौसडॉर्फ अंतरिक्ष में, अनुक्रमों की सीमाएं अद्वितीय होती हैं जब भी वे मौजूद होती हैं। ध्यान दें कि गैर-हॉसडॉर्फ स्थानों में ऐसा होना जरूरी नहीं है; विशेष रूप से, यदि दो बिंदु तथा स्थलाकृतिक रूप से अप्रभेद्य हैं, फिर कोई भी क्रम जो अभिसरण करता है में जुटना चाहिए और इसके विपरीत।
हाइपररियल नंबर
हाइपररियल नंबरों का उपयोग करते हुए सीमा की परिभाषा अंतर्ज्ञान को औपचारिक रूप देती है कि सूचकांक के एक बहुत बड़े मूल्य के लिए, संबंधित शब्द सीमा के बहुत करीब है। अधिक सटीक, एक वास्तविक अनुक्रम एल की ओर जाता है अगर हर अनंत अतिप्राकृतिक एच के लिए, शब्द एल के असीम रूप से करीब है (यानी, अंतर अपरिमित है)। समतुल्य रूप से, L का मानक भाग फलन है :
- .
इस प्रकार, सीमा को सूत्र द्वारा परिभाषित किया जा सकता है
- .
जहां सीमा मौजूद है अगर और केवल अगर दायां पक्ष अनंत एच की पसंद से स्वतंत्र है।
== एक से अधिक इंडेक्स == का अनुक्रम
कभी-कभी एक से अधिक इंडेक्स वाले अनुक्रम पर भी विचार किया जा सकता है, उदाहरण के लिए, एक डबल अनुक्रम . इस क्रम की एक सीमा होती है अगर यह करीब और करीब हो जाता है जब n और m दोनों बहुत बड़े हो जाते हैं।
उदाहरण
- यदि निरंतर सी के लिए, फिर .
- यदि , फिर .
- यदि , तो सीमा मौजूद नहीं है। n और m की सापेक्ष वृद्धि गति के आधार पर, यह क्रम 0 और 1 के बीच किसी भी मान के करीब हो सकता है।
परिभाषा
हम बुलाते है अनुक्रम की दोहरी सीमा , लिखा हुआ
- , या
- ,
यदि निम्न स्थिति होती है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या मौजूद है जैसे कि, प्राकृत संख्याओं के प्रत्येक युग्म के लिए , अपने पास .[10]
दूसरे शब्दों में, निकटता के हर उपाय के लिए , अनुक्रम की शर्तें अंततः सीमा के करीब हैं। क्रम कहा जाता है कि सीमा तक अभिसरण या प्रवृत्ति होती है .
प्रतीकात्मक रूप से, यह है:
- .
ध्यान दें कि दोहरी सीमा पहले n में सीमा लेने और फिर m में लेने से अलग है। उत्तरार्द्ध को पुनरावृत्त सीमा के रूप में जाना जाता है। यह देखते हुए कि दोहरी सीमा और पुनरावृत्त सीमा दोनों मौजूद हैं, उनका मूल्य समान है। हालाँकि, यह संभव है कि उनमें से एक मौजूद हो लेकिन दूसरा नहीं हो।
अनंत सीमा
एक क्रम कहा जाता है कि अनंत की ओर प्रवृत्त होता है, लिखा हुआ है
- , या
- ,
यदि निम्नलिखित धारण करता है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि प्राकृत संख्याओं के प्रत्येक युग्म के लिए , अपने पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से बड़े होते हैं .
प्रतीकात्मक रूप से, यह है:
- .
इसी प्रकार एक क्रम माइनस इनफिनिटी की ओर जाता है, लिखा है
- , या
- ,
यदि निम्नलिखित धारण करता है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या है जैसे कि प्राकृत संख्याओं के प्रत्येक युग्म के लिए , अपने पास ; अर्थात्, अनुक्रम शब्द अंततः किसी निश्चित से छोटे होते हैं .
प्रतीकात्मक रूप से, यह है:
- .
यदि कोई अनुक्रम अनंत या माइनस अनंत की ओर जाता है, तो यह अपसारी है। हालाँकि, एक अपसारी अनुक्रम को प्लस या माइनस इन्फिनिटी और अनुक्रम की आवश्यकता नहीं है ऐसा ही एक उदाहरण देता है।
बिंदुवार सीमाएं और समान सीमाएं
दोहरे क्रम के लिए , हम किसी एक सूचकांक में सीमा ले सकते हैं, कहते हैं, , एकल अनुक्रम प्राप्त करने के लिए . वास्तव में, इस सीमा को लेते समय दो संभावित अर्थ होते हैं। पहले वाले को पॉइंटवाइज लिमिट कहा जाता है, जिसे निरूपित किया जाता है
- , या
- ,
जिसका मतलब है:
- प्रत्येक वास्तविक संख्या के लिए और प्रत्येक निश्चित प्राकृतिक संख्या , एक प्राकृतिक संख्या मौजूद है जैसे कि, हर प्राकृतिक संख्या के लिए , अपने पास .[11]
प्रतीकात्मक रूप से, यह है:
- .
जब ऐसी सीमा होती है, तो हम अनुक्रम कहते हैं बिंदुवार अभिसरण करने के लिए .
दूसरे को एक समान सीमा कहा जाता है, जिसे निरूपित किया जाता है
- ,
- ,
- , या
- ,
जिसका मतलब है:
- प्रत्येक वास्तविक संख्या के लिए , एक प्राकृतिक संख्या मौजूद है जैसे कि, हर प्राकृतिक संख्या के लिए और हर प्राकृतिक संख्या के लिए , अपने पास .[11]
प्रतीकात्मक रूप से, यह है:
- .
इस परिभाषा में, का विकल्प से स्वतंत्र है . दूसरे शब्दों में, का चुनाव समान रूप से सभी प्राकृतिक संख्याओं पर लागू होता है . इसलिए, कोई भी आसानी से देख सकता है कि बिंदुवार अभिसरण की तुलना में समान अभिसरण एक मजबूत गुण है: समान सीमा के अस्तित्व का तात्पर्य बिंदुवार सीमा के अस्तित्व और समानता से है:
- यदि समान रूप से, फिर बिंदुवार।
जब ऐसी सीमा होती है, तो हम अनुक्रम कहते हैं एक समान अभिसरण .
पुनरावृत्त सीमा
दोहरे क्रम के लिए , हम किसी एक सूचकांक में सीमा ले सकते हैं, कहते हैं, , एकल अनुक्रम प्राप्त करने के लिए , और फिर दूसरे इंडेक्स में लिमिट लें, अर्थात् , नंबर पाने के लिए . प्रतीकात्मक रूप से,
- .
इस सीमा को दोहरे अनुक्रम की पुनरावृत्त सीमा के रूप में जाना जाता है। ध्यान दें कि सीमा लेने का क्रम परिणाम को प्रभावित कर सकता है, अर्थात,
- सामान्य रूप में।
समानता की एक पर्याप्त शर्त मूर-ऑसगूड प्रमेय द्वारा दी गई है, जिसके लिए सीमा की आवश्यकता होती है एम में एक समान होना।[10]
यह भी देखें
- सीमा बिंदु
- बाद की सीमा
- श्रेष्ठ को सीमित करो और हीन को सीमित करो
- समारोह की सीमा
- कार्यों के अनुक्रम की सीमा
- सेट-सैद्धांतिक सीमा
- नेट (गणित)#नेट की सीमा
- बिन्दुवार अभिसरण
- समान अभिसरण
- अभिसरण के तरीके
टिप्पणियाँ
- ↑ 1.0 1.1 Courant (1961), p. 29.
- ↑ Weisstein, Eric W. "अभिसरण अनुक्रम". mathworld.wolfram.com (in English). Retrieved 2020-08-18.
- ↑ Courant (1961), p. 39.
- ↑ Van Looy, H. (1984). A chronology and historical analysis of the mathematical manuscripts of Gregorius a Sancto Vincentio (1584–1667). Historia Mathematica, 11(1), 57-75.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 "अनुक्रमों की सीमाएं | शानदार गणित और विज्ञान विकी". brilliant.org (in English). Retrieved 2020-08-18.
- ↑ Weisstein, Eric W. "सीमा". mathworld.wolfram.com (in English). Retrieved 2020-08-18.
- ↑ Dugundji 1966, pp. 209–210.
- ↑ Császár 1978, p. 61.
- ↑ Zeidler, Eberhard (1995). एप्लाइड कार्यात्मक विश्लेषण: मुख्य सिद्धांत और उनके अनुप्रयोग (1 ed.). New York: Springer-Verlag. p. 29. ISBN 978-0-387-94422-7.
- ↑ 10.0 10.1 Zakon, Elias (2011). "Chapter 4. Function Limits and Continuity". गणितीय विश्लेषण, वॉल्यूम I. p. 223. ISBN 9781617386473.
- ↑ 11.0 11.1 Habil, Eissa (2005). "डबल सीक्वेंस और डबल सीरीज" (in English). Retrieved 2022-10-28.
प्रमाण
- ↑ Proof: Choose . For every ,
- ↑ Proof: choose (the floor function). For every , .
संदर्भ
- Császár, Ákos (1978). General topology. Translated by Császár, Klára. Bristol England: Adam Hilger Ltd. ISBN 0-85274-275-4. OCLC 4146011.
- Dugundji, James (1966). Topology. Boston: Allyn and Bacon. ISBN 978-0-697-06889-7. OCLC 395340485.
- Courant, Richard (1961). "Differential and Integral Calculus Volume I", Blackie & Son, Ltd., Glasgow.
- Frank Morley and James Harkness A treatise on the theory of functions (New York: Macmillan, 1893)
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- एलिया का ज़ेनो
- कनिडस का यूडोक्सस
- निरंतर कार्य
- समारोह (गणित)
- पूर्ण मीट्रिक स्थान
- किसी फ़ंक्शन का डोमेन
- एक समारोह की सीमा
- आत्मीयता से विस्तारित वास्तविक संख्या प्रणाली
- एक सेट का सीमा बिंदु
- हॉसडॉर्फ स्पेस
- मानक भाग समारोह
- बहुत छोता
- एकसमान अभिसरण
- मूर-Osgood प्रमेय
- श्रेष्ठ को सीमित करो और निम्न को सीमित करो
- एक समारोह की सीमा
- अनुवर्ती सीमा