गणना में, टेलर का प्रमेय किसी दिए गए बिंदु के चारों ओर घात -के बहुपद- गुणाविभेदित फलन का एक अनुमान देता है, जिसे -वें टेलर बहुपद कहा जाता है। एक सुचारु फलन के लिए, टेलर बहुपद फलन की टेलर श्रृंखला के क्रम पर खंडन है। प्रथम-क्रम टेलर बहुपद फलन का रैखिक सन्निकटन है और दूसरे-क्रम टेलर बहुपद को प्रायः 'द्विघात सन्निकटन' के रूप में जाना जाता है।[1] टेलर के प्रमेय के कई संस्करण हैं, कुछ इसके टेलर बहुपद द्वारा फलन की सन्निकटन त्रुटि का स्पष्ट अनुमान देते हैं।
टेलर के प्रमेय का नाम गणितज्ञ ब्रूक टेलर के नाम पर रखा गया है, जिन्होंने 1715 में इसका एक संस्करण बताया था,[2] हालांकि परिणाम का एक पुराना संस्करण 1671 में जेम्स ग्रेगरी (खगोलशास्त्री और गणितज्ञ) द्वारा पहले ही उल्लेखित किया गया था।[3]
टेलर का प्रमेय परिचयात्मक-स्तर के गणना पाठ्यक्रमों में पढ़ाया जाता है और गणितीय विश्लेषण में केंद्रीय प्राथमिक उपकरणों में से एक है। यह घातांकीय फलन और त्रिकोणमितीय फलन जैसे कई अबीजीय फलनों के मानों की सटीक गणना करने के लिए सरल अंकगणितीय सूत्र देता है।
का अनुमान (नीला) इसके टेलर बहुपद द्वारा आदेश की पर केन्द्रित (लाल) और (हरा)। बाहर अनुमानों में बिल्कुल भी सुधार नहीं होता और , क्रमश।
इसी प्रकार, यदि हम उच्च घात के बहुपदों का उपयोग करते हैं तो हमें f के और भी उन्नत सन्निकटन प्राप्त हो सकते हैं, तब से हम चयनित आधार बिंदु पर f के साथ और भी अधिक व्युत्पन्नों का मिलान कर सकते हैं।
सामान्य तौर पर, घात k के बहुपद द्वारा किसी फलन का अनुमान लगाने में त्रुटि की तुलना में बहुत तीव्रता से शून्य हो जाएगी क्योंकि x, a की ओर प्रवृत्त होता है। हालाँकि, ऐसे फलन हैं, यहां तक कि असीम रूप से भिन्न भी, जिनके लिए अनुमानित बहुपद की घात बढ़ाने से सन्निकटन की सटीकता में वृद्धि नहीं होती है: हम कहते हैं कि ऐसा फलन x = a पर विश्लेषणात्मक होने में विफल रहता है: यह (स्थानीय रूप से) इस बिंदु पर इसके अवकलज द्वारा निर्धारित नहीं होता है।
टेलर का प्रमेय स्पर्शोन्मुख प्रकृति का है: यह हमें केवल यह बताता है कि -वें क्रम के सन्निकटन में त्रुटि टेलर बहुपद Pk, के रूप में किसी भी गैर-शून्य -वें घात बहुपद की तुलना में तेजी से शून्य हो जाती है। यह हमें नहीं बताता कि विस्तार के केंद्र के किसी स्थूल प्रतिवेश में त्रुटि कितनी बड़ी है, लेकिन इस उद्देश्य के लिए शेष पद (नीचे दिए गए) के लिए स्पष्ट सूत्र हैं जो f पर कुछ अतिरिक्त नियमितता मान्यताओं के अंतर्गत मान्य हैं। टेलर के प्रमेय के ये उन्नत संस्करण सामान्यतः विस्तार के केंद्र के एक छोटे से प्रतिवेश में सन्निकटन त्रुटि के लिए एक समान अभिसरण की ओर ले जाते हैं, लेकिन अनुमान आवश्यक रूप से उन प्रतिवेशों के लिए अनुप्रयुक्त नहीं होते हैं जो बहुत बड़े हैं, भले ही फलन f विश्लेषणात्मक फलन हो। उस स्थिति में किसी को मूल फलन के विश्वसनीय टेलर-अनुमान प्राप्त करने के लिए विस्तार के विभिन्न केंद्रों के साथ कई टेलर बहुपदों का चयन करना पड़ सकता है (दाईं ओर एनीमेशन देखें।)
ऐसे कई तरीके हैं जिनसे हम शेष पद का उपयोग कर सकते हैं:
किसी दिए गए अंतराल (a – r, a + r) पर का अनुमान लगाने वाले कोटियों के बहुपद Pk(x) के लिए त्रुटि का अनुमान लगाएं (अंतराल और कोटि को देखते हुए, हम त्रुटि पाते हैं)।
वह सबसे छोटी घात k ज्ञात कीजिए जिसके लिए बहुपद Pk(x) सन्निकट होता है, से किसी दिए गए अंतराल (a − r, a + r) पर दी गई त्रुटि सहनशीलता के भीतर हैं (अंतराल और त्रुटि सहनशीलता को देखते हुए, हम घात पाते हैं)।
सबसे बड़ा अंतराल (a − r, a + r) ज्ञात करें जिस पर Pk(x) अनुमानित हैं, किसी दी गई त्रुटि सहनशीलता के भीतर हैं (घात और त्रुटि सहनशीलता को देखते हुए, हम अंतराल पाते हैं)।
एक वास्तविक चर में टेलर का प्रमेय
प्रमेय का कथन
टेलर के प्रमेय के सबसे मूलभूत संस्करण का सटीक विवरण इस प्रकार है:
टेलर का प्रमेय[4][5][6] — मान लीजिए कि k ≥ 1 एक पूर्णांक है और फलनf : R → R को बिंदु a ∈ R पर k गुना अवकलनीय है। तब एक फलन hk : R → R इस प्रकार उपस्थित है कि
कुछ वास्तविक संख्या के लिए, और के मध्य है। यह शेषफल का लैग्रेंज रूप [8] है।
इसी प्रकार,
कुछ वास्तविक संख्या के लिए, और के मध्य है। यह शेषफल का कॉची रूप[9] है।
टेलर के प्रमेय के ये परिशोधन सामान्यतः माध्य मान प्रमेय का उपयोग करके सिद्ध किए जाते हैं, जहां से यह नाम पड़ा है। इसके अतिरिक्त, ध्यान दें कि होने पर यह बिल्कुल माध्य मान प्रमेय है। इसके अतिरिक्त अन्य समान अभिव्यक्तियाँ भी पाई जा सकती हैं। उदाहरण के लिए, यदि G(t) संवृत अंतराल पर सतत है और और के मध्य विवृत अंतराल पर एक गैर-लुप्त व्युत्पन्न के साथ भिन्न है, तब
या कुछ संख्या के लिए और के मध्य हैं। यह संस्करण विशेष स्थितियों के रूप में शेष के लैग्रेंज और कॉची रूपों को सम्मिलित करता है और कॉची के माध्य मान प्रमेय का उपयोग करके इसे नीचे सिद्ध किया गया है। लैग्रेंज रूप लेने से प्राप्त होता है। और कॉची रूप लेकर प्राप्त किया जाता है।
शेषफल के अभिन्न रूप के लिए बयान पिछले वाले की तुलना में अधिक उन्नत है, और पूर्ण व्यापकता के लिए लेबेसेग अभिन्न की समझ की आवश्यकता है। हालाँकि, यह रीमैन अभिन्न के अर्थ में भी अनुप्रयुक्त है, बशर्ते कि f का (k+1)वां व्युत्पन्न संवृत अंतराल [a,x] पर सतत हो।
एफ के बिल्कुल सतत होने के कारण(k) के मध्य संवृत अंतराल पर और , इसका व्युत्पन्न एफ(k+1) एल के रूप में उपस्थित है1-फलन, और परिणाम को गणना के मौलिक प्रमेय और भागों द्वारा एकीकरण का उपयोग करके औपचारिक गणना द्वारा सिद्ध किया जा सकता है।
शेष के लिए अनुमान
टेलर सन्निकटन में दिखाई देने वाले शेष पद का अनुमान लगाने में सक्षम होना, इसके लिए एक सटीक सूत्र होने के बजाय, व्यवहार में प्रायः उपयोगी होता है। मान लीजिए कि एफ है (k + 1)-अंतराल I में कई बार लगातार अंतर होता है जिसमें a होता है। मान लीजिए कि ऐसे वास्तविक स्थिरांक q और Q हैं
संपूर्ण I में, फिर शेष पद असमानता को संतुष्ट करता है[11]
यदि x > a, और एक समान अनुमान यदि x < a. यह शेषफल के लैग्रेंज रूप का एक सरल परिणाम है। विशेषकर, यदि
एक अंतराल पर I = (a − r,a + r) कुछ के साथ , तब
सभी के लिए x∈(a − r,a + r). दूसरी असमानता को एक समान अभिसरण कहा जाता है, क्योंकि यह अंतराल पर सभी x के लिए समान रूप से रखती है (a − r,a + r).
का अनुमान (नीला) इसके टेलर बहुपद द्वारा आदेश की पर केन्द्रित (लाल)।
मान लीजिए कि हम फलन का अनुमानित मान ज्ञात करना चाहते हैं अंतराल पर यह सुनिश्चित करते हुए कि अनुमान में त्रुटि 10 से अधिक न हो−5. इस उदाहरण में हम दिखावा करते हैं कि हम घातीय फलन के केवल निम्नलिखित गुणों को जानते हैं:
(★)
इन गुणों से यह निष्कर्ष निकलता है सभी के लिए , खास तरीके से, . इसलिए-वें क्रम का टेलर बहुपद पर और इसका शेष पद लैग्रेंज रूप में दिया गया है
जहाँ 0 और x के मध्य कोई संख्या है. चूँकि ईx बढ़ रहा है (★), हम बस उपयोग कर सकते हैं के लिए उपअंतराल पर शेषफल का अनुमान लगाने के लिए . शेष के लिए ऊपरी सीमा प्राप्त करने के लिए , हम गुणधर्म का उपयोग करते हैं के लिए अंदाज़ा लगाने के लिए
दूसरे क्रम के टेलर विस्तार का उपयोग करना। फिर हम ई के लिए हल करते हैंxउसका अनुमान लगाने के लिए
बस अंश को अधिकतम करके और हर को छोटा करके। ई के लिए इन अनुमानों का संयोजनxहम उसे देखते हैं
इसलिए आवश्यक परिशुद्धता निश्चित रूप से पहुँच जाती है, जब
(कारख़ाने का देखें या हाथ से मानों की गणना करें और .) निष्कर्ष के रूप में, टेलर का प्रमेय सन्निकटन की ओर ले जाता है
उदाहरण के लिए, यह सन्निकटन दशमलव प्रतिनिधित्व प्रदान करता है , दशमलव के पाँच स्थानों तक सही करें।
विश्लेषणात्मकता से संबंध
टेलर वास्तविक विश्लेषणात्मक कार्यों का विस्तार
मान लीजिए I ⊂ 'R' एक विवृत अंतराल है। परिभाषा के अनुसार, एक फलन f: I → 'R' एक विश्लेषणात्मक फलन है यदि इसे स्थानीय रूप से एक अभिसरण शक्ति श्रृंखला द्वारा परिभाषित किया गया है। इसका अर्थ यह है कि प्रत्येक a ∈ I के लिए कुछ r > 0 और गुणांक c का एक क्रम उपस्थित होता हैk∈ 'आर' ऐसे कि (a − r, a + r) ⊂ I और
सामान्य तौर पर, पावर श्रृंखला # पावर श्रृंखला के अभिसरण की त्रिज्या की गणना कॉची-हैडामर्ड प्रमेय | कॉची-हैडामर्ड सूत्र से की जा सकती है
यह परिणाम एक ज्यामितीय श्रृंखला के साथ तुलना पर आधारित है, और एक ही विधि से पता चलता है कि यदि किसी पर आधारित शक्ति श्रृंखला कुछ बी ∈ 'आर' के लिए अभिसरण करती है, तो उसे संवृत अंतराल पर एक समान अभिसरण अभिसरण करना होगा , जहाँ . यहां केवल शक्ति श्रृंखला के अभिसरण पर विचार किया गया है, और यह संभवतः ऐसा ही हो सकता है (a − R,a + R) f के डोमेन I से आगे तक फैला हुआ है।
वास्तविक विश्लेषणात्मक फलन f के टेलर बहुपद केवल परिमित खंडन हैं
इसकी स्थानीय रूप से परिभाषित शक्ति श्रृंखला, और संबंधित शेष शर्तें स्थानीय रूप से विश्लेषणात्मक कार्यों द्वारा दी गई हैं
यहाँ कार्य
विश्लेषणात्मक भी हैं, क्योंकि उनकी परिभाषित शक्ति श्रृंखला में मूल श्रृंखला के समान अभिसरण की त्रिज्या है। ये मानते हुए [a − r, a + r] ⊂ I और r<R, ये सभी श्रृंखलाएं समान रूप से अभिसरित होती हैं (a − r, a + r). स्वाभाविक रूप से, विश्लेषणात्मक कार्यों के स्थिति में कोई शेष पद का अनुमान लगा सकता है विस्तार के केंद्र में व्युत्पन्न f'(a) के अनुक्रम की पश्चभाग से, लेकिन जटिल विश्लेषण का उपयोग करने से एक और संभावना भी उत्पन्न होती है, जिसे टेलर के प्रमेय#विश्लेषणात्मकता से संबंध##जटिल विश्लेषण में टेलर के प्रमेय द्वारा वर्णित किया गया है।
टेलर का प्रमेय और टेलर श्रृंखला का अभिसरण
एफ की टेलर श्रृंखला कुछ अंतराल में अभिसरण करेगी जिसमें इसके सभी अवकलज बंधे हुए हैं और बहुत तीव्रता से नहीं बढ़ते हैं क्योंकि के अनंत तक जाता है। (हालाँकि, भले ही टेलर श्रृंखला अभिसरण करती है, यह एफ में परिवर्तित नहीं हो सकती है, जैसा कि नीचे बताया गया है; तब एफ को गैर-विश्लेषणात्मक फलन कहा जाता है।)
कोई टेलर श्रृंखला के विषय में विचार कर सकता है
एक अपरिमित रूप से अनेक बार अवकलनीय फलन f : 'R' → 'R' के अनंत क्रम टेलर बहुपद के रूप में। अब शेषफल के लिए टेलर के प्रमेय # अनुमान का अर्थ है कि यदि, किसी भी आर के लिए, एफ के व्युत्पन्न को (ए - आर, ए + आर) से घिरा हुआ माना जाता है, तो किसी भी क्रम के के लिए और किसी भी आर > 0 के लिए एक स्थिरांक उपस्थित होता है Mk,r > 0 ऐसा है कि
(★★)
प्रत्येक x ∈ (a − r,a + r) के लिए। कभी-कभी स्थिरांक Mk,r को इस तरह से चुना जा सकता है Mk,r निश्चित r और सभी k के लिए ऊपर परिबद्ध है। फिर कुछ विश्लेषणात्मक फलन के लिए एफ वर्दी अभिसरण की टेलर श्रृंखला
(किसी को अभिसरण भी मिलता है भले ही Mk,rजब तक यह धीरे-धीरे बढ़ता है तब तक ऊपर सीमित नहीं है।)
सीमा समारोह Tf परिभाषा के अनुसार सदैव विश्लेषणात्मक होता है, लेकिन यह जरूरी नहीं कि मूल फलन f के बराबर हो, भले ही f असीम रूप से भिन्न हो। इस स्थिति में, हम कहते हैं कि f एक गैर-विश्लेषणात्मक सहज फलन है, उदाहरण के लिए एक समतल कार्य:
कुछ बहुपद पी के लिएkघात 2(k − 1) की। कार्यक्रम किसी भी बहुपद की तुलना में तीव्रता से शून्य हो जाता है , इसलिए f अपरिमित रूप से कई गुना भिन्न है और f(k)(0) = 0 प्रत्येक धनात्मक पूर्णांक k के लिए। उपरोक्त सभी परिणाम इस स्थिति में मान्य हैं:
एफ की टेलर श्रृंखला शून्य फलन टी में समान रूप से परिवर्तित होती हैf(x)=0, जो शून्य के बराबर सभी गुणांकों के साथ विश्लेषणात्मक है।
फलन f इस टेलर श्रृंखला के बराबर नहीं है, और इसलिए गैर-विश्लेषणात्मक है।
किसी भी क्रम k ∈ 'N' और त्रिज्या r > 0 के लिए M उपस्थित हैk,r> 0 शेष सीमा को संतुष्ट करना (★★) ऊपर।
हालाँकि, जैसे-जैसे k निश्चित r के लिए बढ़ता है, M का मान बढ़ता हैk,rआर की तुलना में अधिक तेज़ी से बढ़ता हैk, और त्रुटि शून्य पर नहीं जाती है।
जटिल विश्लेषण में टेलर का प्रमेय
टेलर का प्रमेय फ़ंक्शंस f: 'C' → 'C' को सामान्यीकृत करता है जो जटिल विमान के एक विवृत उपसमुच्चय U ⊂ 'C' में जटिल रूप से भिन्न होते हैं। हालाँकि, जटिल विश्लेषण में इसकी उपयोगिता अन्य सामान्य प्रमेयों से कम है। अर्थात्, कॉची के अभिन्न सूत्र का उपयोग करके जटिल विभेदक कार्यों f : U → 'C' के लिए संबंधित परिणामों के प्रबल संस्करण निम्नानुसार निकाले जा सकते हैं।
मान लीजिए r > 0 इस प्रकार है कि संवृत डिस्क B(z,r) ∪S(z,r) U में समाहित है। फिर एक सकारात्मक पैरामीट्रिजेशन के साथ कॉची का अभिन्न सूत्र γ(t) = z + reit वृत्त S(z, r) के साथ देता है
यहां सभी इंटीग्रैंड घेरा S(z,r) पर सतत हैं, जो समाकल चिह्न के अंतर्गत भेदभाव को उचित ठहराता है। विशेष रूप से, यदि विवृत समुच्चय U पर f एक बार जटिल अवकलनीय है, तो यह वास्तव में U पर अनंत बार जटिल अवकलनीय है। एक व्यक्ति कॉची के अनुमान भी प्राप्त करता है[12]
किसी भी z ∈ U और r > 0 के लिए जैसे कि B(z, r) ∪ S(c, r) ⊂ U. इन अनुमानों का अर्थ है कि सम्मिश्र संख्या टेलर श्रृंखला
f का किसी भी खुली डिस्क पर समान रूप से अभिसरण होता है साथ किसी फलन में टीf. इसके अतिरिक्त, अवकलज एफ के लिए समोच्च अभिन्न सूत्रों का उपयोग करना(k)(सी),
इसलिए किसी विवृत समुच्चय U ⊂ 'C' में कोई भी जटिल व्युत्पन्न फलन f वास्तव में जटिल विश्लेषणात्मक है। वास्तविक विश्लेषणात्मक कार्यों के लिए जो कुछ भी कहा गया है टेलर का प्रमेय#विश्लेषणात्मकता से संबंध##विश्लेषणात्मक कार्यों का टेलर विस्तार जटिल विश्लेषणात्मक कार्यों के लिए भी अनुप्रयुक्त होता है, जिसमें विवृत अंतराल I को एक विवृत उपसमुच्चय U ∈ 'C' द्वारा प्रतिस्थापित किया जाता है और a-केंद्रित अंतराल (a − r, a +r) को C-केंद्रित डिस्क B(c,r) द्वारा प्रतिस्थापित किया जाता है। विशेष रूप से, टेलर विस्तार फॉर्म में है
जहाँ शेष पद R हैkजटिल विश्लेषणात्मक है. जटिल विश्लेषण के तरीके टेलर विस्तार के संबंध में कुछ शक्तिशाली परिणाम प्रदान करते हैं। उदाहरण के लिए, किसी भी सकारात्मक रूप से उन्मुख जॉर्डन वक्र के लिए कॉची के अभिन्न सूत्र का उपयोग करना जो सीमा को पैरामीट्रिज करता है एक क्षेत्र का , कोई व्युत्पन्नों के लिए व्यंजक प्राप्त करता है f(j)(c) जैसा कि ऊपर बताया गया है, और इसके लिए गणना को थोड़ा संशोधित किया जा रहा है Tf(z) = f(z), कोई सटीक सूत्र पर पहुंचता है
यहां महत्वपूर्ण विशेषता यह है कि क्षेत्र पर टेलर बहुपद द्वारा सन्निकटन की गुणवत्ता सीमा पर स्वयं फलन f के मानों का प्रभुत्व है . इसी प्रकार, कॉची के अनुमानों को शेष के लिए श्रृंखला अभिव्यक्ति पर अनुप्रयुक्त करने से, एक समान अनुमान प्राप्त होता है
का जटिल कथानक . मापांक को उन्नयन द्वारा और तर्क को रंग द्वारा दिखाया गया है: सियान =, नीला =, बैंगनी=, लाल =, पीला=, हरा=.
कार्यक्रम
विश्लेषणात्मक कार्य है, अर्थात स्थानीय रूप से इसकी टेलर श्रृंखला द्वारा निर्धारित किया जाता है। इस फलन को इस तथ्य को स्पष्ट करने के लिए टेलर के प्रमेय#प्रेरणा के अनुसार तैयार किया गया था कि कुछ प्राथमिक कार्यों को विस्तार के केंद्र के प्रतिवेश में टेलर बहुपद द्वारा अनुमानित नहीं किया जा सकता है जो बहुत बड़े हैं। इस प्रकार के व्यवहार को जटिल विश्लेषण के ढांचे में आसानी से समझा जा सकता है। अर्थात्, फलन f एक मेरोमोर्फिक फलन में विस्तारित होता है
सघन जटिल तल पर। इसमें सरल ध्रुव हैं और , और यह अन्यत्र विश्लेषणात्मक है। अब इसकी टेलर श्रृंखला z पर केन्द्रित है0 किसी भी डिस्क B(z) पर अभिसरण होता है0, r) r < |z - z के साथ0|, जहां वही टेलर श्रृंखला z ∈ 'C' पर एकत्रित होती है। इसलिए, 0 पर केन्द्रित f की टेलर श्रृंखला B(0, 1) पर अभिसरित होती है और यह |z| के साथ किसी भी z ∈ 'C' के लिए अभिसरित नहीं होती है। > 1 i और −i पर ध्रुवों के कारण। इसी कारण से 1 पर केन्द्रित एफ की टेलर श्रृंखला अभिसरित होती है और किसी भी z ∈ 'C' के लिए अभिसरण नहीं करता है .
टेलर के प्रमेय का सामान्यीकरण
उच्च-क्रम भिन्नता
एक फलन f: 'R'n → 'R', 'a' ∈'R' से व्युत्पन्न हैn यदि और केवल यदि कोई रैखिक कार्यात्मक L उपस्थित है: 'R'n → 'R' और एक फलन h : 'R'n → 'R' ऐसा कि
यदि यही बात है तो बिंदु 'ए' पर एफ के एक फलन का (विशिष्ट रूप से परिभाषित) अंतर है। इसके अतिरिक्त, f का आंशिक व्युत्पन्न 'a' पर उपस्थित है और f का अंतर 'a' पर दिया गया है
α∈'N' के लिएn और 'x' ∈ 'R'n. यदि सभी -वें क्रम का आंशिक व्युत्पन्न f : Rn → R पर सतत हैं a ∈ Rn, फिर दूसरे अवकलज की समरूपता द्वारा|क्लेरौट के प्रमेय, कोई ए पर मिश्रित अवकलज के क्रम को बदल सकता है, इसलिए संकेतन
उच्च क्रम के लिए आंशिक अवकलज इस स्थिति में उचित है। यही बात सत्य है यदि f के सभी (k − 1)-वें क्रम के आंशिक व्युत्पन्न 'a' के किसी प्रतिवेश में उपस्थित हैं और 'a' पर भिन्न हैं।[13] तब हम कहते हैं कि f, k 'बिंदु a पर कई गुना भिन्न है'।
बहुभिन्नरूपी कार्यों के लिए टेलर का प्रमेय
पिछले अनुभाग के अंकन पद्धति का उपयोग करते हुए, निम्नलिखित प्रमेय प्राप्त होता है।
टेलर के प्रमेय का बहुभिन्नरूपी संस्करण[14] — मान लीजिए कि f : Rn → R बिंदु a ∈ Rn पर एक k-गुना सतत अवकलनीय फलन है। फिर वहां फलन hα : Rn → R उपस्थित है, जहां जैसे कि
यदि फलन f : Rn → R एक संवृत गेंद में k + 1 बार लगातार भिन्न होता है कुछ के लिए , तो कोई शेषफल के संदर्भ में एक सटीक सूत्र प्राप्त कर सकता है (k+1)-th इस प्रतिवेश में f का आंशिक व्युत्पन्न ऑर्डर करें।[15] अर्थात्,
इस स्थिति में, कॉम्पैक्ट समुच्चय बी में (k+1)-वें क्रम के आंशिक अवकलज के सतत कार्य के कारण, व्यक्ति को तुरंत एक समान अनुमान प्राप्त होता है
दो आयामों में उदाहरण
उदाहरण के लिए, एक सुचारु फलन f: 'R' का तृतीय-क्रम टेलर बहुपद2 → 'R', 'x' को दर्शाता है − 'a' = 'v',
यहां प्रमाण एल'हॉपिटल के नियम के बार-बार अनुप्रयुक्त होने पर आधारित है। ध्यान दें, प्रत्येक के लिए, है। इसलिए पहले में से प्रत्येक अंश के व्युत्पन्न पर गायब हो जाता है , और यही बात हर के बारे में भी सच है। इसके अतिरिक्त, शर्त यह है कि फलन होना एक बिंदु पर भिन्न-भिन्न समय के लिए क्रमानुसार भिन्नता की आवश्यकता होती है उक्त बिंदु के प्रतिवेश में (यह सच है, क्योंकि भिन्नता के लिए एक बिंदु के पूरे प्रतिवेश में एक फलन को परिभाषित करने की आवश्यकता होती है), अंश और उसका व्युत्पन्न प्रतिवेश में भिन्न होते हैं . स्पष्ट रूप से, हर भी उक्त शर्त को पूरा करता है, और इसके अतिरिक्त, जब तक लुप्त नहीं होता है , इसलिए एल'हॉपिटल के नियम के लिए आवश्यक सभी शर्तें पूरी की जाती हैं, और इसका उपयोग उचित है। इसलिए
जहां दूसरी अंतिम समानता पर अवकलज की परिभाषा का अनुसरण करती है।
एक वास्तविक चर में टेलर के प्रमेय के लिए वैकल्पिक प्रमाण
मान लीजिए टेलर बहुपद द्वारा अनुमानित किया जाने वाला कोई भी वास्तविक-मूल्यवान, सतत, फलन हो सकता है।
चरण 1: मान लीजिए कि और फलन है। और को व्यवस्थित करें।
चरण 2: और के गुणधर्म :
इसी प्रकार,
चरण 3: कॉची माध्य मान प्रमेय का उपयोग करें
मान लीजिए कि और सतत फलन है। तब से ताकि हम अंतराल के साथ काम कर सकें। और पर भिन्न हो सकते हैं। सभी के लिए मान लें। तभी अस्तित्व ऐसा है कि
टिप्पणी: में और है। इसलिए
कुछ के लिए,
इसे के लिए भी किया जा सकता है:
कुछ के लिए, इसे तक जारी रखा जा सकता है।
इससे एक विभाजन मिलता है:
के साथ
समुच्चय :
चरण 4: वापस स्थानापन्न करें;
घात नियम के अनुसार, बार-बार व्युत्पन्न , , इसलिए:
इससे ये होता है:
पुनर्व्यवस्थित करने पर, हमें प्राप्त होता है:
या क्योंकि अंततः:
शेषफल के माध्य मान रूपों की व्युत्पत्ति
मान लीजिए कि G कोई वास्तविक-मूल्यवान फलन है, जो मध्य के संवृत अंतराल और पर सतत है, और के विवृत अंतराल पर एक गैर-लुप्त व्युत्पन्न के साथ भिन्न और परिभाषित करें
के लिए, फिर, कॉची के माध्य मान प्रमेय द्वारा,
(★★★)
कुछ के लिए विवृत अंतराल पर और के मध्य है। ध्यान दें कि यहाँ अंश , के लिए टेलर बहुपद का बिल्कुल शेषफल है। गणना करना;
इसे (★★★) में प्लग करें और उसे खोजने के लिए शब्दों को पुनर्व्यवस्थित करें;
यह टेलर के प्रमेय के वास्तविक कथन के बाद माध्य मान रूप में शेषफल के साथ उल्लिखित शेष पद का रूप है। शेषफल का लैग्रेंज रूप, चुनकर और कॉची रूप चुनकर पाया जाता है।
टिप्पणी: इस विधि का प्रयोग करके शेषफल का पूर्णांक रूप भी चुनकर प्राप्त किया जा सकता है;
लेकिन माध्य मान प्रमेय के उपयोग के लिए आवश्यक f की आवश्यकताएं बहुत प्रबल हैं, यदि किसी का लक्ष्य इस स्थिति में अनुरोध को सिद्ध करना है कि f(k) केवल पूर्णतया सतत है। हालाँकि, यदि कोई लेबेस्ग समाकल के बजाय रीमान समाकल का उपयोग करता है, तो धारणाओं को दुर्बल नहीं किया जा सकता है।
शेषफल के पूर्णांक रूप की व्युत्पत्ति
f(k) के मध्य संवृत अंतराल और पर इसका व्युत्पन्न f(k+1), L1-फलन के रूप में उपस्थित है और हम कलन के मौलिक प्रमेय और भागों द्वारा एकीकरण का उपयोग कर सकते हैं। यही प्रमाण रीमान समाकल के लिए अनुप्रयुक्त होता है, यह मानते हुए कि f(k) संवृत अंतराल पर सतत है और और के मध्य विवृत अंतराल पर भिन्न है और इससे माध्य मान प्रमेय का उपयोग करने की तुलना में समान परिणाम प्राप्त होता है।
अब हम भागों द्वारा एकीकृत कर सकते हैं और इसे देखने के लिए गणना के मौलिक प्रमेय का पुनः उपयोग कर सकते हैं
जो बिल्कुल टेलर का प्रमेय है और k=1 स्थिति में शेषफल अभिन्न रूप में है। सामान्य कथन को गणितीय प्रेरण का उपयोग करके सिद्ध किया जाता है। कल्पना करें कि
(★★★★)
शेष पद को भागों द्वारा एकीकृत करते हुए हम जिस पर पहुंचते हैं:
इसे सूत्र में (★★★★) में प्रतिस्थापित करने से पता चलता है कि यदि यह मान k के लिए है, तो इसे k + 1 मान के लिए भी धारण करना चाहिए। इसलिए, चूंकि यह k = 1 के लिए है, इसलिए इसे प्रत्येक धनात्मक पूर्णांक k के लिए भी धारण करना चाहिए।
बहुभिन्नरूपी टेलर बहुपदों के शेषफल के लिए व्युत्पत्ति
हम विशेष स्थिति को सिद्ध करते हैं, जहां f : 'R'n → 'R' में केंद्र 'a' के साथ कुछ संवृत गोलक B में k+1 क्रम तक सतत आंशिक व्युत्पन्न होता हैं। प्रमाण की कार्यनीति टेलर के प्रमेय के एक-चर स्थिति को 'x' और 'a' से संलग्न रेखा खंड पर f के प्रतिबंध पर अनुप्रयुक्त करना है।[17]a और x के मध्य रेखा खंड को u(t) = a + t(x − a) द्वारा पैरामीट्रिज करें। हम टेलर के प्रमेय का एक-चर संस्करण को फलन g(t) = f(u(t)) पर अनुप्रयुक्त करते हैं:
कई चरों के लिए श्रृंखला नियम अनुप्रयुक्त करने से लाभ मिलता है।
↑Taylor, Brook (1715). वेतन वृद्धि की सीधी और उलटी विधि [Direct and Reverse Methods of Incrementation] (in Latina). London. p. 21–23 (Prop. VII, Thm. 3, Cor. 2). Translated into English in Struik, D. J. (1969). A Source Book in Mathematics 1200–1800. Cambridge, Massachusetts: Harvard University Press. pp. 329–332.
↑Genocchi, Angelo; Peano, Giuseppe (1884), Calcolo differenziale e principii di calcolo integrale, (N. 67, pp. XVII–XIX): Fratelli Bocca ed.{{citation}}: CS1 maint: location (link)
↑This follows from iterated application of the theorem that if the partial derivatives of a function f exist in a neighborhood of a and are continuous at a, then the function is differentiable at a. See, for instance, Apostol 1974, Theorem 12.11.