श्रृंखला (गणित)

From Vigyanwiki
Revision as of 19:06, 16 December 2022 by alpha>Abhishekk (minor changes)

गणित में, एक श्रृंखला मोटे तौर पर बोलती है, एक दी गई प्रारंभिक मात्रा में एक के बाद एक अपरिमित रूप से कई मात्राओं को योग की क्रिया का वर्णन है।[1] श्रृंखला का अध्ययन कैलकुलस और इसके सामान्यीकरण, गणितीय विश्लेषण का एक प्रमुख हिस्सा है। श्रृंखला का उपयोग गणित के अधिकांश क्षेत्रों में किया जाता है, यहां तक कि परिमित संरचनाओं (जैसे संयोजन विज्ञान में) का अध्ययन कार्यों के माध्यम से करने के लिए भी किया जाता है। गणित में उनकी सर्वव्यापकता के अलावा, अनंत श्रृंखलाओं का व्यापक रूप से अन्य मात्रात्मक विषयों जैसे कि भौतिकी, कंप्यूटर विज्ञान, सांख्यिकी और वित्त में भी उपयोग किया जाता है।

एक लंबे समय के लिए, यह विचार कि इस तरह के संभावित अनंत योग एक परिमित परिणाम उत्पन्न कर सकते हैं, विरोधाभासी माना जाता था। 17वीं शताब्दी के दौरान एक सीमा की अवधारणा का उपयोग करके इस विरोधाभास को हल किया गया था। एच्लीस और कछुआ के ज़ेनो का विरोधाभास अनंत राशियों की इस प्रतिगामी संपत्ति को दर्शाता है: अकिलिस कछुए के पीछे दौड़ता है, लेकिन जब वह दौड़ की शुरुआत में कछुए की स्थिति तक पहुँचता है, तो कछुआ दूसरे स्थान पर पहुँच जाता है; जब वह इस दूसरे स्थान पर पहुंचता है, तो कछुआ तीसरे स्थान पर होता है, और इसी तरह आगे भी। ज़ेनो ने निष्कर्ष निकाला कि अकिलिस कभी भी कछुए तक नहीं पहुँच सकता, और इस तरह वह गति मौजूद नहीं है। ज़ेनो ने दौड़ को असीम रूप से कई उप-दौड़ों में विभाजित किया, जिनमें से प्रत्येक को एक सीमित समय की आवश्यकता थी, ताकि अकिलिस को कछुए को पकड़ने का कुल समय एक श्रृंखला द्वारा दिया जा सके। विरोधाभास का समाधान यह है कि, हालांकि श्रृंखला में शब्दों की अनंत संख्या है, इसकी एक परिमित राशि है, जो अकिलिस को कछुए के साथ पकड़ने के लिए आवश्यक समय देती है।

आधुनिक शब्दावली में, कोई भी (आदेशित) शब्दों का अनंत अनुक्रम (अर्थात, संख्याएँ, कार्य, या कुछ भी जो जोड़ा जा सकता है) एक श्रृंखला को परिभाषित करता है, जो कि एक के बाद एक जोड़ने का संचालन है। इस बात पर बल देने के लिए कि पदों की संख्या अपरिमित है, एक श्रंखला को अपरिमित श्रंखला कहा जा सकता है। इस तरह की श्रृंखला को एक अभिव्यक्ति द्वारा दर्शाया गया है (या निरूपित)।

या, योग चिह्न का उपयोग करके,
एक श्रृंखला द्वारा निहित परिवर्धन के अनंत क्रम को प्रभावी ढंग से नहीं चलाया जा सकता (कम से कम समय की सीमित मात्रा में)। हालाँकि, यदि वह सेट जिसमें पद और उनके परिमित योग हैं, की सीमा की धारणा है, तो कभी-कभी किसी श्रृंखला के लिए एक मान निर्दिष्ट करना संभव होता है, जिसे श्रृंखला का योग कहा जाता है। यह मान सीमा है क्योंकि n श्रृंखला के पहले n पदों के परिमित योगों की अनंतता (यदि सीमा मौजूद है) की ओर जाता है, जिसे श्रृंखला के nवें आंशिक योग कहा जाता है। अर्थात्,

जब यह सीमा मौजूद होती है, तो कोई कहता है कि श्रृंखला अभिसारी या योग करने योग्य है, या यह कि अनुक्रम योग करने योग्य है। इस मामले में, सीमा को श्रृंखला का योग कहा जाता है। अन्यथा, श्रृंखला को भिन्न कहा जाता है।[2] अंकन दोनों श्रृंखलाओं को दर्शाता है- जो एक के बाद एक अनिश्चित काल के लिए शब्दों को जोड़ने की अंतर्निहित प्रक्रिया है- और, यदि श्रृंखला अभिसारी है, तो श्रृंखला का योग-प्रक्रिया का परिणाम है। यह के जोड़-जोड़ने की प्रक्रिया—और उसके परिणाम—a और b के योग दोनों को दर्शाने के समान सम्मेलन का सामान्यीकरण है।

आम तौर पर, एक श्रृंखला की शर्तें एक रिंग से आती हैं, अक्सर वास्तविक संख्याओं का फ़ील्ड या जटिल संख्याओं का फ़ील्ड । इस मामले में, सभी श्रृंखलाओं का सेट अपने आप में एक वलय (और यहां तक कि एक साहचर्य बीजगणित) है, जिसमें जोड़ में शब्द द्वारा श्रृंखला शब्द को जोड़ना शामिल है, और गुणन कॉची उत्पाद है।

मूल गुण

एक अनंत श्रृंखला या केवल एक श्रृंखला एक अनंत राशि है, जिसे प्रपत्र की अनंत अभिव्यक्ति द्वारा दर्शाया गया है[3]


जहां शब्दों का कोई क्रमबद्ध क्रम है, जैसे कि संख्याएँ, कार्य, या कुछ और जो जोड़ा जा सकता है (एक एबेलियन समूह)। यह एक अभिव्यक्ति है जो शब्दों की सूची से उन्हें एक साथ रखकर और उन्हें प्रतीक "+" के साथ जोड़कर प्राप्त किया जाता है। योग संकेतन का उपयोग करके एक श्रृंखला का भी प्रतिनिधित्व किया जा सकता है, जैसे


यदि शर्तों के एबेलियन समूह A में सीमा की अवधारणा है (उदाहरण के लिए, यदि यह एक मीट्रिक स्थान है), तो कुछ श्रृंखला, अभिसरण श्रृंखला, को A में मान होने के रूप में व्याख्या की जा सकती है, जिसे श्रृंखला का योग कहा जाता है। इसमें कैलकुलस के सामान्य मामले शामिल हैं, जिसमें समूह वास्तविक संख्याओं का क्षेत्र है या जटिल संख्याओं का क्षेत्र है। एक श्रृंखला को देखते हुए, इसका kवाँ आंशिक योग है[2]

परिभाषा के अनुसार, श्रृंखला सीमा L तक अभिसरित होती है (या केवल L का योग), यदि इसके आंशिक योग के अनुक्रम की सीमा L है।[3] इस मामले में, आमतौर पर लिखा जाता है

एक श्रृंखला को अभिसरण कहा जाता है यदि यह किसी सीमा तक अभिसरण करता है, या जब यह नहीं होता है तो विचलन होता है। इस सीमा का मान, यदि यह अस्तित्व में है, तब श्रृंखला का मान है।

अभिसरण श्रृंखला

1 से 6 पदों के आंशिक योग के साथ 3 ज्यामितीय श्रृंखला का चित्रण। धराशायी रेखा सीमा का प्रतिनिधित्व करती है।

एक श्रेणी Σan को अभिसारी या अभिसारी होना तब कहा जाता है जब आंशिक योगों के अनुक्रम (sk) की एक सीमित सीमा होती है। यदि sk की सीमा अनंत है या अस्तित्व में नहीं है, तो श्रृंखला को अपसारी कहा जाता है।[4][2] जब आंशिक योग की सीमा मौजूद होती है, तो इसे श्रृंखला का मान (या योग) कहा जाता है


एक आसान तरीका है कि एक अनंत श्रृंखला अभिसरण कर सकती है यदि पर्याप्त रूप से बड़े n के लिए सभी an शून्य हैं। इस तरह की श्रृंखला को परिमित योग के साथ पहचाना जा सकता है, इसलिए यह केवल एक तुच्छ अर्थ में अनंत है।

श्रृंखला के गुणों का पता लगाना जो अभिसरण करते हैं, भले ही असीम रूप से कई पद गैर-शून्य हों, श्रृंखला के अध्ययन का सार है। मिसाल पर विचार करें

वास्तविक संख्या रेखा पर इसके अभिसरण की "कल्पना" करना संभव है: हम लंबाई 2 की एक रेखा की कल्पना कर सकते हैं, जिसमें लगातार खंड 1, 1/2, 1/4, आदि की लंबाई से चिह्नित हैं। चिह्नित करने के लिए हमेशा जगह होती है अगला खंड, क्योंकि शेष रेखा की मात्रा हमेशा अंतिम खंड के रूप में चिह्नित होती है: जब हमने 1/2 को चिन्हित कर लिया है, तब भी हमारे पास 1/2 लंबाई का एक टुकड़ा है, इसलिए हम निश्चित रूप से अगले 1/4 को चिह्नित कर सकते हैं। यह तर्क यह साबित नहीं करता है कि योग 2 के बराबर है (हालांकि यह है), लेकिन यह साबित करता है कि यह अधिक से अधिक 2 है। दूसरे शब्दों में, श्रृंखला की ऊपरी सीमा होती है। यह देखते हुए कि श्रृंखला अभिसरण करती है, यह साबित करते हुए कि यह 2 के बराबर है, केवल प्राथमिक बीजगणित की आवश्यकता है। यदि श्रृंखला को S के रूप में निरूपित किया जाता है, तो यह देखा जा सकता है

इसलिए,

मुहावरे को श्रृंखला के अन्य समकक्ष विचारों तक बढ़ाया जा सकता है। उदाहरण के लिए, एक दोहराए जाने वाला दशमलव, जैसा कि

श्रृंखला को एनकोड करता है

चूँकि ये श्रृंखलाएँ हमेशा वास्तविक संख्याओं में परिवर्तित होती हैं (क्योंकि जिसे वास्तविक संख्याओं की पूर्णता संपत्ति कहा जाता है), इस तरह से श्रृंखला के बारे में बात करना उसी तरह है जैसे उन संख्याओं के बारे में बात करना जिनके लिए वे खड़े होते हैं। विशेष रूप से, दशमलव विस्तार 0.111... की पहचान 1/9 से की जा सकती है। यह एक तर्क की ओर ले जाता है कि 9 × 0.111... = 0.999... = 1, जो केवल इस तथ्य पर निर्भर करता है कि श्रृंखला के लिए सीमा नियम अंकगणितीय संक्रियाओं को संरक्षित करते हैं; इस तर्क पर अधिक विवरण के लिए, 0.999 देखें ....

संख्यात्मक श्रृंखला के उदाहरण

  • एक ज्यामितीय श्रृंखला वह है जहां प्रत्येक क्रमिक पद पिछले पद को एक स्थिरांक संख्या से गुणा करके निर्मित किया जाता है (इस संदर्भ में सामान्य अनुपात कहा जाता है)। उदाहरण के लिए:[2]

    सामान्य तौर पर, ज्यामितीय श्रृंखला

    अभिसरण करता है अगर और केवल अगर , जिस स्थिति में यह में परिवर्तित हो जाता है।

  • हार्मोनिक श्रृंखला एक श्रृंखला है[5]

    हार्मोनिक श्रृंखला अपसारी है।

  • एक वैकल्पिक श्रृंखला एक ऐसी श्रृंखला है जहां पद वैकल्पिक संकेत हैं। उदाहरण:

    (वैकल्पिक हार्मोनिक श्रृंखला) और

  • एक दूरबीन श्रृंखला

    अभिसरित होता है यदि अनुक्रम bn एक सीमा L तक अभिसरित होता है—जैसा कि n अनंत तक जाता है। श्रृंखला का मान तब b1 − L है।

  • एक अंकगणितीय-ज्यामितीय श्रृंखला ज्यामितीय श्रृंखला का एक सामान्यीकरण है, जिसमें अंकगणितीय अनुक्रम में शर्तों के बराबर सामान्य अनुपात के गुणांक होते हैं। उदाहरण :
  • पी-श्रृंखला

    यदि p > 1 अभिसरित होता है और p ≤ 1 के लिए अपसरित होता है, जिसे अभिसरण परीक्षण में नीचे वर्णित समाकल मानदंड के साथ दिखाया जा सकता है। पी के एक समारोह के रूप में, इस श्रृंखला का योग रीमैन का जेटा फ़ंक्शन है।

  • हाइपरज्यामितीय श्रृंखला:

    और उनके सामान्यीकरण (जैसे बुनियादी हाइपरज्यामितीय श्रृंखला और दीर्घवृत्तीय अतिज्यामितीय श्रृंखला) अक्सर समाकलनीय प्रणालियों और गणितीय भौतिकी में दिखाई देते हैं।[6]

  • कुछ प्राथमिक श्रंखलाएँ ऐसी हैं जिनका अभिसरण अभी तक ज्ञात/सिद्ध नहीं है। उदाहरण के लिए, यह ज्ञात नहीं है कि फ्लिंट हिल्स श्रृंखला

    जुड़ता है या नहीं। अभिसरण इस बात पर निर्भर करता है कि को परिमेय संख्याओं (जो अभी तक अज्ञात है) के साथ कितनी अच्छी तरह अनुमानित किया जा सकता है। अधिक विशिष्ट रूप से, योग में बड़े संख्यात्मक योगदान के साथ n के मान के सतत अंश अभिसरण के अंश हैं, 1, 3, 22, 333, 355, 103993, ... (sequence A046947 in the OEIS) से शुरू होने वाला एक अनुक्रम। ये पूर्णांक हैं जो कुछ पूर्णांक n के लिए के करीब हैं, ताकि 0 के करीब हो और इसका पारस्परिक बड़ा हो। अलेक्सेयेव (2011) ने साबित किया कि यदि श्रृंखला अभिसरित होती है, तो 55 की अपरिमेयता माप 2.5 से छोटी होती है, जो कि 7.10320533 की वर्तमान ज्ञात सीमा से बहुत छोटी है....[7][8]

पाई

2 का प्राकृतिक लघुगणक

[2]

प्राकृतिक लघुगणक का आधार ई


अनुक्रमों पर एक ऑपरेशन के रूप में पथरी और आंशिक योग

आंशिक योग एक अनुक्रम इनपुट के रूप में लेता है, (ए), और आउटपुट के रूप में एक और अनुक्रम देता है, (एसएन)। इस प्रकार यह अनुक्रमों पर एक एकात्मक संक्रिया है। इसके अलावा, यह फ़ंक्शन रैखिक है, और इस प्रकार अनुक्रमों के सदिश स्थल पर एक रैखिक ऑपरेटर है, जिसे Σ निरूपित किया गया है। उलटा ऑपरेटर परिमित अंतर ऑपरेटर है, जिसे Δ दर्शाया गया है। ये एक वास्तविक चर के कार्यों के बजाय केवल श्रृंखला (एक प्राकृतिक संख्या के कार्यों) के लिए अभिन्न और व्युत्पन्न के असतत अनुरूप व्यवहार करते हैं। उदाहरण के लिए, अनुक्रम (1, 1, 1, ...) में आंशिक योग के रूप में श्रृंखला (1, 2, 3, 4, ...) है, जो कि के तथ्य के अनुरूप है।

कंप्यूटर विज्ञान में इसे उपसर्ग योग के नाम से जाना जाता है।

श्रृंखला के गुण

श्रृंखला को न केवल अभिसरण या विचलन द्वारा वर्गीकृत किया जाता है, बल्कि शर्तों के गुणों द्वारा भी (पूर्ण या सशर्त अभिसरण); श्रृंखला के अभिसरण का प्रकार (बिंदुवार, वर्दी); शब्द a का वर्ग (चाहे वह एक वास्तविक संख्या हो, अंकगणितीय प्रगति हो, त्रिकोणमितीय फलन हो); आदि।

गैर-नकारात्मक शब्द

जब प्रत्येक एन के लिए एक गैर-ऋणात्मक वास्तविक संख्या होती है, तो आंशिक योगों का अनुक्रम एसएन गैर-घटता है। यह इस प्रकार है कि गैर-नकारात्मक शर्तों के साथ एक श्रृंखला Σan अभिसरण करती है अगर और केवल अगर आंशिक रकम का अनुक्रम SN परिबद्ध है।

उदाहरण के लिए, श्रृंखला

अभिसरण है, क्योंकि असमानता

और टेलीस्कोपिक योग तर्क का तात्पर्य है कि आंशिक योग 2 से घिरा है। मूल श्रृंखला का सटीक मान बेसल समस्या है।

ग्रुपिंग

जब आप किसी श्रृंखला का समूह बनाते हैं तो श्रृंखला का पुनर्क्रमण नहीं होता है, इसलिए रीमैन श्रृंखला प्रमेय लागू नहीं होता है। एक नई श्रृंखला का आंशिक योग मूल श्रृंखला के अनुवर्ती होगा, जिसका अर्थ है कि यदि मूल श्रृंखला अभिसरित होती है, तो नई श्रृंखला भी अभिसरित होती है। लेकिन अपसारी श्रृंखला के लिए जो सत्य नहीं है, उदाहरण के लिए 1-1+1-1+... प्रत्येक दो तत्वों को समूहीकृत करने से 0+0+0+... श्रृंखला बनेगी, जो अभिसारी है। दूसरी ओर, नई श्रृंखला के विचलन का अर्थ है कि मूल श्रृंखला केवल भिन्न हो सकती है जो कभी-कभी उपयोगी होती है, जैसे कि ओरेस्मे सबूत।

पूर्ण अभिसरण

एक श्रृंखला

निरपेक्ष मूल्यों की श्रृंखला अगर बिल्कुल अभिसरण करती है

अभिसरण। यह न केवल यह गारंटी देने के लिए पर्याप्त है कि मूल श्रृंखला एक सीमा तक अभिसरण करती है, बल्कि यह भी कि इसका कोई भी पुनर्क्रमण उसी सीमा तक परिवर्तित हो जाता है।

सशर्त अभिसरण

वास्तविक या जटिल संख्याओं की एक श्रृंखला को सशर्त रूप से अभिसारी (या अर्ध-अभिसरण) कहा जाता है यदि यह अभिसरण है लेकिन पूर्ण अभिसरण नहीं है। एक प्रसिद्ध उदाहरण एकांतर श्रृंखला है

जो अभिसारी है (और इसका योग के बराबर है), लेकिन प्रत्येक पद का निरपेक्ष मान लेकर बनाई गई श्रृंखला अपसारी हार्मोनिक श्रृंखला है। रीमैन श्रृंखला प्रमेय का कहना है कि किसी भी सशर्त रूप से अभिसरण श्रृंखला को अलग-अलग श्रृंखला बनाने के लिए पुन: व्यवस्थित किया जा सकता है, और इसके अलावा, यदि वास्तविक हैं और कोई वास्तविक संख्या है, तो कोई पुनर्क्रमित कर सकता है ताकि पुनर्क्रमित श्रृंखला के बराबर योग के साथ अभिसरण हो।

हाबिल का परीक्षण अर्ध-अभिसरण श्रृंखला को संभालने के लिए एक महत्वपूर्ण उपकरण है। यदि किसी श्रृंखला का रूप है

जहां आंशिक योग परिबद्ध हैं, परिबद्ध विचरण है, और मौजूद है:

फिर श्रृंखला अभिसारी है। यह कई त्रिकोणमितीय श्रृंखलाओं के बिंदु-वार अभिसरण पर लागू होता है, जैसे कि

के साथ। एबेल की विधि में लिखना शामिल है, और भागों द्वारा एकीकरण के समान परिवर्तन करने में (भागों द्वारा योग कहा जाता है), जो दी गई श्रृंखला को बिल्कुल अभिसरण श्रृंखला से संबंधित करता है।

ट्रंकेशन त्रुटियों का मूल्यांकन

ट्रंकेशन त्रुटियों का मूल्यांकन संख्यात्मक विश्लेषण (विशेष रूप से मान्य संख्यात्मक और कंप्यूटर-सहायता प्रमाण) में एक महत्वपूर्ण प्रक्रिया है।

वैकल्पिक श्रृंखला

जब वैकल्पिक श्रृंखला परीक्षण की स्थितियाँ से संतुष्ट होती हैं, तो एक सटीक त्रुटि मूल्यांकन होता है।[9] को दी गई वैकल्पिक श्रृंखला का आंशिक योग के रूप में सेट करें। फिर अगली असमानता रखती है।

टेलर सीरीज

टेलर का प्रमेय एक ऐसा कथन है जिसमें टेलर श्रृंखला को छोटा किए जाने पर त्रुटि शब्द का मूल्यांकन शामिल है।

हाइपरज्यामितीय श्रृंखला

अनुपात का उपयोग करके, हम त्रुटि शब्द का मूल्यांकन प्राप्त कर सकते हैं जब हाइपरज्यामितीय श्रृंखला को छोटा कर दिया जाता है।[10]

मैट्रिक्स एक्सपोनेंशियल

मैट्रिक्स घातीय के लिए:

निम्नलिखित त्रुटि मूल्यांकन धारण करता है (स्केलिंग और स्क्वायरिंग विधि):[11][12][13]


अभिसरण परीक्षण

ऐसे कई परीक्षण मौजूद हैं जिनका उपयोग यह निर्धारित करने के लिए किया जा सकता है कि कोई विशेष श्रृंखला अभिसरण या विचलन करती है या नहीं।

  • n-वाँ पद परीक्षण: यदि है, तो श्रंखला अपसारी होती है; यदि , तो परीक्षण अनिर्णायक है।
  • तुलना परीक्षण 1 (प्रत्यक्ष तुलना परीक्षण देखें): यदि पूर्ण अभिसरण श्रृंखला है जैसे कि किसी संख्या के लिए और पर्याप्त रूप से बड़े के लिए, तो बिल्कुल भी अभिसरण करता है। यदि विचलन करते हैं, और सभी के लिए पर्याप्त रूप से बड़ा है, तो भी पूरी तरह से अभिसरण करने में विफल रहता है (हालांकि यह अभी भी सशर्त रूप से अभिसरण हो सकता है, उदाहरण के लिए, यदि )।
  • तुलना परीक्षण 2 (सीमा तुलना परीक्षण देखें): यदि पूरी तरह से अभिसरण श्रृंखला है जैसे कि पर्याप्त रूप से बड़े के लिए है, तो भी पूरी तरह से अभिसरण करता है। यदि विचलन करते हैं, और सभी के लिए पर्याप्त रूप से बड़ा है, तो भी पूरी तरह से अभिसरण करने में विफल रहता है (हालांकि यह अभी भी सशर्त रूप से अभिसरण हो सकता है, उदाहरण के लिए, यदि वैकल्पिक रूप से साइन में हैं)।
  • अनुपात परीक्षण: यदि कोई स्थिरांक मौजूद है जैसे कि सभी के लिए पर्याप्त रूप से बड़ा है, तो बिल्कुल अभिसरण करता है। जब अनुपात से कम है, लेकिन से कम स्थिरांक से कम नहीं है, तो अभिसरण संभव है लेकिन यह परीक्षण इसे स्थापित नहीं करता है।
  • मूल परीक्षण: यदि कोई स्थिरांक मौजूद है जैसे कि सभी के लिए पर्याप्त रूप से बड़ा है, तो पूरी तरह से अभिसरण करता है।
  • इंटीग्रल टेस्ट: यदि एक सकारात्मक मोनोटोन घटता हुआ कार्य है जो अंतराल पर सभी के लिए के साथ परिभाषित किया गया है, तो अभिसरण करता है और केवल अगर इंटीग्रल सीमित है।
  • कौशी का संघनन परीक्षण: यदि गैर-ऋणात्मक और गैर-बढ़ता हुआ है, तो दो श्रृंखला और एक ही प्रकृति के हैं: दोनों अभिसरण, या दोनों विचलन।
  • अल्टरनेटिंग सीरीज़ टेस्ट: फॉर्म ( के साथ) की एक सीरीज़ को अल्टरनेटिंग कहा जाता है। इस तरह की श्रृंखला अभिसरण करती है यदि अनुक्रम मोनोटोन कम हो रहा है और में अभिसरण करता है। विपरीत सामान्य रूप से सत्य नहीं है।
  • कुछ विशिष्ट प्रकार की श्रृंखलाओं के लिए अधिक विशिष्ट अभिसरण परीक्षण होते हैं, उदाहरण के लिए फूरियर श्रृंखला के लिए दीनी परीक्षण होता है।

कार्यों की श्रृंखला

वास्तविक- या जटिल-मूल्यवान फ़ंक्शन की एक श्रृंखला

एक सेट E पर बिंदुवार अभिसरण करता है, यदि श्रृंखला E में प्रत्येक x के लिए वास्तविक या जटिल संख्याओं की एक सामान्य श्रृंखला के रूप में अभिसरण करती है। समान रूप से, आंशिक रकम

प्रत्येक x ∈ E के लिए ƒ(x) को N → ∞ के रूप में परिवर्तित करें।

कार्यों की एक श्रृंखला के अभिसरण की एक मजबूत धारणा एकसमान अभिसरण है। एक श्रृंखला समान रूप से अभिसरण करती है यदि यह बिंदुवार फ़ंक्शन ƒ(x) में परिवर्तित होती है, और Nth आंशिक योग द्वारा सीमा का अनुमान लगाने में त्रुटि होती है,

पर्याप्त रूप से बड़ा N चुनकर x से स्वतंत्र रूप से न्यूनतम बनाया जा सकता है।

एक श्रृंखला के लिए समान अभिसरण वांछनीय है क्योंकि श्रृंखला की शर्तों के कई गुण तब सीमा द्वारा बनाए रखा जाता है। उदाहरण के लिए, यदि निरंतर कार्यों की एक श्रृंखला समान रूप से अभिसरण करती है, तो सीमा कार्य भी निरंतर होता है। इसी तरह, यदि ƒn एक बंद और परिबद्ध अंतराल I पर पूर्णांक हैं और समान रूप से अभिसरित होते हैं, तो श्रृंखला I पर भी पूर्णांकित होती है और टर्म-दर-टर्म एकीकृत हो सकती है। एकसमान अभिसरण के लिए परीक्षणों में वीयरस्ट्रास का एम-परीक्षण, एबेल का समान अभिसरण परीक्षण, दीनी का परीक्षण और कॉची अनुक्रम शामिल हैं।

कार्यों की एक श्रृंखला के अधिक परिष्कृत प्रकार के अभिसरण को भी परिभाषित किया जा सकता है। माप सिद्धांत में, उदाहरण के लिए, कार्यों की एक श्रृंखला लगभग हर जगह अभिसरण करती है यदि यह शून्य माप के एक निश्चित सेट को छोड़कर बिंदुवार अभिसरण करती है। अभिसरण के अन्य तरीके विचाराधीन कार्यों के स्थान पर एक अलग मीट्रिक अंतरिक्ष संरचना पर निर्भर करते हैं। उदाहरण के लिए, कार्यों की एक श्रृंखला एक सेट ई पर एक सीमित फ़ंक्शन ƒ प्रदान करने के लिए माध्य में परिवर्तित होती है

जब N→ ∞।

शक्ति श्रृंखला

एक शक्ति श्रृंखला रूप की एक श्रृंखला है

फ़ंक्शन के बिंदु c पर टेलर श्रृंखला एक शक्ति श्रृंखला है, जो कई मामलों में, c के पड़ोस में फ़ंक्शन में परिवर्तित हो जाती है। उदाहरण के लिए, श्रृंखला

की टेलर श्रृंखला है मूल बिंदु पर और प्रत्येक x के लिए इसमें परिवर्तित होता है।

जब तक यह केवल x = c पर अभिसरण नहीं करता है, ऐसी श्रृंखला जटिल तल में बिंदु c पर केंद्रित अभिसरण की एक निश्चित खुली डिस्क पर अभिसरण करती है, और डिस्क की सीमा के कुछ बिंदुओं पर भी अभिसरण कर सकती है। इस डिस्क की त्रिज्या को अभिसरण की त्रिज्या के रूप में जाना जाता है, और सिद्धांत रूप में गुणांक के स्पर्शोन्मुखता से निर्धारित किया जा सकता हैn. अभिसरण की डिस्क के इंटीरियर के बंद सेट और परिबद्ध सेट (यानी, कॉम्पैक्ट सेट) सबसेट पर अभिसरण समान है: बुद्धि के लिए, यह कॉम्पैक्ट अभिसरण है।

ऐतिहासिक रूप से, लियोनहार्ड यूलर जैसे गणितज्ञों ने असीमित श्रृंखला के साथ उदारतापूर्वक संचालन किया, भले ही वे अभिसारी न हों। उन्नीसवीं शताब्दी में जब कैलकुलस को एक ठोस और सही नींव पर रखा गया था, तो श्रृंखला के अभिसरण के कठोर प्रमाणों की हमेशा आवश्यकता होती थी।

औपचारिक शक्ति श्रृंखला

जबकि शक्ति श्रृंखला के कई उपयोग उनके योगों को संदर्भित करते हैं, शक्ति श्रृंखला को औपचारिक योगों के रूप में माना जाना भी संभव है, जिसका अर्थ है कि वास्तव में कोई अतिरिक्त संचालन नहीं किया जाता है, और प्रतीक + संयोजन का एक अमूर्त प्रतीक है जिसे आवश्यक रूप से संबंधित नहीं माना जाता है योग। इस सेटिंग में, श्रृंखला के अभिसरण के बजाय स्वयं गुणांकों का क्रम रुचि का है। औपचारिक शक्ति श्रृंखला का उपयोग कॉम्बिनेटरिक्स में उन अनुक्रमों का वर्णन और अध्ययन करने के लिए किया जाता है जो अन्यथा संभालना मुश्किल होता है, उदाहरण के लिए, कार्यों को उत्पन्न करने की विधि का उपयोग करना। हिल्बर्ट-पोंकेयर श्रृंखला एक औपचारिक शक्ति श्रृंखला है जिसका उपयोग ग्रेडेड बीजगणित का अध्ययन करने के लिए किया जाता है।

यहां तक ​​​​कि अगर शक्ति श्रृंखला की सीमा पर विचार नहीं किया जाता है, यदि शब्द उपयुक्त संरचना का समर्थन करते हैं, तो यह संभव है कि घात श्रृंखला के लिए जोड़, गुणा, व्युत्पन्न, प्रतिपक्षी जैसे कार्यों को औपचारिक रूप से परिभाषित किया जाए, प्रतीक + को मानते हुए कि यह जोड़ के अनुरूप है। सबसे आम सेटिंग में, शब्द एक क्रमविनिमेय अंगूठी से आते हैं, ताकि औपचारिक शक्ति श्रृंखला को टर्म-बाय-टर्म जोड़ा जा सके और कॉची उत्पाद के माध्यम से गुणा किया जा सके। इस मामले में औपचारिक शक्ति श्रृंखला का बीजगणित अंतर्निहित शब्द वलय पर प्राकृतिक संख्याओं के मोनोइड का कुल बीजगणित है।[14] यदि अंतर्निहित टर्म रिंग एक डिफरेंशियल बीजगणित है, तो औपचारिक शक्ति श्रृंखला का बीजगणित भी एक डिफरेंशियल बीजगणित है, जिसमें टर्म-दर-टर्म भेदभाव होता है।

लॉरेंट श्रृंखला

लॉरेंट श्रृंखला नकारात्मक और साथ ही सकारात्मक घातांक के साथ श्रृंखला में शर्तों को स्वीकार करके शक्ति श्रृंखला का सामान्यीकरण करती है। एक लॉरेंट श्रृंखला इस प्रकार किसी भी प्रकार की श्रृंखला है

यदि ऐसी श्रृंखला अभिसरण करती है, तो सामान्य तौर पर यह एक डिस्क के बजाय एक वलय (गणित) में होती है, और संभवतः कुछ सीमा बिंदु। श्रृंखला अभिसरण के वलय के इंटीरियर के कॉम्पैक्ट सबसेट पर समान रूप से अभिसरित होती है।

डिरिचलेट श्रृंखला

एक डिरिचलेट श्रृंखला एक रूप है

जहाँ s एक सम्मिश्र संख्या है। उदाहरण के लिए, यदि सभी एn 1 के बराबर हैं, तो डिरिचलेट श्रृंखला रीमैन जीटा फ़ंक्शन है

जेटा फ़ंक्शन की तरह, डिरिचलेट श्रृंखला सामान्य रूप से विश्लेषणात्मक संख्या सिद्धांत में एक महत्वपूर्ण भूमिका निभाती है। आम तौर पर एक डिरिचलेट श्रृंखला अभिसरण करती है यदि s का वास्तविक भाग एक संख्या से अधिक होता है जिसे अभिसरण का भुज कहा जाता है। कई मामलों में, एक डिरिचलेट श्रृंखला को विश्लेषणात्मक निरंतरता द्वारा अभिसरण के डोमेन के बाहर एक विश्लेषणात्मक कार्य के लिए बढ़ाया जा सकता है। उदाहरण के लिए, जीटा फ़ंक्शन के लिए डिरिचलेट श्रृंखला पूरी तरह से अभिसरित होती है जब Re(s) > 1, लेकिन जीटा फ़ंक्शन को होलोमॉर्फिक फ़ंक्शन पर परिभाषित किया जा सकता है 1 पर एक साधारण पोल (जटिल विश्लेषण) के साथ।

इस श्रृंखला को सीधे सामान्य डिरिचलेट श्रृंखला के लिए सामान्यीकृत किया जा सकता है।

त्रिकोणमितीय श्रृंखला

कार्यों की एक श्रृंखला जिसमें शब्द त्रिकोणमितीय कार्य होते हैं, त्रिकोणमितीय श्रृंखला कहलाती है:

त्रिकोणमितीय श्रृंखला का सबसे महत्वपूर्ण उदाहरण एक फ़ंक्शन की फूरियर श्रृंखला है।

अनंत श्रृंखला के सिद्धांत का इतिहास

अनंत श्रृंखला का विकास

ग्रीक गणित के गणितज्ञ आर्किमिडीज़ ने एक के साथ एक अनंत श्रृंखला का पहला ज्ञात योग प्रस्तुत किया विधि जो आज भी कलन के क्षेत्र में प्रयोग की जाती है। उन्होंने एक अनंत श्रृंखला के योग के साथ एक परवलय के चाप के नीचे के क्षेत्र की गणना करने के लिए थकावट की विधि का उपयोग किया, और Pi|π का एक उल्लेखनीय सटीक सन्निकटन दिया।[15][16] केरल, भारत के गणितज्ञों ने 1350 सीई के आसपास अनंत श्रृंखला का अध्ययन किया।[17] 17वीं शताब्दी में, जेम्स ग्रेगोरी (खगोलविद और गणितज्ञ) ने नई दशमलव प्रणाली में अनंत श्रृंखला पर काम किया और कई मैकलॉरिन श्रृंखला प्रकाशित की। 1715 में, सभी कार्यों के लिए टेलर श्रृंखला के निर्माण के लिए एक सामान्य विधि जिसके लिए वे मौजूद हैं, ब्रुक टेलर द्वारा प्रदान की गई थी। 18वीं शताब्दी में लियोनहार्ड यूलर ने हाइपरज्यामितीय श्रृंखला और क्यू-श्रृंखला के सिद्धांत को विकसित किया।

अभिसरण मानदंड

अपरिमित श्रृंखला की वैधता की जांच की शुरुआत 19वीं सदी में कार्ल फ्रेडरिक गॉस से मानी जाती है। यूलर ने पहले ही हाइपरज्यामितीय श्रृंखला पर विचार कर लिया था

जिस पर गॉस ने 1812 में एक संस्मरण प्रकाशित किया। इसने अभिसरण के सरल मानदंड, और अवशेषों के प्रश्न और अभिसरण की सीमा स्थापित की।

कॉची (1821) ने अभिसरण के कड़े परीक्षणों पर जोर दिया; उन्होंने दिखाया कि यदि दो श्रृंखलाएं अभिसरण हैं तो उनका उत्पाद जरूरी नहीं है, और उसके साथ प्रभावी मानदंड की खोज शुरू होती है। जेम्स ग्रेगरी (खगोलविद और गणितज्ञ) (1668) द्वारा अभिसरण और विचलन शब्द बहुत पहले पेश किए गए थे। लियोनहार्ड यूलर और कार्ल फ्रेडरिक गॉस ने विभिन्न मापदंड दिए थे, और कॉलिन मैकलॉरिन ने कॉची की कुछ खोजों का अनुमान लगाया था। कौशी ने एक जटिल फलन (गणित) के ऐसे रूप में अपने विस्तार द्वारा शक्ति श्रृंखला के सिद्धांत को आगे बढ़ाया।

नील्स हेनरिक एबेल (1826) द्विपद श्रृंखला पर अपने संस्मरण में

कॉची के कुछ निष्कर्षों को सही किया, और जटिल मूल्यों के लिए श्रृंखला का एक पूर्ण वैज्ञानिक योग दिया तथा . उन्होंने अभिसरण के प्रश्नों में निरंतरता के विषय पर विचार करने की आवश्यकता को दर्शाया।

कॉची के तरीकों ने सामान्य मानदंडों के बजाय विशेष का नेतृत्व किया, और जोसेफ लुडविग राबे (1832) के बारे में भी यही कहा जा सकता है, जिन्होंने अगस्त डी मॉर्गन (1842 से) के विषय की पहली विस्तृत जांच की, जिनके लघुगणकीय परीक्षण पॉल डु बोइस-रेमंड|ड्यूबॉइस-रेमंड (1873) और अल्फ्रेड प्रिंगशाइम (1889) के पास है एक निश्चित क्षेत्र में विफल दिखाया गया; जोसेफ लुइस फ्रांकोइस बर्ट्रेंड (1842), पियरे ओसियन बोनट (1843), कार्ल जोहान मालमस्टन (1846, 1847, एकीकरण के बिना उत्तरार्द्ध); जॉर्ज गेब्रियल स्टोक्स (1847), पॉकर (1852), Chebyshev (1852), और अरंड्ट (1853)।

सामान्य मानदंड आन्ट कुमेर (1835) के साथ शुरू हुआ, और गोथोल्ड ईसेनस्टीन (1847), विअरस्ट्रास द्वारा उनके विभिन्न कार्यों के सिद्धांत में योगदान, यूलिस दीनी (1867), डुबोइस-रेमंड (1873), और कई अन्य। प्रिंगशाइम के संस्मरण (1889) सबसे पूर्ण सामान्य सिद्धांत प्रस्तुत करते हैं।

एक समान अभिसरण

कॉची (1821) द्वारा एकसमान अभिसरण के सिद्धांत पर विचार किया गया था, उसकी सीमाओं को हाबिल ने इंगित किया था, लेकिन इस पर हमला करने वाले पहले व्यक्ति थे। फिलिप लुडविग वॉन सेडेल और जॉर्ज गेब्रियल स्टोक्स (1847-48) सफलतापूर्वक थे। कॉची ने लिया प्रॉब्लम अगेन (1853), हाबिल की आलोचना को स्वीकार करते हुए, और पहुँचते हुए वही निष्कर्ष जो स्टोक्स ने पहले ही खोज लिए थे। थोमे ने इस्तेमाल किया सिद्धांत (1866), लेकिन वर्दी और गैर वर्दी के बीच अंतर करने के महत्व को पहचानने में काफी देरी हुई अभिसरण, कार्यों के सिद्धांत की मांगों के बावजूद।

अर्ध-अभिसरण

एक श्रृंखला को अर्ध-अभिसरण (या सशर्त रूप से अभिसारी) कहा जाता है यदि यह अभिसरण है लेकिन पूर्ण अभिसरण नहीं है।

अर्ध-अभिसरण श्रृंखला का अध्ययन पोइसन (1823) द्वारा किया गया, जिन्होंने मैक्लॉरिन सूत्र के शेष के लिए एक सामान्य रूप भी दिया। हालाँकि, समस्या का सबसे महत्वपूर्ण समाधान जैकोबी (1834) के कारण है, जिन्होंने शेष के प्रश्न पर एक अलग दृष्टिकोण से हमला किया और एक अलग सूत्र पर पहुँचे। इस अभिव्यक्ति पर भी काम किया गया था, और दूसरा कार्ल जोहान माल्मस्टन (1847) द्वारा दिया गया था। Schlömilch (Zeitschrift, Vol.I, पृ. 192, 1856) ने भी जैकोबी के शेष में सुधार किया, और शेष और फाउलहाबर के सूत्र के बीच संबंध दिखाया। बर्नौली का कार्य

एंजेलो जेनोची (1852) ने सिद्धांत में और योगदान दिया है।

शुरुआती लेखकों में जोसेफ होएने-व्रोनस्की थे, जिनके लोई सुप्रीम (1815) को आर्थर केली (1873) द्वारा इसे लाने तक शायद ही पहचाना गया था। प्रमुखता।

फूरियर श्रृंखला

फूरियर श्रृंखला की जांच की जा रही थी एक ही समय में भौतिक विचारों के परिणामस्वरूप गॉस, एबेल और कॉची अनंत के सिद्धांत पर काम कर रहे थे श्रृंखला। ज्या और कोसाइन के विस्तार के लिए श्रृंखला, एकाधिक की चाप की ज्या और कोज्या की शक्तियों में चाप का उपचार किया गया था जैकब बर्नौली (1702) और उनके भाई जोहान बर्नौली (1701) और अभी भी पहले फ्रांसिस लाइफ द्वारा। यूलर और जोसेफ लुइस लाग्रेंज ने इस विषय को सरल बनाया, जैसा कि लुइस पॉइन्सॉट, कार्ल श्रोटर | श्रोटर, जेम्स व्हिटब्रेड ली ग्लैशर और अर्न्स्ट कुमेर ने किया।

फूरियर (1807) ने अपने लिए एक अलग समस्या रखी x के दिए गए फलन को ज्या या कोज्या के पदों में विस्तारित करें एक्स के गुणक, एक समस्या जिसे उन्होंने अपने थ्योरी एनालिटिक डे ला चालुर (1822) में शामिल किया। श्रृंखला में गुणांक निर्धारित करने के लिए यूलर ने पहले ही सूत्र दिए थे; फूरियर पहले व्यक्ति थे जिन्होंने दावा किया और सामान्य को साबित करने का प्रयास किया प्रमेय। शिमोन डेनिस पोइसन (1820-23) ने भी समस्या पर हमला किया a अलग दृष्टिकोण। हालाँकि, फूरियर ने इस प्रश्न का समाधान नहीं किया उनकी श्रृंखला के अभिसरण के लिए, ऑगस्टिन लुइस कॉची (1826) के लिए एक मामला छोड़ दिया गया प्रयास और डिरिचलेट (1829) के लिए पूरी तरह से संभालने के लिए वैज्ञानिक ढंग (फूरियर श्रृंखला का अभिसरण देखें)। त्रिकोणमितीय श्रृंखला का डिरिचलेट का उपचार (जर्नल फर डाई रीइन अन एंगवंड्टे मैथेमेटिक, 1829), किसके द्वारा आलोचना और सुधार का विषय था रीमैन (1854), हेइन, रूडोल्फ लिपशिट्ज, लुडविग श्लाफली|श्लाफली, और पॉल डु बोइस-रेमंड|डु बोइस-रेमंड। के सिद्धांत के अन्य प्रमुख योगदानकर्ताओं में त्रिकोणमितीय और फूरियर श्रृंखला में यूलिस दीनी, चार्ल्स हर्मिट, जॉर्जेस हेनरी हलफेन, क्रूस, बायर्ली और पॉल एमिल एपेल।

सामान्यीकरण

स्पर्शोन्मुख श्रृंखला

स्पर्शोन्मुख श्रृंखला, अन्यथा स्पर्शोन्मुख विस्तार, अनंत श्रृंखलाएँ हैं जिनके आंशिक योग डोमेन के कुछ बिंदुओं की सीमा में अच्छे सन्निकटन बन जाते हैं। सामान्य तौर पर वे अभिसरण नहीं करते हैं, लेकिन वे सन्निकटन के अनुक्रम के रूप में उपयोगी होते हैं, जिनमें से प्रत्येक शब्दों की सीमित संख्या के लिए वांछित उत्तर के करीब मान प्रदान करता है। अंतर यह है कि एक स्पर्शोन्मुख श्रृंखला को वांछित के रूप में सटीक उत्तर देने के लिए नहीं बनाया जा सकता है, जिस तरह से अभिसरण श्रृंखला कर सकती है। वास्तव में, शब्दों की एक निश्चित संख्या के बाद, एक विशिष्ट स्पर्शोन्मुख श्रृंखला अपने सर्वश्रेष्ठ सन्निकटन तक पहुँचती है; यदि अधिक शर्तें शामिल की जाती हैं, तो ऐसी अधिकांश श्रृंखलाएं खराब उत्तर उत्पन्न करेंगी।

अपसारी श्रृंखला

कई परिस्थितियों में, एक श्रृंखला के लिए एक सीमा निर्धारित करना वांछनीय है जो सामान्य अर्थों में अभिसरण करने में विफल रहता है। एक संकलनीयता विधि अपसारी श्रृंखला के समुच्चय के एक उपसमुच्चय की सीमा का ऐसा नियतन है जो अभिसरण की शास्त्रीय धारणा को सही ढंग से विस्तारित करता है। संक्षेपण विधियों में सामान्यता के बढ़ते क्रम में सिसैरा योग, (सी, के) योग, एबेल योग और बोरेल योग शामिल हैं (और इसलिए उत्तरोत्तर अपसारी श्रृंखला पर लागू होते हैं)।

संभावित सारांश विधियों से संबंधित विभिन्न प्रकार के सामान्य परिणाम ज्ञात हैं। सिल्वरमैन-टोप्लेट्ज़ प्रमेय मैट्रिक्स सारांश विधियों की विशेषता है, जो गुणांक के वेक्टर के लिए एक अनंत मैट्रिक्स को लागू करके एक भिन्न श्रृंखला को योग करने के तरीके हैं। अपसारी श्रंखला के योग के लिए सबसे सामान्य विधि गैर-रचनात्मक है, और बानाच सीमा से संबंधित है।

=== मनमाना सूचकांक सेट === पर योग एक मनमाना सूचकांक सेट पर रकम के लिए परिभाषा दी जा सकती है [18] श्रृंखला की सामान्य धारणा से दो मुख्य अंतर हैं: पहला, सेट पर कोई विशिष्ट आदेश नहीं दिया गया है ; दूसरा, यह सेट बेशुमार हो सकता है। अभिसरण की धारणा को मजबूत करने की आवश्यकता है, क्योंकि सशर्त अभिसरण की अवधारणा सूचकांक सेट के क्रम पर निर्भर करती है।

यदि एक सूचकांक सेट से एक फंक्शन (गणित) है एक सेट के लिए फिर संबंधित श्रृंखला तत्वों का औपचारिक योग है सूचकांक तत्वों पर द्वारा निरूपित किया गया

जब सूचकांक सेट प्राकृतिक संख्या है कार्यक्रम द्वारा निरूपित एक अनुक्रम है प्राकृतिक संख्याओं पर अनुक्रमित एक श्रृंखला एक आदेशित औपचारिक योग है और इसलिए हम फिर से लिखते हैं जैसा प्राकृतिक संख्याओं द्वारा प्रेरित क्रम पर जोर देने के लिए। इस प्रकार, हम प्राकृतिक संख्याओं द्वारा अनुक्रमित श्रृंखला के लिए सामान्य अंकन प्राप्त करते हैं


गैर-ऋणात्मक संख्याओं के परिवार

जब एक परिवार का योग गैर-ऋणात्मक वास्तविक संख्याओं की, परिभाषित करें

जब सुप्रीमम परिमित होता है तो का सेट ऐसा है कि गणनीय है। वास्तव में, प्रत्येक के लिए प्रमुखता सेट का परिमित है क्योंकि

यदि गणनीय रूप से अनंत है और इस रूप में गिना जाता है तब उपरोक्त परिभाषित राशि संतुष्ट होती है

मूल्य प्रदान किया श्रृंखला के योग के लिए अनुमति है।

गैर-नकारात्मक वास्तविक पर किसी भी राशि को गिनती के माप के संबंध में एक गैर-नकारात्मक कार्य के अभिन्न अंग के रूप में समझा जा सकता है, जो दो निर्माणों के बीच कई समानताएं हैं।

एबेलियन सामयिक समूह

होने देना एक नक्शा हो, जिसे भी निरूपित किया गया हो कुछ गैर-खाली सेट से हॉसडॉर्फ अंतरिक्ष एबेलियन समूह सामयिक समूह में होने देना के सभी परिमित समुच्चय का संग्रह हो साथ एक निर्देशित सेट के रूप में देखा गया, आंशिक रूप से समावेशन (गणित) के तहत सेट का आदेश दिया गया ज्वाइन (गणित) के रूप में संघ (सेट सिद्धांत) के साथ। परिवार बताया गया unconditionally summable यदि किसी नेट की निम्न सीमा, जिसे द्वारा दर्शाया जाता है और कहा जाता है sum का में मौजूद है

यह कहते हुए योग परिमित आंशिक रकम की सीमा है जिसका मतलब है कि हर पड़ोस के लिए मूल में एक परिमित उपसमुच्चय मौजूद है का ऐसा है कि

इसलिये कुल आदेश नहीं है, यह आंशिक रकम के अनुक्रम की सीमा नहीं है, बल्कि नेट (गणित) की है।[19][20] हर मोहल्ले के लिए मूल में एक छोटा पड़ोस है ऐसा है कि यह इस प्रकार है कि बिना शर्त योग योग्य परिवार का परिमित आंशिक योग फार्म ए Cauchy net, यानी हर मोहल्ले के लिए मूल में एक परिमित उपसमुच्चय मौजूद है का ऐसा है कि

जिसका तात्पर्य है हरएक के लिए (ले कर तथा ).

कब पूर्ण सामयिक समूह है, एक परिवार में बिना शर्त योग करने योग्य है अगर और केवल अगर परिमित राशि बाद की कॉची शुद्ध स्थिति को पूरा करती है। कब पूर्ण है और में बिना शर्त योग करने योग्य है फिर प्रत्येक उपसमुच्चय के लिए संबंधित उपपरिवार में भी बिना शर्त योग योग्य है जब गैर-ऋणात्मक संख्याओं के परिवार का योग, पहले परिभाषित विस्तारित अर्थ में, परिमित है, तो यह सामयिक समूह में योग के साथ मेल खाता है अगर एक परिवार में बिना शर्त के योग करने योग्य है तो हर पड़ोस के लिए मूल में एक परिमित उपसमुच्चय है ऐसा है कि प्रत्येक सूचकांक के लिए अंदर नही यदि एक प्रथम-गणनीय स्थान है तो यह इस प्रकार है कि का सेट ऐसा है कि गणनीय है। सामान्य एबेलियन टोपोलॉजिकल समूह में यह सच नहीं होना चाहिए (नीचे उदाहरण देखें)।

बिना शर्त अभिसरण श्रृंखला

मान लो कि अगर एक परिवार एक हॉसडॉर्फ एबेलियन टोपोलॉजिकल ग्रुप में बिना शर्त योग करने योग्य है तो श्रृंखला सामान्य अर्थों में अभिसरित होती है और उसका योग समान होता है,

स्वभाव से, बिना शर्त योग की परिभाषा योग के क्रम के प्रति असंवेदनशील है। कब बिना शर्त के संकलन योग्य है, तो श्रृंखला किसी भी क्रमचय के बाद अभिसरण बनी रहती है सेट का सूचकांकों की, एक ही राशि के साथ,

इसके विपरीत, यदि किसी श्रृंखला का प्रत्येक क्रमचय अभिसरण करता है, तो श्रृंखला बिना शर्त अभिसारी होती है। कब पूर्ण सामयिक समूह है तो बिना शर्त अभिसरण भी इस तथ्य के समतुल्य है कि सभी उपश्रेणियाँ अभिसारी हैं; यदि एक बनच स्थान है, यह कहने के बराबर है कि संकेतों के प्रत्येक क्रम के लिए , श्रृंखला

में विलीन हो जाता है


टोपोलॉजिकल वेक्टर स्पेस में सीरीज

यदि एक टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) है और एक (संभवतः बेशुमार) परिवार है तो यह परिवार योग्‍य है[21] यदि सीमा नेट का (गणित) में मौजूद है कहाँ पे के सभी परिमित उपसमूहों का निर्देशित सेट है समावेशन द्वारा निर्देशित तथा इसके अलावा, हर निरंतर सेमिनोर्म के लिए इसे बिल्कुल सारांश कहा जाता है पर परिवार योग्‍य है। यदि एक सामान्य स्थान है और यदि में एक पूर्ण योग योग्य परिवार है तो आवश्यक रूप से सभी लेकिन एक गणनीय संग्रह शून्य हैं। इसलिए, आदर्श स्थानों में, आमतौर पर केवल कई शर्तों के साथ श्रृंखला पर विचार करना आवश्यक होता है।

सारांशित परिवार परमाणु रिक्त स्थान के सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं।

बनच और सेमिनोर्म्ड स्थानों में श्रृंखला

श्रृंखला की धारणा को एक अर्ध-सामान्य स्थान के मामले में आसानी से बढ़ाया जा सकता है। यदि एक आदर्श स्थान के तत्वों का एक क्रम है और अगर फिर श्रृंखला में विलीन हो जाता है में यदि श्रृंखला के आंशिक योग का क्रम में विलीन हो जाता है में ; अर्थात्,

अधिक आम तौर पर, श्रृंखला के अभिसरण को किसी भी एबेलियन समूह हॉसडॉर्फ स्पेस टोपोलॉजिकल समूह में परिभाषित किया जा सकता है। विशेष रूप से, इस मामले में, में विलीन हो जाता है यदि आंशिक योगों का क्रम अभिसरण करता है यदि एक अर्ध-सामान्य स्थान है, तो पूर्ण अभिसरण की धारणा बन जाती है: एक श्रृंखला वैक्टर में बिल्कुल अगर अभिसरण करता है

किस मामले में सभी लेकिन अधिक से अधिक मूल्यों में से कई अनिवार्य रूप से शून्य हैं।

यदि एक बनच अंतरिक्ष में वैक्टरों की एक गणनीय श्रृंखला पूरी तरह से अभिसरण करती है तो यह बिना शर्त के अभिसरण करती है, लेकिन बातचीत केवल परिमित-आयामी बानाच रिक्त स्थान (प्रमेय का प्रमेय) में होती है Dvoretzky & Rogers (1950)).

सुव्यवस्थित योग

सशर्त अभिसरण श्रृंखला पर विचार किया जा सकता है यदि एक सुव्यवस्थित सेट है, उदाहरण के लिए, एक क्रमिक संख्या इस मामले में, ट्रांसफिनिट रिकर्सन द्वारा परिभाषित करें:

और एक सीमा के लिए

यदि यह सीमा मौजूद है। यदि सभी सीमाएं मौजूद हैं फिर श्रृंखला अभिसरण करती है।

उदाहरण

  1. एक समारोह दिया एक एबेलियन टोपोलॉजिकल समूह में प्रत्येक के लिए परिभाषित करें

    एक फ़ंक्शन जिसका समर्थन (गणित) एक सिंगलटन (गणित) है फिर

    बिन्दुवार अभिसरण की टोपोलॉजी में (अर्थात, योग को अनंत उत्पाद समूह में लिया जाता है ).

  2. एकता के विभाजन की परिभाषा में, एक मनमाना सूचकांक सेट पर कार्यों के योग का निर्माण करता है

    हालांकि, औपचारिक रूप से, इसके लिए बेशुमार श्रृंखला के योगों की धारणा की आवश्यकता होती है, निर्माण द्वारा, प्रत्येक दिए गए के लिए योग में केवल बहुत से अशून्य शब्द हैं, इसलिए ऐसी राशियों के अभिसरण के संबंध में कोई समस्या उत्पन्न नहीं होती है। वास्तव में, कोई आमतौर पर अधिक मानता है: कार्यों का परिवार स्थानीय रूप से परिमित है, अर्थात प्रत्येक के लिए का एक पड़ोस है जिसमें सीमित संख्या में कार्यों को छोड़कर सभी गायब हो जाते हैं। की कोई भी नियमितता संपत्ति जैसे कि निरंतरता, अवकलनीयता, जो परिमित राशि के तहत संरक्षित है, कार्यों के इस परिवार के किसी भी उपसंग्रह के योग के लिए संरक्षित किया जाएगा।

  3. पहले बेशुमार अध्यादेश पर आदेश टोपोलॉजी, निरंतर कार्य में एक टोपोलॉजिकल स्पेस के रूप में देखा जाता है के द्वारा दिया गया संतुष्ट

    (दूसरे शब्दों में, 1 की प्रतियां हैं ) केवल तभी जब कोई परिमित आंशिक योगों के बजाय सभी गणनीय आंशिक योगों पर एक सीमा लेता है। यह स्थान वियोज्य नहीं है।

यह भी देखें

संदर्भ

  1. Thompson, Silvanus; Gardner, Martin (1998). कैलकुलस मेड ईज़ी. ISBN 978-0-312-18548-0.
  2. 2.0 2.1 2.2 2.3 2.4 Weisstein, Eric W. "श्रृंखला". mathworld.wolfram.com (in English). Retrieved 2020-08-30.
  3. 3.0 3.1 Swokowski 1983, p. 501
  4. Michael Spivak, Calculus
  5. "अनंत श्रृंखला". www.mathsisfun.com. Retrieved 2020-08-30.
  6. Gasper, G., Rahman, M. (2004). Basic hypergeometric series. Cambridge University Press.
  7. Max A. Alekseyev, On convergence of the Flint Hills series, arXiv:1104.5100, 2011.
  8. Weisstein, Eric W. "Flint Hills Series". MathWorld.
  9. Positive and Negative Terms: Alternating Series
  10. Johansson, F. (2016). Computing hypergeometric functions rigorously. arXiv preprint arXiv:1606.06977.
  11. Higham, N. J. (2008). Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics.
  12. Higham, N. J. (2009). The scaling and squaring method for the matrix exponential revisited. SIAM review, 51(4), 747-764.
  13. How and How Not to Compute the Exponential of a Matrix
  14. Nicolas Bourbaki (1989), Algebra, Springer: §III.2.11.
  15. O'Connor, J.J. & Robertson, E.F. (February 1996). "कैलकुलस का इतिहास". University of St Andrews. Retrieved 2007-08-07.
  16. K., Bidwell, James (30 November 1993). "आर्किमिडीज और पाई-रिविजिटेड।". School Science and Mathematics. 94 (3).{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. "भारतीयों ने न्यूटन की 'खोज' को 250 साल पहले कर दिया था". manchester.ac.uk.
  18. Jean Dieudonné, Foundations of mathematical analysis, Academic Press
  19. Bourbaki, Nicolas (1998). सामान्य टोपोलॉजी: अध्याय 1-4. Springer. pp. 261–270. ISBN 978-3-540-64241-1.
  20. Choquet, Gustave (1966). टोपोलॉजी. Academic Press. pp. 216–231. ISBN 978-0-12-173450-3.
  21. Schaefer & Wolff 1999, pp. 179–180.


ग्रन्थसूची

MR0033975


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • एलिया का ज़ेनो
  • गणना
  • भौतिक विज्ञान
  • आंकड़े
  • साहचर्य
  • Achilles और कछुआ
  • जनरेटिंग फ़ंक्शन
  • समारोह (गणित)
  • क्षेत्र (गणित)
  • जियोमीट्रिक श्रंखला
  • अनुक्रम की सीमा
  • भिन्न श्रृंखला
  • प्राथमिक बीजगणित
  • दोहराए जाने वाले दशमलव
  • पूरी जगह
  • अंकगणितीय आपरेशनस
  • गुणक
  • अंकगणित क्रम
  • अभिन्न प्रणाली
  • बुनियादी हाइपरज्यामितीय श्रृंखला
  • अण्डाकार हाइपरज्यामितीय श्रृंखला
  • तर्कहीनता माप
  • एकात्मक ऑपरेशन
  • यौगिक
  • रैखिक मानचित्र
  • उपसर्ग राशि
  • मान्य अंकगणित
  • कंप्यूटर की सहायता से सबूत
  • एन-वें टर्म टेस्ट
  • कारण परीक्षण
  • जड़ परीक्षण
  • मोनोटोन घट रहा है
  • धार्मिक परीक्षण
  • फोरियर श्रेणी
  • अभिसरण के तरीके
  • शून्य सेट
  • बंधा हुआ सेट
  • वर्गीकृत बीजगणित
  • antiderivative
  • अंतर बीजगणित
  • त्रिकोणमितीय समारोह
  • क्यू श्रृंखला
  • जेम्स ग्रेगरी (खगोलविद और गणितज्ञ)
  • बिजली की श्रृंखला
  • यूलिसिस दीनी
  • गोथोल्ड आइज़ेंस्टीन
  • गंभीर दु:ख
  • हाबिल योग
  • बनच की सीमा
  • औपचारिक राशि
  • गिनती का पैमाना
  • हॉसडॉर्फ स्पेस
  • टोपोलॉजिकल समूह
  • सबसेट
  • परिमित सेट
  • आंशिक रूप से आदेशित सेट
  • शामिल हों (गणित)
  • जाल की सीमा
  • परिवर्तन
  • बिल्कुल योग्‍य
  • परमाणु अंतरिक्ष
  • अर्धवृत्ताकार स्थान
  • क्रमसूचक संख्या
  • बिंदुवार अभिसरण की टोपोलॉजी
  • पहला बेशुमार क्रमसूचक

बाहरी संबंध