सतह अभिन्न: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 61: Line 61:


S पर 'v' का अभिन्न पिछले भाग में परिभाषित किया गया था। मान लीजिए कि अब इसे एकीकृत करना ही वांछित है
S पर 'v' का अभिन्न पिछले भाग में परिभाषित किया गया था। मान लीजिए कि अब इसे एकीकृत करना ही वांछित है
सतह पर सदिश क्षेत्र का [[सामान्य घटक]], जिसका परिणाम अदिश राशि होता है, जिसे आमतौर पर सतह से गुजरने वाले सदिश क्षेत्र का प्रवाह कहा जाता है। उदाहरण के लिए, कल्पना करें कि हमारे पास S के माध्यम से तरल पदार्थ बह रहा है, जैसे कि 'v'('r') 'r' पर तरल पदार्थ का वेग निर्धारित करता है। [[फ्लक्स]] को प्रति इकाई समय एस के माध्यम से बहने वाले तरल पदार्थ की मात्रा के रूप में परिभाषित किया गया है।


इस उदाहरण से पता चलता है कि यदि सदिश क्षेत्र प्रत्येक बिंदु पर S के [[स्पर्शरेखा]] है, तो फ्लक्स शून्य है क्योंकि द्रव केवल S के [[समानांतर (ज्यामिति)]] में बहता है, और न तो अंदर और न ही बाहर। इसका तात्पर्य यह भी है कि यदि 'v' केवल S के साथ प्रवाहित नहीं होता है, अर्थात, यदि 'v' में स्पर्शरेखीय और सामान्य दोनों घटक हैं, तो केवल सामान्य घटक ही प्रवाह में योगदान देता है। इस तर्क के आधार पर, फ्लक्स को खोजने के लिए, हमें प्रत्येक बिंदु पर इकाई सतह सामान्य 'n' से S के साथ 'v' का [[डॉट उत्पाद]] लेने की आवश्यकता है, जो हमें अदिश क्षेत्र देगा, और उपरोक्त के अनुसार प्राप्त क्षेत्र को एकीकृत करेगा। . दूसरे शब्दों में, हमें सदिश सतह तत्व के संबंध में 'v' को एकीकृत करना होगा <math>\mathrm{d}\mathbf s = {\mathbf n} \mathrm{d}s</math>, जो दिए गए बिंदु पर S के लिए सामान्य सदिश है, जिसका परिमाण है <math>\mathrm{d}s = \|\mathrm{d}{\mathbf s}\|.</math>
सतह पर सदिश क्षेत्र का [[सामान्य घटक]], जिसका परिणाम अदिश राशि होता है, जिसे सामान्यतः सतह से निकलने वाले सदिश क्षेत्र का प्रवाह कहा जाता है। उदाहरण के लिए, कल्पना करें कि हमारे पास S के माध्यम से तरल पदार्थ बह रहा है, जैसे कि 'v'('r') 'r' पर तरल पदार्थ का वेग निर्धारित करता है। [[फ्लक्स]] को प्रति इकाई समय एस के माध्यम से बहने वाले तरल पदार्थ की मात्रा के रूप में परिभाषित किया गया है।
 
इस उदाहरण से पता चलता है कि यदि सदिश क्षेत्र प्रत्येक बिंदु पर S के [[स्पर्शरेखा]] है, तो फ्लक्स शून्य है क्योंकि द्रव केवल S के [[समानांतर (ज्यामिति)]] में बहता है, और न तो अंदर और न ही बाहर। इसका तात्पर्य यह भी है कि यदि 'v' केवल S के साथ प्रवाहित नहीं होता है, अर्थात, यदि 'v' में स्पर्शरेखीय और सामान्य दोनों घटक हैं, तो केवल सामान्य घटक ही प्रवाह में योगदान देता है। इस तर्क के आधार पर, फ्लक्स को खोजने के लिए, हमें प्रत्येक बिंदु पर इकाई सतह सामान्य 'n' से S के साथ 'v' का [[डॉट उत्पाद]] लेने की आवश्यकता है, जो हमें अदिश क्षेत्र देगा, और उपरोक्त के अनुसार प्राप्त क्षेत्र को एकीकृत करेगा। दूसरे शब्दों में, हमें सदिश सतह तत्व <math>\mathrm{d}\mathbf s = {\mathbf n} \mathrm{d}s</math> के संबंध में v को एकीकृत करना होगा, जो दिए गए बिंदु पर S के लिए सामान्य सदिश है, जिसका परिमाण <math>\mathrm{d}s = \|\mathrm{d}{\mathbf s}\|</math> है
 
हम सूत्र ढूंढते हैं
हम सूत्र ढूंढते हैं
:<math>\begin{align}
:<math>\begin{align}
Line 70: Line 72:
&{}=\iint_T {\mathbf v}(\mathbf{r}(s, t))\cdot \left(\frac{\partial \mathbf{r}}{\partial s}\times \frac{\partial \mathbf{r}}{\partial t}\right) \mathrm ds\, \mathrm dt.
&{}=\iint_T {\mathbf v}(\mathbf{r}(s, t))\cdot \left(\frac{\partial \mathbf{r}}{\partial s}\times \frac{\partial \mathbf{r}}{\partial t}\right) \mathrm ds\, \mathrm dt.
\end{align}</math>
\end{align}</math>
इस अभिव्यक्ति के दाहिनी ओर का क्रॉस उत्पाद पैरामीट्रिजेशन द्वारा निर्धारित (जरूरी नहीं कि इकाई) सतह है।
इस अभिव्यक्ति के दाहिनी ओर का क्रॉस उत्पाद पैरामीट्रिजेशन द्वारा निर्धारित (आवश्यक नहीं कि इकाई) सतह है।
 
यह सूत्र बाईं (सतह तत्व के लिए बिंदु और सदिश नोटेशन पर ध्यान दें) ओर अभिन्न को परिभाषित करता है।


यह सूत्र बाईं ओर अभिन्न को परिभाषित करता है (सतह तत्व के लिए बिंदु और सदिश नोटेशन पर ध्यान दें)।
हम इसे 2-रूपों को एकीकृत करने के विशेष स्थिति के रूप में भी व्याख्या कर सकते हैं, जहां हम 1-रूप के साथ सदिश क्षेत्र की पहचान करते हैं, और फिर सतह पर इसके [[हॉज दोहरे]] को एकीकृत करते हैं।


हम इसे 2-रूपों को एकीकृत करने के विशेष मामले के रूप में भी व्याख्या कर सकते हैं, जहां हम 1-रूप के साथ सदिश क्षेत्र की पहचान करते हैं, और फिर सतह पर इसके [[हॉज दोहरे]] को एकीकृत करते हैं।
यह डूबी हुई सतह पर <math>\left\langle \mathbf{v}, \mathbf{n} \right\rangle \mathrm dS </math> को एकीकृत करने के बराबर है, जहां <math>\mathrm dS</math> सतह पर प्रेरित आयतन रूप है, जो सतह के बाहरी सामान्य के साथ परिवेशी स्थान के रीमैनियन मीट्रिक के [[आंतरिक गुणन]] द्वारा प्राप्त किया जाता है।
यह एकीकृत करने के बराबर है <math>\left\langle \mathbf{v}, \mathbf{n} \right\rangle \mathrm dS </math> डूबी हुई सतह के ऊपर, जहाँ <math>\mathrm dS</math> सतह पर प्रेरित आयतन रूप प्राप्त होता है
सतह के बाहरी सामान्य के साथ परिवेशीय स्थान के रीमैनियन मीट्रिक के [[आंतरिक गुणन]] द्वारा।


==विभेदक 2-रूपों का सतही अभिन्न ==
==विभेदक 2-रूपों का सतही अभिन्न ==
होने देना
मान लीजिये
:<math> f=f_{z}\, \mathrm dx \wedge \mathrm dy + f_{x}\, \mathrm dy \wedge \mathrm dz + f_{y}\, \mathrm dz  \wedge \mathrm dx</math>
:<math> f=f_{z}\, \mathrm dx \wedge \mathrm dy + f_{x}\, \mathrm dy \wedge \mathrm dz + f_{y}\, \mathrm dz  \wedge \mathrm dx</math>
[[विभेदक रूप]] बनें|विभेदक 2-रूप सतह एस पर परिभाषित किया गया है, और चलो
[[विभेदक रूप]] बनें। सतह S पर परिभाषित एक अंतर 2-रूप हो, और मान ले


:<math>\mathbf{r} (s,t)=( x(s,t), y(s,t), z(s,t))</math>
:<math>\mathbf{r} (s,t)=( x(s,t), y(s,t), z(s,t))</math>
एस के साथ एक [[ उन्मुखता ]] पैरामीट्रिजेशन बनें <math>(s,t)</math> डी में। से निर्देशांक बदलना <math>(x, y)</math> को <math>(s, t)</math>, विभेदक रूप रूपांतरित होते हैं
D में <math>(s,t)</math> के साथ S के पैरामीट्रिजेशन को [[ उन्मुखता | संरक्षित]] करने वाला एक अभिविन्यास बनें। निर्देशांक को <math>(x, y)</math> से <math>(s, t)</math> में बदलने पर, अंतर रूप बदल जाते हैं


:<math>\mathrm dx=\frac{\partial x}{\partial s}\mathrm ds+\frac{\partial x}{\partial t}\mathrm dt</math>
:<math>\mathrm dx=\frac{\partial x}{\partial s}\mathrm ds+\frac{\partial x}{\partial t}\mathrm dt</math>
:<math>\mathrm dy=\frac{\partial y}{\partial s}\mathrm ds+\frac{\partial y}{\partial t}\mathrm dt</math>
:<math>\mathrm dy=\frac{\partial y}{\partial s}\mathrm ds+\frac{\partial y}{\partial t}\mathrm dt</math>
इसलिए <math> \mathrm dx \wedge \mathrm dy </math> में परिवर्तित हो जाता है <math> \frac{\partial(x,y)}{\partial(s,t)}  \mathrm ds \wedge \mathrm dt </math>, जहां <math> \frac{\partial(x,y)}{\partial(s,t)} </math> जैकोबियन मैट्रिक्स के निर्धारक और संक्रमण फलन के निर्धारक को दर्शाता है <math>(s, t)</math> को <math>(x,y)</math>. अन्य रूपों का परिवर्तन भी इसी प्रकार है।
इसलिए <math> \mathrm dx \wedge \mathrm dy </math> से <math> \frac{\partial(x,y)}{\partial(s,t)}  \mathrm ds \wedge \mathrm dt </math> में परिवर्तित हो जाता है, जहां <math> \frac{\partial(x,y)}{\partial(s,t)} </math> जैकोबियन मैट्रिक्स के निर्धारक और संक्रमण फलन के निर्धार <math>(s, t)</math> को <math>(x,y)</math> को दर्शाता है। अन्य रूपों का परिवर्तन भी इसी प्रकार है।


फिर, S पर f का सतही अभिन्न इस प्रकार दिया जाता है
फिर, S पर f का सतही अभिन्न इस प्रकार दिया जाता है
Line 95: Line 97:
जहां
जहां
:<math>{\partial \mathbf{r} \over \partial s}\times {\partial \mathbf{r} \over \partial t}=\left(\frac{\partial(y,z)}{\partial(s,t)}, \frac{\partial(z,x)}{\partial(s,t)}, \frac{\partial(x,y)}{\partial(s,t)}\right)</math>
:<math>{\partial \mathbf{r} \over \partial s}\times {\partial \mathbf{r} \over \partial t}=\left(\frac{\partial(y,z)}{\partial(s,t)}, \frac{\partial(z,x)}{\partial(s,t)}, \frac{\partial(x,y)}{\partial(s,t)}\right)</math>
एस के लिए सामान्य सतह तत्व है।
S के लिए सामान्य सतह तत्व है।


आइए ध्यान दें कि इस 2-रूप का सतह अभिन्न अंग सदिश क्षेत्र के सतह अभिन्न अंग के समान है जिसमें घटक होते हैं <math>f_x</math>, <math>f_y</math> और <math>f_z</math>.
आइए ध्यान दें कि इस 2-रूप का सतह अभिन्न अंग सदिश क्षेत्र के सतह अभिन्न अंग के समान है जिसमें <math>f_x</math>, <math>f_y</math> और <math>f_z</math> घटक होते है।


== सतह अभिन्न से जुड़े प्रमेय ==
== सतह अभिन्न से जुड़े प्रमेय ==

Revision as of 05:39, 14 July 2023

गणित में, विशेष रूप से बहुपरिवर्तनीय कलन में, एक सतही अभिन्न, सतहों पर एकीकरण के लिए एकाधिक अभिन्न (डिफरेंशियल ज्योमेट्री) का एक सामान्यीकरण है। इसे लाइन अभिन्न का दोहरा अभिन्न एनालॉग माना जा सकता है। किसी सतह को देखते हुए, कोई सतह पर एक अदिश क्षेत्र (अर्थात्, स्थिति का एक फलन (गणित) जो अदिश को मान के रूप में लौटाता है) या एक सदिश क्षेत्र (अर्थात्, एक फलन जो सदिश को मान के रूप में लौटाता है) को एकीकृत कर सकता है। यदि कोई क्षेत्र R समतल नहीं है, तो इसे सतह (विभेदक ज्यामिति) कहा जाता है जैसा कि चित्र में दिखाया गया है।

भूतल अभिन्नों का भौतिकी में, विशेष रूप से मौलिक विद्युत चुंबकत्व के सिद्धांतों में, अनुप्रयोग होता है।

File:Surface integral illustration.svg
सतह अभिन्न की परिभाषा सतह को छोटे सतह तत्वों में विभाजित करने पर निर्भर करती है।
File:Surface integral1.svg
एकल सतह तत्व का चित्रण. इन तत्वों को सीमित प्रक्रिया द्वारा अत्यंत छोटा बनाया जाता है, जिससे सतह के करीब आ सकें।

अदिश क्षेत्रों का सतही अभिन्न

मान लें कि f सतह S पर परिभाषित अदिश, सदिश या टेंसर क्षेत्र है। S के ऊपर एफ के सतह अभिन्न अंग के लिए स्पष्ट सूत्र खोजने के लिए, हमें गोले पर भौगोलिक समन्वय प्रणाली की तरह, S पर वक्रीय निर्देशांक की प्रणाली को परिभाषित करके प्रणाली S को समन्वयित करने की आवश्यकता है। मान लीजिए कि ऐसा मानकीकरण r(s, t) हैं, जहाँ (s, t) समतल में कुछ क्षेत्र T में भिन्न होता है। फिर, सतह अभिन्न द्वारा दिया जाता है

जहां दाईं ओर की पट्टियों के बीच की अभिव्यक्ति r(s, t) के आंशिक व्युत्पन्न के क्रॉस उत्पाद का परिमाण (गणित) है, और इसे सतह (जो, उदाहरण के लिए, गोले के ध्रुवों के पास छोटा मान उत्पन्न करेगा। जहां देशांतर की रेखाएं अधिक नाटकीय रूप से अभिसरित होती हैं, और अक्षांशीय निर्देशांक अधिक सघन दूरी पर होते हैं) के रूप में जाना जाता है। सतह अभिन्न को समतुल्य रूप में भी व्यक्त किया जा सकता है

जहां g सतह मानचित्रण r(s, t) के पहले मौलिक रूप का निर्धारक है।[1][2] उदाहरण के लिए, यदि हम किसी अदिश फलन के ग्राफ का पृष्ठीय क्षेत्रफल ज्ञात करना चाहते हैं, मान लीजिए z = f(x, y), अपने पास

जहां r = (x, y, z) = (x, y, f(x, y)) है। जिससे , और है। इसलिए,

जो इस प्रकार वर्णित सतह के क्षेत्रफल के लिए मानक सूत्र है। ऊपर की दूसरी-अंतिम पंक्ति में सदिश को सतह के सामान्य सतह के रूप में पहचाना जा सकता है।

क्रॉस उत्पाद की उपस्थिति के कारण, उपरोक्त सूत्र केवल त्रि-आयामी अंतरिक्ष में एम्बेडेड सतहों के लिए काम करते हैं।

इसे पैरामीटरयुक्त सतह पर रीमैनियन वॉल्यूम फॉर्म को एकीकृत करने के रूप में देखा जा सकता है, जहां मीट्रिक टेंसर सतह के पहले मौलिक रूप द्वारा दिया जाता है।

सदिश क्षेत्रों का सतही अभिन्न

A curved surface with a vector field passing through it. The red arrows (vectors) represent the magnitude and direction of the field at various points on the surface
Surface divided into small patches by a parameterization of the surface
The flux through each patch is equal to the normal (perpendicular) component of the field at the patch's location multiplied by the area . The normal component is equal to the dot product of with the unit normal vector (blue arrows)
The total flux through the surface is found by adding up for each patch. In the limit as the patches become infinitesimally small, this is the surface integral

सतह S पर सदिश क्षेत्र v पर विचार करें, अर्थात प्रत्येक के लिए r = (x, y, z) S में, 'v'('r') सदिश है।

S पर 'v' का अभिन्न पिछले भाग में परिभाषित किया गया था। मान लीजिए कि अब इसे एकीकृत करना ही वांछित है

सतह पर सदिश क्षेत्र का सामान्य घटक, जिसका परिणाम अदिश राशि होता है, जिसे सामान्यतः सतह से निकलने वाले सदिश क्षेत्र का प्रवाह कहा जाता है। उदाहरण के लिए, कल्पना करें कि हमारे पास S के माध्यम से तरल पदार्थ बह रहा है, जैसे कि 'v'('r') 'r' पर तरल पदार्थ का वेग निर्धारित करता है। फ्लक्स को प्रति इकाई समय एस के माध्यम से बहने वाले तरल पदार्थ की मात्रा के रूप में परिभाषित किया गया है।

इस उदाहरण से पता चलता है कि यदि सदिश क्षेत्र प्रत्येक बिंदु पर S के स्पर्शरेखा है, तो फ्लक्स शून्य है क्योंकि द्रव केवल S के समानांतर (ज्यामिति) में बहता है, और न तो अंदर और न ही बाहर। इसका तात्पर्य यह भी है कि यदि 'v' केवल S के साथ प्रवाहित नहीं होता है, अर्थात, यदि 'v' में स्पर्शरेखीय और सामान्य दोनों घटक हैं, तो केवल सामान्य घटक ही प्रवाह में योगदान देता है। इस तर्क के आधार पर, फ्लक्स को खोजने के लिए, हमें प्रत्येक बिंदु पर इकाई सतह सामान्य 'n' से S के साथ 'v' का डॉट उत्पाद लेने की आवश्यकता है, जो हमें अदिश क्षेत्र देगा, और उपरोक्त के अनुसार प्राप्त क्षेत्र को एकीकृत करेगा। दूसरे शब्दों में, हमें सदिश सतह तत्व के संबंध में v को एकीकृत करना होगा, जो दिए गए बिंदु पर S के लिए सामान्य सदिश है, जिसका परिमाण है

हम सूत्र ढूंढते हैं

इस अभिव्यक्ति के दाहिनी ओर का क्रॉस उत्पाद पैरामीट्रिजेशन द्वारा निर्धारित (आवश्यक नहीं कि इकाई) सतह है।

यह सूत्र बाईं (सतह तत्व के लिए बिंदु और सदिश नोटेशन पर ध्यान दें) ओर अभिन्न को परिभाषित करता है।

हम इसे 2-रूपों को एकीकृत करने के विशेष स्थिति के रूप में भी व्याख्या कर सकते हैं, जहां हम 1-रूप के साथ सदिश क्षेत्र की पहचान करते हैं, और फिर सतह पर इसके हॉज दोहरे को एकीकृत करते हैं।

यह डूबी हुई सतह पर को एकीकृत करने के बराबर है, जहां सतह पर प्रेरित आयतन रूप है, जो सतह के बाहरी सामान्य के साथ परिवेशी स्थान के रीमैनियन मीट्रिक के आंतरिक गुणन द्वारा प्राप्त किया जाता है।

विभेदक 2-रूपों का सतही अभिन्न

मान लीजिये

विभेदक रूप बनें। सतह S पर परिभाषित एक अंतर 2-रूप हो, और मान ले

D में के साथ S के पैरामीट्रिजेशन को संरक्षित करने वाला एक अभिविन्यास बनें। निर्देशांक को से में बदलने पर, अंतर रूप बदल जाते हैं

इसलिए से में परिवर्तित हो जाता है, जहां जैकोबियन मैट्रिक्स के निर्धारक और संक्रमण फलन के निर्धार को को दर्शाता है। अन्य रूपों का परिवर्तन भी इसी प्रकार है।

फिर, S पर f का सतही अभिन्न इस प्रकार दिया जाता है

जहां

S के लिए सामान्य सतह तत्व है।

आइए ध्यान दें कि इस 2-रूप का सतह अभिन्न अंग सदिश क्षेत्र के सतह अभिन्न अंग के समान है जिसमें , और घटक होते है।

सतह अभिन्न से जुड़े प्रमेय

सतह अभिन्न के लिए विभिन्न उपयोगी परिणाम अंतर ज्यामिति और सदिश कलन का उपयोग करके प्राप्त किए जा सकते हैं, जैसे कि विचलन प्रमेय, और इसका सामान्यीकरण, स्टोक्स प्रमेय।

पैरामीट्रिजेशन पर निर्भरता

आइए ध्यान दें कि हमने सतह एस के पैरामीट्रिजेशन का उपयोग करके सतह अभिन्न को परिभाषित किया है। हम जानते हैं कि किसी दी गई सतह में कई पैरामीट्रिजेशन हो सकते हैं। उदाहरण के लिए, यदि हम गोले पर उत्तरी ध्रुव और दक्षिणी ध्रुव के स्थानों को स्थानांतरित करते हैं, तो गोले पर सभी बिंदुओं के लिए अक्षांश और देशांतर बदल जाते हैं। स्वाभाविक प्रश्न यह है कि क्या सतह अभिन्न की परिभाषा चुने हुए पैरामीट्रिजेशन पर निर्भर करती है। अदिश क्षेत्रों के अभिन्नों के लिए, इस प्रश्न का उत्तर सरल है; सतह अभिन्न का मान वही रहेगा चाहे कोई भी पैरामीट्रिजेशन का उपयोग करे।

सदिश क्षेत्रों के अभिन्नों के लिए, चीजें अधिक जटिल हैं क्योंकि सतह सामान्य शामिल है। यह साबित किया जा सकता है कि ही सतह के दो पैरामीट्रिजेशन दिए गए हैं, जिनकी सतह के मानक ही दिशा में इंगित करते हैं, दोनों पैरामीट्रिजेशन के साथ सतह अभिन्न के लिए समान मूल्य प्राप्त होता है। यदि, हालांकि, इन पैरामीट्रिजेशन के लिए मानक विपरीत दिशाओं में इंगित करते हैं, तो पैरामीट्रिजेशन का उपयोग करके प्राप्त सतह अभिन्न का मूल्य अन्य पैरामीट्रिजेशन के माध्यम से प्राप्त किए गए का नकारात्मक है। इससे यह पता चलता है कि किसी सतह को देखते हुए, हमें किसी अद्वितीय पैरामीट्रिजेशन से चिपके रहने की आवश्यकता नहीं है, लेकिन, सदिश क्षेत्र को एकीकृत करते समय, हमें पहले से तय करने की आवश्यकता है कि सामान्य किस दिशा में इंगित करेगा और फिर उस दिशा के अनुरूप किसी भी पैरामीट्रिजेशन को चुनें।

और मुद्दा यह है कि कभी-कभी सतहों में पैरामीट्रिज़ेशन नहीं होते हैं जो पूरी सतह को कवर करते हैं। स्पष्ट समाधान यह है कि उस सतह को कई टुकड़ों में विभाजित किया जाए, प्रत्येक टुकड़े पर सतह के अभिन्न अंग की गणना की जाए, और फिर उन सभी को जोड़ दिया जाए। यह वास्तव में चीजें कैसे काम करती हैं, लेकिन सदिश क्षेत्र को एकीकृत करते समय, किसी को फिर से सावधान रहना होगा कि सतह के प्रत्येक टुकड़े के लिए सामान्य-पॉइंटिंग सदिश का चयन कैसे करें, जिससे जब टुकड़ों को साथ वापस रखा जाए, तो परिणाम सुसंगत हों। सिलेंडर के लिए, इसका मतलब यह है कि यदि हम तय करते हैं कि पार्श्व क्षेत्र के लिए सामान्य शरीर से बाहर की ओर इंगित करेगा, तो ऊपर और नीचे के गोलाकार भागों के लिए, सामान्य को भी शरीर से बाहर की ओर इंगित करना चाहिए।

अंत में, ऐसी सतहें हैं जो सुसंगत परिणामों के साथ प्रत्येक बिंदु पर सामान्य सतह को स्वीकार नहीं करती हैं (उदाहरण के लिए, मोबियस स्ट्रिप)। यदि ऐसी सतह को टुकड़ों में विभाजित किया जाता है, तो प्रत्येक टुकड़े पर पैरामीट्रिजेशन और संबंधित सतह सामान्य को चुना जाता है, और टुकड़ों को वापस साथ रखा जाता है, हम पाएंगे कि विभिन्न टुकड़ों से आने वाले सामान्य वैक्टर को समेटा नहीं जा सकता है। इसका मतलब यह है कि दो टुकड़ों के बीच कुछ जंक्शन पर हमारे पास विपरीत दिशाओं की ओर इशारा करने वाले सामान्य सदिश होंगे। ऐसी सतह को ओरिएंटेबिलिटी|नॉन-ओरिएंटेबल कहा जाता है, और इस तरह की सतह पर, सदिश क्षेत्र को एकीकृत करने के बारे में बात नहीं की जा सकती है।

यह भी देखें

संदर्भ

  1. Edwards, C. H. (1994). कई वेरिएबल्स का उन्नत कैलकुलस. Mineola, NY: Dover. p. 335. ISBN 0-486-68336-2.
  2. Hazewinkel, Michiel (2001). गणित का विश्वकोश. Springer. pp. Surface Integral. ISBN 978-1-55608-010-4.


बाहरी संबंध