मीट्रिक टेंसर

From Vigyanwiki

अवकल ज्यामिति के गणितीय क्षेत्र में, एक मीट्रिक टेन्सर (या केवल मीट्रिक) मैनिफोल्ड M (जैसे सतह) पर एक ऐसी अतिरिक्त गणितीय संरचना है जो दूरी और कोणों को परिभाषित करने की अनुमति ठीक उसी प्रदान करती है, जिस प्रकार यूक्लिडीय अंतरिक्ष पर आंतरिक गुणनफल, दूरी और कोण को परिभाषित करने की अनुमति प्रदान करता है। अधिक यथार्थ रूप से, M के किसी बिंदु p पर एक मीट्रिक टेन्सर, p पर स्पर्शरेखा समष्टि पर परिभाषित एक द्विरेखीय रूप है (अर्थात्, एक द्विरेखीय फलन, जो स्पर्शरेखा सदिश युग्मों को वास्तविक संख्याओं में प्रतिचित्रित करता है), और M पर एक मीट्रिक टेंसर में M के प्रत्येक बिंदु p पर एक ऐसा मीट्रिक टेंसर होता है जो आसानी से p के साथ परिवर्तित होता रहता है।

एक मीट्रिक टेन्सर g धनात्मक-निश्चित होता है यदि, प्रत्येक अशून्य सदिश v के लिए, g(v, v) > 0। धनात्मक-निश्चित मीट्रिक टेन्सर से सुसज्जित मैनिफोल्ड को रीमैनियन मैनिफोल्ड के रूप में जाना जाता है। इस प्रकार के एक मीट्रिक टेन्सर पर किसी मैनिफोल्ड पर अतिसूक्ष्म दूरी को निर्दिष्ट करने के बारे में विचार किया जा सकता है। रीमैनियन मैनिफोल्ड M पर, दो बिंदुओं p और q के बीच एक निष्कोण वक्र की लंबाई को समाकलन द्वारा परिभाषित किया जा सकता है, और p और q के बीच की दूरी को इस प्रकार के सभी वक्रों की लंबाई के न्यूनतम के रूप में परिभाषित किया जा सकता है; यह M को एक मीट्रिक समष्टि बनाता है। इसके विपरीत, मीट्रिक टेन्सर स्वयं दूरी फलन (उपयुक्त तरीके से लिया गया) का अवकलज है।[citation needed]

हालाँकि एक मीट्रिक टेन्सर की धारणा कुछ अर्थों में कार्ल गॉस जैसे गणितज्ञों को 19वीं शताब्दी के प्रारंभ से ज्ञात थी, फिर भी 20वीं शताब्दी के प्रारंभ तक ऐसा नहीं था कि टेन्सर के रूप में इसके गुणों को विशेष रूप से ग्रेगोरियो रिक्की-क्लैस्ट्रो और टुल्लियो लेवी-सिविटा द्वारा समझा गया था, जिन्होंने पहली बार एक टेंसर की धारणा को संहिताबद्ध किया। मीट्रिक टेंसर, टेंसर क्षेत्र का एक उदाहरण है।

किसी मीट्रिक टेन्सर के घटक एक निर्देशांक आधार पर एक सममित आव्यूह के रूप में लिए जाते हैं, जिनकी प्रविष्टियाँ निर्देशांक प्रणाली में परिवर्तन के तहत सहपरिवर्ती रूप से रूपांतरित होती हैं। इस प्रकार एक मीट्रिक टेन्सर एक सहपरिवर्ती सममित टेन्सर होता है। निर्देशांक-मुक्त दृष्टिकोण से, एक मीट्रिक टेन्सर क्षेत्र को प्रत्येक स्पर्शरेखा समष्टि पर एक ऐसे अविकृत सममित द्विरेखीय रूप के रूप में परिभाषित किया जाता है जो बिंदु से बिंदु तक सुचारू रूप से परिवर्तित होता है।

परिचय

कार्ल फ्रेडरिक गॉस ने अपने वर्ष 1827 के डिक्विजिशन्स जेनरल सर्का सुपरफिसीज कर्वस (वक्राकार सतहों की सामान्य जाँच) में दो सहायक चरों u और v के आधार पर सतह पर बिंदुओं के कार्तीय निर्देशांक x, y, और z वाली एक सतह को प्राचलिक रूप से माना। इस प्रकार प्राचलिक सतह (वर्तमान संदर्भ में) एक सदिश-मान फलन होता है

वास्तविक चर (u, v) के एक क्रमित युग्म के आधार पर, और uv-समतल में इसे एक खुले समुच्चय D में परिभाषित किया गया है। गॉस की जाँच के मुख्य उद्देश्यों में से एक सतह की उन विशेषताओं को प्राप्त करना था, जिन्हें एक ऐसे फलन द्वारा वर्णित किया जा सकता है, जो सतह के अंतरिक्ष में एक परिवर्तन (जैसे सतह को बिना खींचे हुए झुकना), या एक ही ज्यामितीय सतह के विशेष प्राचलिक रूप में परिवर्तन से गुजरने पर अपरिवर्तित रहता है।

सतह के अनुदिश खींची गई वक्र की लंबाई ऐसी ही एक प्राकृतिक अपरिवर्तनीय राशि है। ऐसी ही एक अन्य राशि, सतह के अनुदिश खींचे गए वक्रों के एक युग्म और एक उभयनिष्ठ बिंदु पर प्रतिच्छेदन के बीच का कोण है। सतह के एक खण्ड का क्षेत्रफल भी ऐसी ही एक तीसरी राशि है। सतह के इन निश्चरों के अध्ययन ने गॉस को मीट्रिक टेन्सर की आधुनिक धारणा के पूर्ववर्ती को प्रस्तुत करने के लिए प्रेरित किया।

नीचे दिए गए विवरण में मीट्रिक टेन्सर है; इस आव्यूह में E, F, और G कोई भी संख्या ग्रहण कर सकते हैं जब तक कि आव्यूह धनात्मक निश्चित है।

चाप की लंबाई

यदि चरों u और v को एक अंतराल [a, b] से मान ग्रहण हुए एक तीसरे चर, t पर निर्भर करते हुए लिया जाता है, तो r(u(t), v(t)), प्राचलिक सतह M में एक प्राचलिक वक्र आरेखित करता है। इस वक्र के चाप की लंबाई निम्न समाकल द्वारा दी जाती है

जहाँ यूक्लिडीय मानक (फलन) को निरूपित करता है। यहाँ श्रृंखला नियम लागू किया गया है, और सबस्क्रिप्ट निम्न आंशिक अवकलजों को दर्शाते हैं:

समाकल्य (द्विघात) निम्न अवकल के वर्गमूल के वक्र के लिए प्रतिबंध[1] है

 

 

 

 

(1)

जहाँ

 

 

 

 

(2)

(1) में राशि ds को रेखा तत्व, जबकि ds2 को M का पहला मौलिक रूप कहा जाता है। सहज रूप से, यह r(u, v) द्वारा किए गए विस्थापन के वर्ग के मुख्य भाग को निरूपित करता है, जब u में du इकाई और v में dv इकाई की वृद्धि होती है।

आव्यूह संकेतन का उपयोग करते हुए, पहला मौलिक रूप इस प्रकार है

निर्देशांक रूपान्तरण

अब माना u और v को चरों के एक और युग्म u और v पर निर्भर होने की अनुमति देते हुए एक भिन्न प्राचलीकरण का चयन किया जाता है। तब नए चरों के लिए (2) का अनुरूप निम्न है

 

 

 

 

(2')

श्रृंखला नियम, निम्न आव्यूह समीकरण के माध्यम से E, F, और G को E, F, और G से संबंधित करता है

 

 

 

 

(3)

जहाँ सुपरस्क्रिप्ट T आव्यूह परिवर्त को दर्शाता है। गुणांकों E, F, और G वाले आव्यूह इस प्रकार व्यवस्थित किया जाता है, और इस प्रकार निम्न निर्देशांक परिवर्तन के जैकोबियन आव्यूह द्वारा रूपान्तरित किया जाता है

इस तरह से रूपांतरित होने वाला एक आव्यूह एक ऐसे प्रकार का होता है, जिसे एक टेन्सर कहा जाता है। आव्यूह

को रूपान्तरण नियम (3) के साथ सतह के मीट्रिक टेन्सर के रूप में जाना जाता है।

निर्देशांक रूपांतरणों के अंतर्गत चापलम्बाई की निश्चरता

रिक्की-कर्बस्त्रो & लेवी-सिविटा (1900) ने सबसे पहले गुणांकों E, F, और G की एक प्रणाली के महत्व का अवलोकन किया, जो एक निर्देशांक प्रणाली से दूसरी निर्देशांक प्रणाली में जाने पर इस प्रकार से रूपांतरित हो गयी। परिणामस्वरूप पहला मौलिक रूप (1) निर्देशांक प्रणाली में परिवर्तन के तहत निश्चर होता है, और यह विशेष रूप से E, F, और G के रूपान्तरण गुणों का अनुसरण करता है। वास्तव में, श्रृंखला नियम द्वारा,

जिससे


लंबाई और कोण

गॉस द्वारा भी मानी गयी मीट्रिक टेंसर की एक अन्य व्याख्या यह है कि यह सतह पर स्पर्शरेखा सदिशों की लंबाई, साथ ही दो स्पर्शरेखा सदिशों के बीच के कोण की गणना करने की एक विधि प्रदान करता है। समकालीन शब्दों में, मीट्रिक टेन्सर सतह के प्राचलिक विवरण से स्वतंत्र तरीके से स्पर्शरेखा सदिशों के बिंदु गुणन (गैर-यूक्लिडीय ज्यामिति) की गणना करने की अनुमति देता है। प्राचलिक सतह M के किसी बिंदु पर किसी भी स्पर्शरेखा सदिश को निम्न रूप में लिखा जा सकता है

उपयुक्त वास्तविक संख्याओं p1 और p2 के लिए। यदि दो स्पर्शरेखा सदिश इस प्रकार दिए गए हों:

फिर बिंदु गुणन की द्विरैखिकता का उपयोग करते हुए,

यह स्पष्ट रूप से चार चरों a1, b1, a2, और b2 का एक फलन है। हालाँकि, इसे एक ऐसे फलन के रूप में अधिक लाभप्रद रूप से देखा जाता है, जो कोणांकों के एक युग्म a = [a1 a2] और b = [b1 b2] को ग्रहण करता है, जो uv-समतल में सदिश हैं। अर्थात्, निम्न का मान रखने पर

यह a और b में एक सममित फलन है, जिसका अर्थ है

यह द्विरेखीय भी है, जिसका अर्थ है कि यह प्रत्येक चर a और b में अलग-अलग रैखिक है। अर्थात्,

uv-समतल में किन्हीं सदिशों a, a, b, और b, और किसी वास्तविक संख्या μ और λ के लिए।

विशेष रूप से, एक स्पर्शरेखा सदिश a की लंबाई इस प्रकार है

और दो सदिशों a और b के बीच के कोण θ की गणना इस प्रकार की जाती है

क्षेत्रफल

सतह का क्षेत्रफल ऐसी एक अन्य संख्यात्मक राशि है जो केवल सतह पर ही निर्भर होनी चाहिए, न कि इस पर कि यह कैसे प्राचलीकृत है। यदि सतह M, uv-समतल में प्रांत D पर फलन r(u, v) द्वारा प्राचलीकृत है, तो M की सतह का क्षेत्रफल निम्न समाकल द्वारा दिया जाता है

जहाँ ×, क्रॉस (सदिश) गुणन को दर्शाता है, और निरपेक्ष मान यूक्लिडीय अंतरिक्ष में एक सदिश की लंबाई को दर्शाता है। क्रॉस गुणन के लिए लैग्रेंज की सर्वसमिका से, इस समाकल को इस प्रकार लिखा जा सकता है

जहाँ det, सारणिक है।

परिभाषा

माना M, n विमाओं, उदाहरण के लिए कार्तीय तल में एक सतह (n = 2 की स्थिति में) या हाइपरसफेस, वाला एक निष्कोण मैनिफोल्ड है। प्रत्येक बिंदु pM पर एक सदिश अंतरिक्ष TpM होता है, जिसे स्पर्शरेखा समष्टि कहा जाता है, जिसमें सभी स्पर्शरेखा सदिश मैनिफोल्ड के बिंदु p पर होते हैं। p पर एक मीट्रिक टेंसर एक फलन gp(Xp, Yp) है जो p पर स्पर्शरेखा सदिशों Xp और Yp के एक युग्म को इनपुट के रूप में ग्रहण करता है, और आउटपुट के रूप में एक वास्तविक संख्या (अदिश) प्रदान करता है, जिससे निम्नलिखित शर्तों को पूरा किया जा सके:

  • gp, द्विरेखीय है। दो सदिश कोणांकों का एक फलन द्विरेखीय होता है यदि यह प्रत्येक कोणांक में पृथक रूप से रैखिक हो। इस प्रकार यदि Up, Vp और Yp, बिंदु p पर तीन स्पर्शरेखा सदिश हैं और a और b वास्तविक संख्याएँ हैं, तब
  • gp, सममित है।[2] दो सदिश कोणांकों का एक फलन सममित होता है यदि सभी सदिशों Xp और Yp के लिए,
  • gp, अपभ्रष्ट है। एक द्विरेखीय फलन अपभ्रष्ट होता है, यदि प्रत्येक स्पर्शरेखा सदिश Xp ≠ 0 के लिए, फलन
    जो Xp को स्थिर रखते हुए और Yp को परिवर्तित होने की अनुमति देकर प्राप्त किया गया समान रूप से शून्य नहीं है। अर्थात्, प्रत्येक Xp ≠ 0 के लिए एक ऐसे Yp का अस्तित्व होता है कि gp(Xp, Yp) ≠ 0

M पर एक मीट्रिक टेन्सर क्षेत्र g, M के प्रत्येक बिंदु p को p पर स्पर्शरेखा समष्टि में एक मीट्रिक टेंसर gp को इस तरह से आवंटित करता है जो आसानी से p के साथ परिवर्तित होता रहता है। अधिक यथार्थ रूप से, U पर मैनिफोल्ड M और किसी भी (निष्कोण) सदिश क्षेत्र X और Y के किसी भी खुले उपसमुच्चय को देखते हुए, वास्तविक फलन

p का एक सरल फलन है।

मीट्रिक के घटक

सदिश क्षेत्रों, या फ्रेम, f = (X1, ..., Xn) के किसी भी आधार में मीट्रिक के घटक[3] इस प्रकार दिए गए हैं

 

 

 

 

(4)

n2 फलन (gij[f]) एक n × n सममित आव्यूह, G[f] की प्रविष्टियाँ बनाते हैं। यदि

pU पर दो सदिश हैं, तो v और w पर लागू मीट्रिक का मान गुणांक (4) द्वारा द्विरैखिकता द्वारा निर्धारित किया जाता है:

आव्यूह (gij[f]) को G[f] द्वारा निरूपित करते हुए और सदिश v और w के घटकों को स्तम्भ सदिशों v[f] और w[f] में व्यवस्थित करते हुए,

जहाँ v[f]T और w[f]T क्रमशः सदिशों v[f] और w[f] के परिवर्त को दर्शाते हैं। रूप के आधार में परिवर्तन के तहत

कुछ व्युत्क्रमणीय n × n आव्यूहों A = (aij) के लिए, मीट्रिक के घटकों का आव्यूह A द्वारा भी परिवर्तित होता है। अर्थात्

या, इस आव्यूह की प्रविष्टियों के पदों में,

इस कारण से, राशियों gij[f] के निकाय को फ्रेम f में परिवर्तनों के सापेक्ष सहपरिवर्ती रूप से रूपांतरित करने वाला कहा जाता है।

निर्देशांक में मीट्रिक

n वास्तविक-मान फलनों (x1, ..., xn) का एक निकाय, M में एक खुले समुच्चय U पर स्थानीय निर्देशांक प्रणाली प्रदान करते हुए, U पर सदिश क्षेत्र का आधार निर्धारित करता है

मीट्रिक g में इस फ़्रेम के सापेक्ष घटक होते हैं जो इस प्रकार हैं

स्थानीय निर्देशांकों की एक नई प्रणाली के सापेक्ष, माना

मीट्रिक टेन्सर गुणांकों का एक अलग आव्यूह निर्धारित करता है,

फलनों का यह नया निकाय श्रृंखला नियम के माध्यम से मूल gij(f) से संबंधित है

जिससे

या, आव्यूह G[f] = (gij[f]) और G[f′] = (gij[f′]) के संदर्भ में,

जहाँ Dy निर्देशांक परिवर्तन के जैकोबियन आव्यूह को दर्शाता है।

एक मीट्रिक का संकेतक

किसी भी मीट्रिक टेन्सर से संबंधित एक ऐसा द्विघात रूप है जिसे प्रत्येक स्पर्शरेखा समष्टि में इस प्रकार परिभाषित किया गया है

यदि qm सभी अशून्य Xm के लिए धनात्मक है, तो मीट्रिक m पर धनात्मक-निश्चित होता है। यदि मीट्रिक प्रत्येक mM पर धनात्मक-निश्चित है, तो g को रीमैनियन मीट्रिक कहा जाता है। अधिक सामान्यतः, यदि द्विघात रूपों qm में m से स्वतंत्र स्थिर संकेतक होते हैं, तो g का संकेतक यह संकेतक होता है, और g को छद्म-रीमैनियन मीट्रिक कहा जाता है।[4] यदि M जुड़ा हुआ है, तो qm का संकेतक m पर निर्भर नहीं करता है।[5]

सिल्वेस्टर के जड़त्व के नियम से, स्पर्शरेखा सदिशों Xi के आधार को स्थानीय रूप से चुना जा सकता है जिससे द्विघात रूप निम्नलिखित तरीके से विकर्णित हो,

1 और n के बीच किसी p के लिए। q के ऐसे किन्हीं दो व्यंजकों (M के समान बिंदु m पर) में धनात्मक चिह्नों की समान संख्या p होती है। g का संकेतक पूर्णांक (p, np) का युग्म है, जो यह दर्शाता है कि ऐसे किसी भी व्यंजक में p धनात्मक चिह्न और np ऋणात्रामक संकेत होते हैं। समतुल्य रूप से, मीट्रिक में (p, np) संकेतक होता है यदि मीट्रिक के आव्यूह gij में p धनात्मक और np ऋणात्मक अभिलाक्षणिक मान ​​होते हैं।

कुछ मीट्रिक संकेतक जो प्रायः अनुप्रयोगों में उत्पन्न होते हैं:

  • यदि g में संकेतक (n, 0) है, तो g एक रीमैनियन मीट्रिक होता है, और M को रीमैनियन मैनिफोल्ड कहा जाता है। अन्यथा, g एक छद्म-रीमैनियन मीट्रिक होता है, और M को एक छद्म-रीमैनियन मैनिफोल्ड कहा जाता है (इसके लिए अर्द्ध-रीमैनियन शब्द का भी उपयोग किया जाता है)।
  • यदि M, संकेतक (1, 3) या (3, 1) के साथ चार विमीय है, तो मीट्रिक को लोरेंट्ज़ियन मीट्रिक कहा जाता है। अधिक सामान्यतः, 4 के अतिरिक्त विमा n में संकेतक (1, n − 1) या (n − 1, 1) के एक मीट्रिक टेन्सर को कभी-कभी लोरेंट्ज़ियन भी कहा जाता है।
  • यदि M, 2n-विमीय है और (n, n), g का संकेतक है, तो मीट्रिक को पराअतिपरवलयिक मीट्रिक कहा जाता है।

व्युत्क्रम मीट्रिक

माना f = (X1, ..., Xn) सदिश क्षेत्रों का एक आधार है, और जैसा कि ऊपर बताया गया है कि G[f], गुणांकों का आव्यूह है

व्युत्क्रम आव्यूह को G[f]−1 लिया जा सकता है, जिसे व्युत्क्रम मीट्रिक (या संयुग्मी या द्वैत मीट्रिक) के रूप में जाना जाता है। व्युत्क्रम मीट्रिक एक रूपान्तरण नियम को संतुष्ट करता है जब फ्रेम f को आव्यूह A द्वारा परिवर्तित कर दिया जाता है

 

 

 

 

(5)

व्युत्क्रम मीट्रिक प्रतिपरिवर्ती रूप से या आधार आव्यूह A के परिवर्तन के व्युत्क्रम के सापेक्ष रूपांतरित होता है। जबकि मीट्रिक स्वयं सदिश क्षेत्रों की लंबाई (या बीच के कोण) को मापने की एक विधि प्रदान करता है, व्युत्क्रम मीट्रिक उपसदिश क्षेत्रों, अर्थात् रैखिक फलनों के क्षेत्र की लंबाई (या बीच के कोण) को मापने का एक साधन प्रदान करता है।

इसे देखने के लिए, माना α एक उपसदिश क्षेत्र है। अर्थात्, प्रत्येक बिंदु p के लिए, α, स्पर्शरेखा सदिश पर बिंदु p पर परिभाषित एक फलन αp निर्धारित करता है जिससे निम्नलिखित रैखिकता की स्थिति सभी स्पर्शरेखा सदिशों Xp और Yp, और सभी वास्तविक संख्याओं a और b के लिए सत्य हो:

क्योंकि p परिवर्तित होता है, अतः α को इस अर्थ में एक सहज फलन माना जाता है

किसी भी सरल सदिश क्षेत्र X के लिए p का एक सहज फलन है।

किसी भी उपसदिश क्षेत्र α में सदिश क्षेत्र f के आधार पर घटक होते हैं। इन्हें इस प्रकार निर्धारित किया जाता है

इन घटकों के पंक्ति सदिश को निम्न द्वारा निरूपित करने पर

एक आव्यूह A द्वारा f के परिवर्तन के तहत, α[f] निम्न नियम द्वारा परिवर्तित होता है

अर्थात्, घटकों का पंक्ति सदिश α[f], सहपरिवर्ती सदिश के रूप में परिवर्तित होता है।

उपसदिश क्षेत्रों के एक युग्म α और β के लिए, इन दो उपसदिशों पर लागू व्युत्क्रम मीट्रिक को निम्न द्वारा परिभाषित करने पर,

 

 

 

 

(6)

परिणामी परिभाषा वास्तव में f पर एक आवश्यक तरीके से निर्भर नहीं करती है, हालाँकि इसमें आधार f का चयन सम्मिलित है। वास्तव में, आधार को fA में बदलने से निम्न परिणाम प्राप्त होता है

जिससे समीकरण (6) का दायाँ पक्ष आधार f को किसी भी अन्य आधार fA में बदलने से अप्रभावित रहे। परिणामस्वरूप, समीकरण को आधार के चयन से स्वतंत्र रूप से एक अर्थ प्रदान किया जा सकता है। आव्यूह G[f] की प्रविष्टियों को gij द्वारा निरूपित किया जाता है, जहाँ घातांक i और j को रूपान्तरण नियम (5) को इंगित करने के लिए उठाया गया है।

घातांकों का उन्नयन और अवनमन

सदिश क्षेत्रों f = (X1, ..., Xn) के आधार में, किसी भी सहज स्पर्शरेखा सदिश क्षेत्र X को निम्न रूप में लिखा जा सकता है

 

 

 

 

(7)

कुछ विशिष्ट रूप से निर्धारित सहज फलनों v1, ..., vn के लिए। आधार f को एक व्युत्क्रमणीय आव्यूह A द्वारा बदलने पर, गुणांक vi इस प्रकार परिवर्तित होते हैं कि समीकरण (7) सत्य रहती है। अर्थात्,

परिणामस्वरूप, v[fA] = A−1v[f]। दूसरे शब्दों में, सदिश v[f] के घटक व्युत्क्रमणीय आव्यूह A द्वारा आधार के परिवर्तन के तहत प्रतिपरिवर्ती रूप से (अर्थात्, व्युत्क्रम या विपरीत तरीके से) रूपांतरित होते हैं। v[f] के घटकों के प्रतिपरिवर्तन को सांकेतिक रूप से vi[f] के घातांकों को ऊपरी स्थिति में रखकर निर्दिष्ट किया जाता है।

एक फ्रेम उपसदिशों को भी उनके घटकों के संदर्भ में व्यक्त होने की अनुमति देता है। सदिश क्षेत्रों f = (X1, ..., Xn) के आधार के लिए द्वैत आधार को रैखिक फलनकों (θ1[f], ..., θn[f]) में इस प्रकार परिभाषित किया जाता है कि

अर्थात्, θi[f](Xj) = δji, इसे क्रोनकर डेल्टा कहा जाता है। माना

एक व्युत्क्रमणीय आव्यूह A के लिए आधार ffA के परिवर्तन के तहत, θ[f] निम्न के माध्यम से रूपांतरित हो जाता है

स्पर्शरेखा सदिशों पर किसी भी रैखिक फलनक α को द्वैत आधार θ के संदर्भ में इस प्रकार विस्तारित किया जा सकता है

 

 

 

 

(8)

जहाँ a[f] पंक्ति सदिश [ a1[f] ... an[f] ] को दर्शाता है। घटक ai रूपांतरित होते हैं जब आधार f को fA द्वारा इस प्रकार प्रतिस्थापित किया जाता है कि समीकरण (8) निरंतर सत्य रहता है। अर्थात्,

जहाँ से, क्योंकि θ[fA] = A−1θ[f], अतः a[fA] = a[f]A। अर्थात्, घटक a सहपरिवर्ती रूप से (व्युत्क्रम के स्थान पर आव्यूह A द्वारा) रूपांतरित होते हैं। a[f] के घटकों के सहप्रसरण को ai[f] के घातांकों को निचले स्थान पर रखकर सांकेतिक रूप से निर्दिष्ट किया जाता है।

अब, मीट्रिक टेन्सर सदिशों और उपसदिशों को निर्धारित करने के लिए निम्न प्रकार से एक माध्यम प्रदान करता है। Xp को स्थिर रखते हुए, स्पर्शरेखा सदिश Yp का फलन

स्पर्शरेखा समष्टि पर p पर एक रैखिक फलनक परिभाषित करता है। यह संक्रिया बिंदु p पर एक सदिश Xp को लेकर एक उपसदिश gp(Xp, −) उत्पन्न करती है। सदिश क्षेत्र f के आधार पर, यदि एक सदिश क्षेत्र X में घटक v[f] हैं, तो द्वैत आधार में उपसदिश क्षेत्र g(X, −) के घटक निम्न पंक्ति सदिश की प्रविष्टियों द्वारा दिए जाते हैं

आधार परिवर्तन ffA के तहत, इस समीकरण का दायाँ पक्ष निम्न के माध्यम से रूपांतरित होता है

जिससे a[fA] = a[f]A: a सहपरिवर्ती रूप से परिवर्तित होता है। एक सदिश क्षेत्र v[f] = [ v1[f] v2[f] ... vn[f] ]T के (प्रतिपरिवर्ती) घटकों को उपसदिश क्षेत्र a[f] = [ a1[f] a2[f] … an[f] ] के घटकों से संबद्ध करने की संक्रिया को, जहाँ

घातांक को अवनमन कहा जाता है।

घातांक के उन्नयन के लिए, मीट्रिक के स्थान पर व्युत्क्रम मीट्रिक के साथ यही रचना प्रयुक्त की जा सकती है। यदि द्वैत आधार θ[f] में एक उपसदिश के घटक a[f] = [ a1[f] a2[f] ... an[f] ] हैं, तो स्तम्भ सदिश

 

 

 

 

(9)

में ऐसे घटक होते हैं जो प्रतिपरिवर्ती रूप से रूपांतरित होते हैं:

परिणामस्वरूप, राशि X = fv[f] एक आवश्यक तरीके से आधार f के चयन पर निर्भर नहीं करती है, और इस प्रकार M पर एक सदिश क्षेत्र को परिभाषित करती है। दिए गए सदिश v[f] के उपसदिश a[f] के (प्रतिपरिवर्ती) घटकों के साथ संक्रिया (9) को जोड़ना घातांक का उन्नयन कहलाता है। घटकों में, (9) इस प्रकार हैː

प्रेरित मीट्रिक

माना U, n में एक खुला समुच्चय, और φ, U से यूक्लिडीय अंतरिक्ष m में एक सतत अवकलनीय फलन फलन है, जहाँ m > n। प्रतिचित्रण φ को एक अंतर्वेशन कहा जाता है यदि इसका अवकल U के प्रत्येक बिंदु पर एकैकी है। φ के प्रतिबिम्ब को एक अंतर्वेशित उप-मैनिफोल्ड कहा जाता है। अधिक विशेष रूप से, m = 3 के लिए, जिसका अर्थ है कि 3 परिवेशी यूक्लिडीय अंतरिक्ष है, प्रेरित मीट्रिक टेन्सर को पहला मौलिक रूप कहा जाता है।

माना φ, उप-मैनिफोल्ड MRm पर एक अंतर्वेशन है। m में सामान्य यूक्लिडीय बिंदु गुणन एक ऐसा मीट्रिक है, जो M के स्पर्शरेखा सदिशों तक सीमित होने पर, इन स्पर्शरेखा सदिशों के बिंदु गुणन लेने के लिए एक माध्यम प्रदान करता है। इसे प्रेरित मीट्रिक कहा जाता है।

माना v, U के एक बिंदु पर एक स्पर्शरेखा सदिश है, माना

जहाँ ei, n में मानक निर्देशांक सदिश हैं। जब φ को U पर प्रयुक्त किया जाता है, तो सदिश v, M पर सदिश स्पर्शरेखा पर इस प्रकार जाता है

(इसे φ के अनुदिश v का पुशफॉरवर्ड कहा जाता है।) दिए गए दो सदिशों v और w के लिए, प्रेरित मीट्रिक को निम्न द्वारा परिभाषित किया जाता है

यह एक सीधी गणना से प्राप्त होता है कि निर्देशांक सदिश क्षेत्र e के आधार पर प्रेरित मीट्रिक का आव्यूह निम्न द्वारा दिया जाता है

जहाँ जैकोबियन आव्यूह है:

एक मीट्रिक की आंतरिक परिभाषाएँ

फाइबर बंडलों और सदिश बंडलों की भाषा का उपयोग करके एक मीट्रिक की धारणा को आंतरिक रूप से परिभाषित किया जा सकता है। इन शब्दों में, मीट्रिक टेंसर एक निम्न प्रकार का फलन है

 

 

 

 

(10)

जो कि M के स्पर्शरेखा बंडल के फाइबर गुणन से स्वयं R के साथ इस प्रकार परिभाषित है कि प्रत्येक फाइबर के लिए g का प्रतिबंध एक निम्न अविकृत द्विरेखीय प्रतिचित्रण है

महत्त्व की स्थिति और M की ऐसी संरचना का समर्थन कर सकने के आधार पर प्रतिचित्रण (10) का सतत, और प्रायः सतत अवकलनीय, निष्कोण, या वास्तविक विश्लेषणात्मक होना आवश्यक है।

बंडल के एक खंड के रूप में मीट्रिक

टेंसर गुणन के सार्वभौमिक गुण के द्वारा, कोई भी द्विरेखीय प्रतिचित्रण (10) स्वाभाविक रूप से TM के टेंसर गुणन बंडल के द्वैत के एक खण्ड g को उत्पन्न करता है

खण्ड g को TM ⊗ TM के सरल तत्वों पर निम्न द्वारा परिभाषित किया गया है

और इसे सरल तत्वों के रैखिक संयोजनों के रैखिक रूप से विस्तार द्वारा TM ⊗ TM के स्वेच्छ तत्वों पर परिभाषित किया गया है। मूल द्विरेखीय रूप g सममित होता है यदि और केवल यदि

जहाँ

ब्रेडिंग प्रतिचित्रण है।

चूँकि M परिमित-विमीय है, अतः एक प्राकृतिक समरूपता ऐसी है कि

जिससे g को बंडल T*M ⊗ T*M के स्वयं के साथ कोटिस्पर्शज्या बंडल T*M के एक खण्ड के रूप में भी माना जाए। चूँकि g द्विरेखीय प्रतिचित्रण के रूप में सममित है, अतः इसके आधार पर g एक सममित टेन्सर है।

एक सदिश बंडल में मीट्रिक

अधिक सामान्यतः, एक सदिश बंडल में एक मीट्रिक के बारे में विचार किया जा सकता है। यदि E, मैनिफोल्ड M पर एक सदिश बंडल है, तो एक मीट्रिक, E के फाइबर गुणन से R पर एक प्रतिचित्रण,

है, जो प्रत्येक फाइबर:

में द्विरेखीय है, उपरोक्त के रूप में द्वैत का उपयोग करते हुए, एक मीट्रिक को प्रायः टेंसर गुणन बंडल E* ⊗ E* के एक खण्ड के साथ निर्धारित किया जाता है। (मीट्रिक (सदिश बंडल) देखें।)

स्पर्शरेखा-कोटिस्पर्शज्या समरूपता

मीट्रिक टेन्सर, स्पर्शरेखा बंडल से कोटिस्पर्शज्या बंडल तक एक प्राकृतिक समरूपता प्रदान करता है, जिसे कभी-कभी संगीत समरूपता कहा जाता है।[6] यह समरूपता प्रत्येक स्पर्शरेखा सदिश Xp ∈ TpM के लिए निम्न समायोजन द्वारा प्राप्त की जाती है,

यह TpM पर एक रैखिक फलनक है जो p से gp(Xp,Yp) पर एक स्पर्शरेखा सदिश Yp प्रेषित करता है। अर्थात्, सभी स्पर्शरेखा सदिशों Xp और Yp के लिए TpM और इसके द्वैत अंतरिक्ष T
p
M
के बीच [−, −] युग्मन के पदों में

प्रतिचित्रण Sg, TpM से T
p
M
पर एक रैखिक रूपान्तरण है। यह अविकृति की परिभाषा से अनुसरण करता है कि Sg का कर्नेल शून्य तक कम हो जाता है, और इसलिए कोटि-शून्यता प्रमेय द्वारा, Sg एक रैखिक समरूपता है। इसके अतिरिक्त, Sg इस अर्थ में एक सममित रैखिक रूपान्तरण है कि

सभी स्पर्शरेखा सदिशों Xp और Yp के लिए।

इसके विपरीत, रैखिक समरूपता S : TpM → T
p
M
, TpM पर निम्न के माध्यम से एक अविकृत द्विरेखीय रूप को परिभाषित करती है

यह द्विरेखीय रूप सममित होता है यदि और केवल यदि, S सममित है। इस प्रकार TpM पर सममित द्विरेखीय रूपों और द्वैत T
p
M
पर TpM की सममित रेखीय समरूपता के बीच एक प्राकृतिक एकैकी संचार होता है।

क्योंकि p, M पर परिवर्तित होता है, अतः Sg स्पर्शरेखा बंडल के सदिश बंडल समरूपता से कोटिस्पर्शरेखा बंडल पर बंडल Hom(TM, T*M) के एक खंड को परिभाषित करता है। इस खंड में g के समान ही सहजता है: अर्थात् यह g के अनुसार सतत, अवकलनीय, सहज या वास्तविक-विश्लेषणात्मक है। प्रतिचित्रण Sg सदिश क्षेत्र पर "घातांक के अवनमन" का एक अमूर्त संरूपण प्रदान करता है, जो M के प्रत्येक सदिश क्षेत्र को M के एक उपसदिश क्षेत्र से जोड़ता है। Sg का व्युत्क्रम एक प्रतिचित्रण T*M → TM है, जो समान रूप से, एक उपसदिश क्षेत्र पर "घातांकों के उन्नयन" का एक अमूर्त संरूपण प्रदान करता है।

व्युत्क्रम S−1
g
एक रेखीय प्रतिचित्रण

को परिभाषित करता है, जो इस अर्थ में व्युत्क्रमणीय और सममित है कि

सभी उपसदिशों α, β के लिए। इस प्रकार का एक व्युत्क्रमणीय सममित प्रतिचित्रण, एक प्रतिचित्र

को टेन्सर-होम सहयोजन द्वारा या टेंसर गुणन

के एक खण्ड के लिए एक दोहरी द्वैत समरूपता द्वारा उत्पन्न करता है।

चाप की लम्बाई और रेखा तत्व

माना g, M पर एक रीमैनियन मीट्रिक है। एक स्थानीय निर्देशांक प्रणाली xi, i = 1, 2, …, n में, मीट्रिक टेन्सर एक आव्यूह के रूप में प्रकट होता है, जिसे यहाँ G द्वारा निरूपित किया गया है, जिसकी प्रविष्टियाँ निर्देशांक सदिश क्षेत्रों के सापेक्ष मीट्रिक टेन्सर के घटक gij हैं।

माना γ(t), atb के लिए M में एक खंडवार-अवकलनीय प्राचलिक वक्र है। वक्र के चाप की लंबाई को निम्न द्वारा परिभाषित किया जाता है

इस ज्यामितीय अनुप्रयोग के संबंध में, द्विघात अवकल रूप

को मीट्रिक से सम्बद्ध प्रथम मौलिक रूप कहा जाता है, जबकि ds रेखा तत्व है। जब ds2 को M में एक वक्र के प्रतिबिम्ब पर पुलबैक किया जाता है, तो यह चाप की लम्बाई के सापेक्ष अवकल के वर्ग को निरूपित करता है।

छद्म-रीमैनियन मीट्रिक के लिए, उपरोक्त लंबाई सूत्र सदैव परिभाषित नहीं होता है, क्योंकि वर्गमूल के अंतर्गत पद ऋणात्मक हो सकता है। हम सामान्यतः केवल एक वक्र की लंबाई को तब परिभाषित करते हैं जब वर्गमूल के अंतर्गत पद का चिह्न सदैव समान या विपरीत होता है। इस स्थिति में

को परिभाषित किया जाता है। ध्यान दें कि, जबकि ये सूत्र निर्देशांक व्यंजकों का उपयोग करते हैं, ये वास्तव में चुने गए निर्देशांकों से स्वतंत्र होते हैं; ये केवल मीट्रिक और उस वक्र पर निर्भर करते हैं जिसके साथ यह सूत्र समाकलित होता है।

ऊर्जा, परिवर्तनशील सिद्धांत और जियोडेसिक्स

वक्र के एक खंड के लिए, एक अन्य प्रायः परिभाषित राशि वक्र की (गतिज) ऊर्जा है:

यह उपयोग भौतिकी, विशेष रूप से, चिरसम्मत यांत्रिकी से आता है, जहाँ समाकल E को मैनिफोल्ड की सतह पर चलने वाले बिंदु कण की गतिज ऊर्जा के प्रत्यक्ष अनुरूप देखा जा सकता है। इस प्रकार, उदाहरण के लिए, जैकोबी के मौपरर्टुइस सिद्धांत के सूत्रीकरण में, मीट्रिक टेन्सर को गतिमान कण के द्रव्यमान टेन्सर के अनुरूप देखा जा सकता है।

कई स्थितियों में, जब भी गणना के लिए लंबाई का उपयोग करने की आवश्यकता होती है, तो यह गणना, ऊर्जा का उपयोग करके भी की जा सकती है। यह प्रायः वर्ग-मूल की आवश्यकता से बचते हुए सरल सूत्रों की प्रदान करता है। इस प्रकार, उदाहरण के लिए, जियोडेसिक समीकरणों को परिवर्तनशील सिद्धांतों को या तो लंबाई या ऊर्जा में प्रयुक्त करके प्राप्त किया जा सकता है। बाद वाली स्थिति में, जियोडेसिक समीकरण न्यूनतम क्रिया के सिद्धांत से उत्पन्न होते हैं: ये एक ऐसे "मुक्त कण" (किसी बल का अनुभव नहीं करने वाला कण) की गति का वर्णन करते हैं जो मैनिफोल्ड पर गति करने के लिए पर्याप्त है, लेकिन अन्यथा मैनिफोल्ड के भीतर नियत संवेग से स्वतंत्र रूप से गति करता है।[7]

प्रमाणिक माप और आयतन रूप

सतहों की स्थिति के अनुरूप, एक n-विमीय परा-सुसंहत मैनिफोल्ड M पर एक मीट्रिक टेंसर, मैनिफोल्ड के उपसमुच्चय के n-विमीय आयतन को मापने के लिए एक प्राकृतिक विधि को जन्म देता है। परिणामी प्राकृतिक धनात्मक बोरेल माप से संबंधित लेबेसेग समाकल के माध्यम से मैनिफोल्ड पर फलनों को समाकलित करने के सिद्धांत को विकसित करने की अनुमति मिलती है।

एक माप को रिज निरूपण प्रमेय द्वारा M पर सघन रूप से समर्थित सतत फलनों के अंतरिक्ष C0(M) पर एक धनात्मक रैखिक फलनक Λ देते हुए परिभाषित किया जा सकता है। अधिक यथार्थ रूप से, यदि M, एक (छद्म-) रीमैनियन मीट्रिक टेंसर g वाला एक मैनिफोल्ड है, तो μg एक ऐसा अद्वितीय धनात्मक बोरेल माप होता है कि किसी भी निर्देशांक चार्ट (U, φ) के लिए,

U में समर्थित सभी f के लिए। यहाँ det g निर्देशांक चार्ट में मीट्रिक टेंसर के घटकों द्वारा गठित आव्यूह का सारणिक है। वह Λ निर्देशांक निकट-क्षेत्रों में समर्थित फलनों पर अच्छी तरह से परिभाषित है, चर के जैकोबियन परिवर्तन द्वारा संतुष्ट है। यह इकाई के विभाजन के माध्यम से C0(M) पर एक अद्वितीय धनात्मक रैखिक फलनक तक विस्तारित है।

यदि M भी दिष्ट है, तो मीट्रिक टेन्सर से प्राकृतिक आयतन के रूप को परिभाषित करना संभव है। धनात्मक रूप से दिष्ट निर्देशांक प्रणाली (x1, ..., xn) में, आयतन रूप को इस प्रकार निरूपित किया जाता है

जहाँ dxi निर्देशांक अवकल हैं और अवकल रूपों की बीजगणित में बाह्य गुणन को दर्शाता है। आयतन रूप, मैनिफोल्ड पर फलनों को समाकलित करने की एक विधि भी प्रदान करता है, और यह ज्यामितीय समाकल प्रमाणिक बोरेल माप द्वारा प्राप्त समाकल से सहमत है।

उदाहरण

यूक्लिडीय मीट्रिक

प्रारंभिक यूक्लिडीय ज्यामिति (द्वि-आयामी यूक्लिडीय मीट्रिक टेन्सर) का उदाहरण सबसे व्यावहारिक उदाहरण है। सामान्य (x, y) निर्देशांकों में हम लिख सकते हैं

वक्र की लंबाई इस सूत्र में परिवर्तित हो जाती है:

यूक्लिडीय मीट्रिक को कुछ अन्य सामान्य निर्देशांक प्रणालियों में निम्नानुसार लिखा जा सकता है।

धुवीय निर्देशांक (r, θ):

इसलिए

त्रिकोणमितीय सर्वसमिकाओं द्वारा।

सामान्य रूप से, एक यूक्लिडीय अंतरिक्ष पर कार्तीय निर्देशांक प्रणाली xi में आंशिक अवकलज ∂ / ∂xi यूक्लिडीय मीट्रिक के सापेक्ष ऑर्थोनॉर्मल होते हैं। इस प्रकार मीट्रिक टेन्सर इस निर्देशांक प्रणाली में क्रोनकर डेल्टा δij है। स्वेच्छ (संभवतः वक्ररेखीय) निर्देशांक qi के सापेक्ष मीट्रिक टेन्सर इस प्रकार है

एक गोले पर वृत्तीय मीट्रिक

3 में इकाई गोला, प्रेरित मीट्रिक अनुभाग में वर्णित प्रक्रिया के माध्यम से परिवेशी यूक्लिडीय मीट्रिक से प्रेरित एक प्राकृतिक मीट्रिक से सुसज्जित है। मानक गोलाकार निर्देशांक (θ, φ) में, θ कोटिपूरक अक्षांश, z-अक्ष से मापा गया कोण, और φ, xy-समतल में x-अक्ष से कोण है, तब मीट्रिक का रूप इस प्रकार है

यह सामान्यतः निम्न रूप में लिखा जाता है

सापेक्षता से लोरेंट्ज़ियन मीट्रिक

निम्न निर्देशांक वाले एकसमान मिन्कोव्स्की अंतरिक्ष (विशेष सापेक्षता) में,

मीट्रिक संकेतक के चयन के आधार पर मीट्रिक है,

उदाहरण के लिए, स्थिर समय निर्देशांक वाले एक वक्र के लिए, इस मीट्रिक वाला लंबाई सूत्र सामान्य लंबाई सूत्र में परिवर्तित होता है। समयबद्ध वक्र के लिए, लंबाई सूत्र वक्र के अनुदिश उचित समय प्रदान करता है।

इस स्थिति में, दिक्काल अंतराल को निम्न रूप में लिखा जाता है

श्वार्ज़स्चिल्ड मीट्रिक, गोलाकार रूप से सममित एक पिंड, जैसे ग्रह, या ब्लैक होल के चारों ओर दिक्काल का वर्णन करता है। निर्देशांकों

के साथ, हम मीट्रिक को इस रूप में लिख सकते हैं

जहाँ G (आव्यूह के अंदर) गुरुत्वाकर्षण स्थिरांक है और M केंद्रीय वस्तु की कुल द्रव्यमान-ऊर्जा सामग्री को निरूपित करता है।

यह भी देखें

टिप्पणियाँ

  1. More precisely, the integrand is the pullback of this differential to the curve.
  2. In several formulations of classical unified field theories, the metric tensor was allowed to be non-symmetric; however, the antisymmetric part of such a tensor plays no role in the contexts described here, so it will not be further considered.
  3. The notation of using square brackets to denote the basis in terms of which the components are calculated is not universal. The notation employed here is modeled on that of Wells (1980). Typically, such explicit dependence on the basis is entirely suppressed.
  4. Dodson & Poston 1991, Chapter VII §3.04
  5. Vaughn 2007, §3.4.3
  6. For the terminology "musical isomorphism", see Gallot, Hulin & Lafontaine (2004, p. 75). See also Lee (1997, pp. 27–29)
  7. Sternberg 1983


संदर्भ

  • Dodson, C. T. J.; Poston, T. (1991), Tensor geometry, Graduate Texts in Mathematics, vol. 130 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-10514-2, ISBN 978-3-540-52018-4, MR 1223091
  • Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004), Riemannian Geometry (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-20493-0.
  • Gauss, Carl Friedrich (1827), General Investigations of Curved Surfaces, New York: Raven Press (published 1965) translated by A. M. Hiltebeitel and J. C. Morehead; "Disquisitiones generales circa superficies curvas", Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores Vol. VI (1827), pp. 99–146.
  • Hawking, S.W.; Ellis, G.F.R. (1973), The large scale structure of space-time, Cambridge University Press.
  • Kay, David (1988), Schaum's Outline of Theory and Problems of Tensor Calculus, McGraw-Hill, ISBN 978-0-07-033484-7.
  • Kline, Morris (1990), Mathematical thought from ancient to modern times, Volume 3, Oxford University Press.
  • Lee, John (1997), Riemannian manifolds, Springer Verlag, ISBN 978-0-387-98322-6.
  • Michor, Peter W. (2008), Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Providence: American Mathematical Society (to appear).
  • Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0
  • Ricci-Curbastro, Gregorio; Levi-Civita, Tullio (1900), "Méthodes de calcul différentiel absolu et leurs applications", Mathematische Annalen, 54 (1): 125–201, doi:10.1007/BF01454201, ISSN 1432-1807, S2CID 120009332
  • Sternberg, S. (1983), Lectures on Differential Geometry (2nd ed.), New York: Chelsea Publishing Co., ISBN 0-8218-1385-4
  • Vaughn, Michael T. (2007), Introduction to mathematical physics (PDF), Weinheim: Wiley-VCH Verlag GmbH & Co., doi:10.1002/9783527618859, ISBN 978-3-527-40627-2, MR 2324500
  • Wells, Raymond (1980), Differential Analysis on Complex Manifolds, Berlin, New York: Springer-Verlag