टेंसर (आंतरिक परिभाषा)

From Vigyanwiki

गणित में, टेन्सर के सिद्धांत का आधुनिक घटक-मुक्त दृष्टिकोण टेन्सर को एक ऐसे संक्षेप वस्तु के रूप में देखता है, जो कुछ निश्चित प्रकार की बहुरेखीय प्रतिचित्रण अवधारणा को व्यक्त करता है। उनके गुण उनकी परिभाषाओं से प्राप्त किए जा सकते हैं, जैसे रैखिक प्रतिचित्र या अधिक सामान्यतः; और टेंसर के अन्तःक्षेप के नियम रैखिक बीजगणित से बहुरेखीय बीजगणित के विस्तार के रूप में उत्पन्न होते हैं।

इस प्रकार से विभेदक ज्यामिति में, आंतरिक ज्यामितीय कथन को मैनिफोल्ड पर टेन्सर क्षेत्र द्वारा वर्णित किया जा सकता है, और फिर निर्देशांक का संदर्भ देने की निश्चित ही आवश्यकता नहीं होती है। भौतिक गुण का वर्णन करने वाले टेंसर क्षेत्र के सामान्य सापेक्षता में भी यही सत्य है। घटक-मुक्त दृष्टिकोण का उपयोग संक्षेप बीजगणित और अनुरूप बीजगणित में भी बड़े पैमाने पर किया जाता है, जहां टेंसर स्वाभाविक रूप से उत्पन्न होते हैं।

नोट: अतः यह लेख चुने गए आधार (रैखिक बीजगणित) के बिना सदिश रिक्त समष्टि के टेंसर गुणनफल की समझ मानता है। विषय का अवलोकन मुख्य टेंसर लेख में पाया जा सकता है।

सदिश समष्टि के टेंसर गुणनफलों के माध्यम से परिभाषा

एक सामान्य क्षेत्र (गणित) F पर सदिश समष्टि के एक परिमित समुच्चय { V1, ..., Vn } को देखते हुए, कोई अपना टेंसर गुणनफल V1 ⊗ ... ⊗ Vn, बना सकता है, जिसके एक अवयव को टेंसर कहा जाता है।

इस प्रकार से सदिश समष्टि V पर एक टेंसर को तब रूप के सदिश समष्टि के एक अवयव (अर्थात, एक सदिश) के रूप में परिभाषित किया जाता है:

जहां VV की दोहरी समष्टि है।

यदि हमारे गुणनफल में V की m प्रतियां और V∗ की n प्रतियां हैं, तो टेंसर को प्रकार (m, n) और क्रम m के प्रतिपरिवर्ती और क्रम n के सहसंयोजक और कुल टेंसर क्रम m + n का कहा जाता है। अतः क्रम शून्य के टेंसर मात्र अदिश (क्षेत्र F के अवयव) हैं, विपरीत क्रम 1 वाले टेंसर V में सदिश हैं, और सहसंवर्ती क्रम 1 वाले टेंसर V में रैखिक कार्यात्मक हैं (इस कारण से, अंतिम दो स्थानों के अवयवों को प्रायः प्रतिपरिवर्ती और सहसंयोजक सदिश कहा जाता है)। प्रकार (m, n) के सभी टेंसरों की समष्टि

दर्शाया गया है।

उदाहरण 1. प्रकार (1, 1) टेंसर, की समष्टि, V से V तक रैखिक परिवर्तनों के समष्टि के लिए प्राकृतिक विधि से समरूपी है।

'उदाहरण 2.' वास्तविक सदिश समष्टि V, पर एक द्विरेखीय रूप, में एक प्रकार (0, 2) टेंसर से प्राकृतिक विधि से मेल खाता है। ऐसे द्विरेखीय रूप का एक उदाहरण परिभाषित किया जा सकता है, जिसे संबंधित मापीय टेंसर कहा जाता है, और सामान्यतः इसे g से दर्शाया जाता है।

टेंसर पद

एक सरल टेंसर (जिसे पद एक का टेंसर, प्राथमिक टेंसर या विश्लेषणीय टेंसर भी कहा जाता है (हैकबुश 2012, pp. 4)) एक टेंसर है जिसे रूप

के टेंसर के गुणनफल के रूप में लिखा जा सकता है, जहां a, b, ..., d अशून्य हैं और V या V में - अर्थात, यदि टेंसर अशून्य है और पूर्ण रूप से गुणनखंडनीय है। इस प्रकार से प्रत्येक टेंसर को सरल टेंसर के योग के रूप में व्यक्त किया जा सकता है। टेन्सर T के पद सरल टेन्सर की न्यूनतम संख्या है जिसका योग T (बोरबाकी 1989, II, §7, no. 8) है।

शून्य टेंसर के पद शून्य होती है। अतः गैर-शून्य क्रम 0 या 1 टेंसर के पद सदैव 1 होती है। गैर-शून्य क्रम 2 या उच्चतर टेंसर के पद (गुणनफलों का योग) में उच्चतम-आयाम वाले सदिश को छोड़कर सभी के आयामों के गुणनफल से कम या उसके बराबर है, जिसे टेंसर व्यक्त किया जा सकता है, जो dn−1 जब प्रत्येक गुणनफल आयाम d के एक परिमित-आयामी सदिश समष्टि से n सदिश का होता है।

इस प्रकार से टेंसर के पद शब्द रैखिक बीजगणित में आव्यूह के पद की धारणा को विस्तारित करता है, यद्यपि इस शब्द का उपयोग प्रायः टेंसर के क्रम (या डिग्री) के अर्थ के लिए भी किया जाता है। आव्यूह के पद पंक्ति और स्तम्भ रिक्त समष्टि को फैलाने के लिए आवश्यक स्तम्भ सदिश की न्यूनतम संख्या है। अतः इस प्रकार आव्यूह के पद होती है यदि इसे दो गैर-शून्य सदिशों के बाह्य गुणनफल के रूप में लिखा जा सकता है:

आव्यूह A के पद ऐसे बाह्य गुणनफलों की सबसे छोटी संख्या है जिसे इसे उत्पन्न करने के लिए जोड़ा जा सकता है:

सूचकांकों में, पद 1 का टेंसर

रूप का टेंसर होता है।

क्रम 2 के टेंसर के पद पद से सहमत होती है जब टेंसर को आव्यूह (गणित) (हेल्मोस 1974, §51) के रूप में माना जाता है, और उदाहरण के लिए गाऊसी उन्मूलन से निर्धारित किया जा सकता है। यद्यपि क्रम 3 या उच्चतर टेंसर के पद निर्धारित करना प्रायः बहुत जटिल होता है, और टेंसर के निम्न पद का अपघटन कभी-कभी बहुत व्यावहारिक रुचि का होता है (डी ग्रूट 1987)। इस प्रकार से आव्यूह के दक्ष गुणन और बहुपदों के दक्ष मूल्यांकन जैसे संगणनात्मक कार्यों को दिए गए इनपुट के लिए xiऔर yj के लिए द्विरेखीय रूप

के एक समुच्चय का एक साथ मूल्यांकन करने की समस्या के रूप में पुनःनिर्माण किया जा सकता है। अतः यदि टेंसर T श्रेणी का अपघटन ज्ञात है, तो एक दक्ष मूल्यांकन कार्यनीति ज्ञात होती है (नुथ 1998, pp. 506–508)

सार्वभौमिक गुण

इस प्रकार से बहुरेखीय प्रतिचित्रण के संदर्भ में समष्टि को एक सार्वभौमिक गुण द्वारा चित्रित किया जा सकता है। इस दृष्टिकोण के लाभों में से यह है कि यह यह दिखाने की विधि देती है कि कई रैखिक प्रतिचित्रण प्राकृतिक या ज्यामितीय हैं (दूसरे शब्दों में आधार की किसी भी चयन से स्वतंत्र हैं)। अतः स्पष्ट संगणनात्मक सूचना को फिर आधारों का उपयोग करके लिखा जा सकता है, और प्राथमिकताओं का यह क्रम प्राकृतिक प्रतिचित्रण को जन्म देने वाले सूत्र को सिद्ध करने से अधिक सुविधाजनक हो सकता है। दूसरा गुण यह है कि टेंसर गुणनफलों का उपयोग मात्र मुक्त मॉड्यूल के लिए नहीं किया जाता है, और सार्वभौमिक दृष्टिकोण अधिक सामान्य स्थितियों में अधिक सरलता से लागू होता है।

सदिश रिक्त समष्टि

के कार्तीय गुणनफल (या मॉड्यूल का प्रत्यक्ष योग) पर अदिश-मानित फलन बहुरेखीय होता है यदि यह प्रत्येक तर्क में रैखिक होता है। V1 × ... × VN से W तक सभी बहुरेखीय प्रतिचित्रण की समष्टि LN(V1, ..., VN; W) दर्शाया गया है। अतः जब N = 1, एक बहुरेखीय प्रतिचित्रण मात्र सरल रैखिक प्रतिचित्रण होता है, और V से W तक सभी रैखिक प्रतिचित्रण की समष्टि L(V; W) दर्शाया जाता है।

टेंसर गुणनफल के सार्वभौमिक लक्षण वर्णन का तात्पर्य है कि, प्रत्येक बहुरेखीय फलन

(जहां अदिश क्षेत्र, एक सदिश समष्टि, या एक टेंसर समष्टि के क्षेत्र का प्रतिनिधित्व कर सकता है) के लिए एक अद्वितीय रैखिक फलन

स्थित है जैसे कि सभी और के लिए

सार्वभौमिक गुण का उपयोग करते हुए, यह इस प्रकार है कि (m,n)-टेंसरों की समष्टि एक प्राकृतिक समरूपता

को स्वीकार करता है।

टेंसर की परिभाषा में प्रत्येक V रेखीय प्रतिचित्रों के तर्क के भीतर एक V* से मेल खाता है, और इसके विपरीत। (ध्यान दें कि पूर्व स्थिति में, V की m प्रतियां और V* की n प्रतियां हैं, और बाद वाली स्थिति में इसके विपरीत)। अतः विशेष रूप से, किसी एक के निकट

है।

टेन्सर क्षेत्र

इस प्रकार से अवकल ज्यामिति, भौतिक विज्ञान और अभियांत्रिकी को प्रायः समृणीकृत मैनिफोल्ड पर टेंसर क्षेत्र से निपटना चाहिए। टेन्सर शब्द का प्रयोग कभी-कभी टेन्सर क्षेत्र के लिए संक्षिप्त लिपि के रूप में किया जाता है। अतः टेंसर क्षेत्र टेंसर की अवधारणा को व्यक्त करता है जो मैनिफोल्ड पर बिंदु से दूसरे बिंदु पर भिन्न होता है।

संदर्भ

  • Abraham, Ralph; Marsden, Jerrold E. (1985), Foundations of Mechanics (2 ed.), Reading, Mass.: Addison-Wesley, ISBN 0-201-40840-6.
  • Bourbaki, Nicolas (1989), Elements of Mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9.
  • de Groote, H. F. (1987), Lectures on the Complexity of Bilinear Problems, Lecture Notes in Computer Science, vol. 245, Springer, ISBN 3-540-17205-X.
  • Halmos, Paul (1974), Finite-dimensional Vector Spaces, Springer, ISBN 0-387-90093-4.
  • Jeevanjee, Nadir (2011), "An Introduction to Tensors and Group Theory for Physicists", Physics Today, 65 (4): 64, Bibcode:2012PhT....65d..64P, doi:10.1063/PT.3.1523, ISBN 978-0-8176-4714-8
  • Knuth, Donald E. (1998) [1969], The Art of Computer Programming vol. 2 (3rd ed.), pp. 145–146, ISBN 978-0-201-89684-8.
  • Hackbusch, Wolfgang (2012), Tensor Spaces and Numerical Tensor Calculus, Springer, p. 4, ISBN 978-3-642-28027-6.