लाई समूह
| Lie groups |
|---|
| File:E8Petrie.svg |
| बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
|---|
| File:Cyclic group.svg |
गणित में, लाई समूह (उच्चारण /liː/ LEE) एक समूह (गणित)है जो एक अलग करने योग्य कई गुना भी है। बहुविध स्थान है जो स्थानीय रूप से यूक्लिडियनसमष्टि जैसा दिखता है, जबकि समूह द्विआधारी संक्रिया की अमूर्त अवधारणा को अतिरिक्त गुणों के साथ परिभाषित करते हैं, यह एक समूह होना चाहिए उदाहरण के लिए गुणा और व्युत्क्रम (विभाजन), या समकक्ष, जोड़ की अवधारणा और व्युत्क्रम (घटाव) लेना। इन दो विचारों के संयोजन से, निरंतर समूह प्राप्त होता है जहां गुणन बिंदु और उनके व्युत्क्रम निरंतर होते हैं। यदि व्युत्क्रमों का गुणन और लेना सुचारू (विभेदक) भी है, तो लाई समूह प्राप्त होता है।
लाई समूह निरंतर समरूपता की अवधारणा के लिए प्राकृतिक प्रतिरूप प्रदान करते हैं, जिसका प्रसिद्ध उदाहरण तीन आयामों में घूर्णी समरूपता है (विशेष ऑर्थोगोनल समूह द्वारा दिया गया) ) आधुनिक गणित और भौतिकी के कई हिस्सों में लाई समूहों का व्यापक रूप से उपयोग किया जाता है।
लाई समूह सबसे पहले आव्यूह (गणित) उपसमूहों , या में निहित है।का अध्ययन करके पाए गए थे, व्युत्क्रमणीय आव्यूह के समूह या . इन्हें अब चिरसम्मत समूह कहा जाता है, अवधारणा को इन मूल से बहुत आगे बढ़ाया गया है। लाई समूहों का नाम नार्वेजियन गणितज्ञ सोफस लाई 1842-1899) के नाम पर रखा गया है, जिन्होंने निरंतर परिवर्तन समूहों के सिद्धांत की नींव रखी। लाई समूहों को शुरू करने के लिए लाई की मूल प्रेरणा अंतर समीकरणों की निरंतर समरूपता को प्रतिरूप करना था, ठीक उसी तरह जिस तरह से परिमित समूहों का उपयोग बीजगणितीय समीकरण के असतत समरूपता को प्रतिरूप करने के लिए गाल्वा सिद्धांत में उपयोग किया जाता है।
इतिहास
लाई समूहों के प्रारंभिक इतिहास (हॉकिन्स, पृष्ठ 1) पर सबसे आधिकारिक स्रोत के अनुसार, सोफस लाई ने स्वयं 1873-1874 की सर्दियों को निरंतर समूहों के अपने सिद्धांत की जन्म तिथि माना। हॉकिन्स, हालांकि, सुझाव देते हैं कि यह "1869 के पतन से 1873 के पतन तक चार साल की अवधि के दौरान लाई की विलक्षण शोध गतिविधि थी" जिसने सिद्धांत के निर्माण का नेतृत्व किया (वही)। लाई के शुरुआती विचारों में से कुछ फेलिक्स क्लेन के निकट सहयोग से विकसित किए गए थे। अक्टूबर 1869 से 1872 तक हर दिन लाई क्लेन से मिले: बर्लिन में अक्टूबर 1869 के अंत से फरवरी 1870 के अंत तक, और बाद के दो वर्षों में पेरिस, गौटिंगेन और एर्लांगेन में (वही, पृष्ठ 2)। लाई ने कहा कि सभी प्रमुख परिणाम 1884 तक प्राप्त किए गए थे। लेकिन 1870 के दशक के दौरान उनके सभी पत्र (पहले नोट को छोड़कर) नॉर्वेजियन पत्रिकाओं में प्रकाशित हुए थे, जिसने पूरे यूरोप में काम की मान्यता को बाधित किया था (वही, पृष्ठ 76) )। 1884 में युवा जर्मन गणितज्ञ, फ्रेडरिक एंगेल (गणितज्ञ), लाई के साथ निरंतर समूहों के अपने सिद्धांत को उजागर करने के लिए व्यवस्थित ग्रंथ पर काम करने आए। इस प्रयास से 1888, 1890 और 1893 में प्रकाशित तीन-खंड थ्योरी डेर परिवर्तनसमूह का परिणाम निकला। शब्द समूह डी लाइ पहली बार फ्रेंच में 1893 में लाई के छात्र आर्थर ट्रेस की थीसिस में दिखाई दिया।[1]
लाइ के विचार बाकी गणित से अलग नहीं थे। वास्तव में, विभेदक समीकरणों की ज्यामिति में उनकी रुचि सबसे पहले कार्ल गुस्ताव जैकोबी के काम से प्रेरित थी, जो पहले क्रम के आंशिकअंतर समीकरणों के सिद्धांत और चिरसम्मत यांत्रिकी के समीकरणों पर आधारित थी। 1860 के दशक में मरणोपरांत जैकोबी के अधिकांश कार्य प्रकाशित हुए, जिससे फ्रांस और जर्मनी में अत्यधिक रुचि पैदा हुई (हॉकिन्स, पृष्ठ 43)। लाई की विचारधारा अंतर समीकरणों कीसमरूपता के सिद्धांत को विकसित करना था जो उनके लिए वह उपलब्धि करेगा जो एवरिस्ट गैलोइस ने बीजगणितीय समीकरणों के लिए किया था: अर्थात्, उन्हें समूह सिद्धांत के संदर्भ में वर्गीकृत करना। लाइ और अन्य गणितज्ञों ने दिखाया कि विशेष कार्यों और ऑर्थोगोनल बहुपदके लिए सबसे महत्वपूर्ण समीकरण समूह सैद्धांतिक समरूपता से उत्पन्न होते हैं। लाई के शुरुआती काम में, फेलिक्स क्लेन और हेनरी पॉइनकेयर के हाथों मॉड्यूलर रूप के सिद्धांत में विकसित असतत समूह के सिद्धांत को पूरक करने के लिए निरंतर समूहों के सिद्धांत का निर्माण करने का विचार था। लाई के मन में जो प्रारंभिक अनुप्रयोग था वह अवकल समीकरणों के सिद्धांत के लिए था। गैलोज़ सिद्धांत और बहुपद समीकरण के प्रतिरूप पर, परिचालन अवधारणा समरूपता के अध्ययन से सामान्य अंतर समीकरणों के पूरे क्षेत्र को एकीकृत करने में सक्षम सिद्धांत की थी। हालाँकि, आशा है कि लाई थ्योरी साधारण अंतर समीकरण के पूरे क्षेत्र को एकजुट करेगी, पूरी नहीं हुई। ओडीई के लिए सममिति पद्धतियों का अध्ययन जारी है, लेकिन विषय पर हावी नहीं हैं। विभेदक गैलोज़ सिद्धांत है, लेकिन इसे अन्य लोगों द्वारा विकसित किया गया था, जैसे कि पिकार्ड और वेसिओट, और यह चतुष्कोणों का एक सिद्धांत प्रदान करता है, समाधान व्यक्त करने के लिए आवश्यक अनिश्चित अभिन्न।
निरंतर समूहों पर विचार करने के लिए अतिरिक्त प्रेरणा, ज्यामिति की नींव पर बर्नहार्ड रीमैन के विचारों और क्लेन के हाथों उनके आगे के विकास से आई। इस प्रकार 19वीं शताब्दी के गणित में तीन प्रमुख विषयों को लाई द्वारा अपने नए सिद्धांत को बनाने में जोड़ा गया: समरूपता का विचार, जैसा कि गैलोज़ द्वारा समूह की बीजगणितीय धारणा के माध्यम से उदाहरण दिया गया है, ज्यामितीय सिद्धांत और यांत्रिकी के अंतर समीकरणों के स्पष्ट समाधान, प्वासों और जैकोबी द्वारा काम किया गया, और ज्यामिति की नई समझ जो प्लकर, मोबियस, ग्रासमैन और अन्य के कार्यों में उभरी, और इस विषय पर रीमैन की क्रांतिकारी दृष्टि में चरम पर पहुंच गई।
यद्यपि आज सोफस लाई को निरंतर समूहों के सिद्धांत के निर्माता के रूप में मान्यता प्राप्त है, उनके संरचना सिद्धांत के विकास में प्रमुख प्रगति, जिसका गणित के बाद के विकास पर गहरा प्रभाव होना था, विल्हेम हत्या द्वारा किया गया था, जिसने 1888 में डाई ज़ुसममेंत्ज़ुंग डेर स्टेटिजेन एंडलिचेन ट्रांसफ़ॉर्मेशनग्रुपपेन (द कंपोजिशन ऑफ कंटीन्यूअस फाइनेट ट्रांसफॉर्मेशन ग्रुप्स) नामक श्रृंखला में पहला पेपर प्रकाशित किया (हॉकिन्स, पृष्ठ 100)। एली कार्टन द्वारा बाद में परिष्कृत और सामान्यीकृत किए गए किलिंग के कार्य ने अर्ध-सरल लाई बीजगणित के वर्गीकरण का नेतृत्व किया, कार्टन के रिमेंनियन सममित स्थान का सिद्धांत, और हरमन वेइल के संक्षिप्त और अर्ध-सरल लाइ समूहों के प्रतिनिधित्व का विवरण उच्चतम वजनका उपयोग करते हुए।
1900 में डेविड हिल्बर्ट ने पेरिस में गणितज्ञों की अंतर्राष्ट्रीय कांग्रेस में पेश अपनी हिल्बर्ट की पांचवीं समस्या के साथ लाई सिद्धांतकारों को चुनौती दी।
वेइल ने लाई समूहों के सिद्धांत के विकास की प्रारंभिक अवधि को फलित किया, क्योंकि उन्होंने न केवल अर्ध-सरल लाई समूहों के अलघुकरणीय निरूपण को वर्गीकृत किया और क्वांटम यांत्रिकी के साथ समूहों के सिद्धांत को जोड़ा, बल्कि उन्होंने लाई के सिद्धांत को भी मजबूती से स्थापित किया। स्पष्ट रूप से लाई के अपरिमेय समूहों (अर्थात् लाई बीजगणित) और उचित लाई समूहों के बीच अंतर को स्पष्ट करते हुए, और लाई जी की सांस्थिति की जांच शुरू की[2] क्लाउड चेवेली द्वारा लघु प्रबंध में आधुनिक गणितीय भाषा में लाई समूहों के सिद्धांत को व्यवस्थित रूप से फिर से काम किया गया था।
सिंहावलोकन
लाई समूहमू सहजता विभेदीय बहुविध हैं और जैसे कि अधिक सामान्य सांस्थितिक समूह के मामले के विपरीत अंतर कलन का उपयोग करके अध्ययन किया जा सकता है। लाई समूहों के सिद्धांत में प्रमुख विचारों में से वैश्विक वस्तु, समूह को अपने स्थानीय या रेखीयकृत संस्करण के साथ बदलना है, जिसे लाई ने खुद को "अति सूक्ष्म समूह" कहा था और जो तब से इसके लाई बीजगणित के रूप में जाना जाता है।
कई अलग-अलग स्तरों पर लाई समूह आधुनिक ज्यामिति में बड़ी भूमिका निभाते हैं। फेलिक्स क्लेन ने अपने एर्लांगेन कार्यक्रम में तर्क दिया कि उपयुक्त रूपांतरण समूह निर्दिष्ट करके विभिन्न "ज्यामितीय" पर विचार किया जा सकता है जो कुछ ज्यामितीय गुणों को अपरिवर्तित (गणित) छोड़ देता है। इस प्रकार यूक्लिडियन ज्यामिति यूक्लिडियनसमष्टि 'आर'3 के दूरी-संरक्षण परिवर्तनों के समूह ई (3) की पसंद से मेल खाती है, अनुरूप ज्यामिति समूह को अनुरूप समूह में विस्तारित करने से मेल खाती है, जबकि प्रक्षेपी ज्यामिति में किसी के तहत अपरिवर्तनीय गुणों में रुचि होती है। । इस विचार ने बाद में जी-संरचना की धारणा को जन्म दिया, जहां जी कई गुना "स्थानीय" समरूपता का लाई समूह है।
लाई समूह (और उनके संबद्ध लाई बीजगणित) आधुनिक भौतिकी में प्रमुख भूमिका निभाते हैं, लाई समूह आमतौर पर भौतिक प्रणाली की समरूपता की भूमिका निभाते हैं। यहाँ, लाई समूह (या इसके लाई बीजगणित के निरूपण विशेष रूप से महत्वपूर्ण हैं। कण भौतिकी में प्रतिनिधित्व सिद्धांत का व्यापक रूप से उपयोग किया जाता है। जिन समूहों का प्रतिनिधित्व विशेष महत्व का है उनमें घूर्णन समूह SO(3) (या इसका डबल कवर SU(2)), विशेष एकात्मक समूह SU(3) और पॉइनकेयर समूह शामिल हैं।
वैश्विक स्तर पर, जब भी कोई लाई समूह ज्यामितीय वस्तु पर कार्य करता है, जैसे कि रीमैनियन या संसुघटित बहुविध, यह क्रिया कठोरता का उपाय प्रदान करती है और समृद्ध बीजगणितीय संरचना उत्पन्न करती है। कई गुना पर लाई समूह कार्रवाई के माध्यम से व्यक्त निरंतर समरूपता की उपस्थिति इसकी ज्यामिति पर मजबूत बाधाओं को रखती है और कई गुना विश्लेषण की सुविधा प्रदान करती है। लाई समूहों के रैखिक कार्य विशेष रूप से महत्वपूर्ण हैं, और प्रतिनिधित्व सिद्धांत में उनका अध्ययन किया जाता है।
1940-1950 के दशक में, एलिस कल्चेन, आर्मंड बोरेल और क्लाउड चेवेली ने महसूस किया कि लाई समूहों से संबंधित कई मूलभूत परिणाम पूरी तरह से बीजगणितीय रूप से विकसित किए जा सकते हैं, जो एक मनमाने क्षेत्र (गणित) पर परिभाषित बीजीय समूहोंके सिद्धांत को जन्म देते हैं। इस अंतर्दृष्टि ने सबसे परिमित सरल समूहों के साथ-साथ बीजगणितीय ज्यामिति में एक समान निर्माण प्रदान करके, शुद्ध बीजगणित में नई संभावनाएं खोलीं। स्वचालित रूप का सिद्धांत, आधुनिक संख्या सिद्धांत की एक महत्वपूर्ण शाखा, एडेल रिंग्स पर लाई समूहों के एनालॉग्स के साथ बड़े पैमाने पर संबंधित है, संख्या सिद्धांत में गैल्वा अभ्यावेदन के साथ अपने संबंधों के माध्यम से पी-एडिक लाई समूह एक महत्वपूर्ण भूमिका निभाते हैं।
परिभाषाएं और उदाहरण
एक वास्तविक लाई समूह एक समूह (गणित) है जो एक परिमित-आयामी वास्तविक विभेदक कई गुना # परिभाषा भी है, जिसमें गुणन और व्युत्क्रम के समूह संचालन सुचारू मानचित्र हैं। समूह गुणन की चिकनाई
इसका मतलब है कि μ बहुविध # कार्टेशियन उत्पादों की एक चिकनी मैपिंग है G × G जी में। दो आवश्यकताओं को मैपिंग की एकल आवश्यकता के साथ जोड़ा जा सकता है
जी में कई गुना उत्पाद की एक चिकनी मैपिंग हो।
पहला उदाहरण
- 2×2 वास्तविक संख्या व्युत्क्रमणीय आव्यूह गुणन के तहत एक समूह बनाता है, जिसे इसके द्वारा निरूपित किया जाता है GL(2, R) या जीएल द्वारा2(आर):
- यह एक चार आयामी संक्षिप्त जगह रियल लाई ग्रुप है, यह का एक खुला उपसमुच्चय है . यह समूह जुड़ा हुआ स्थान है, इसमें निर्धारक के सकारात्मक और नकारात्मक मूल्यों के अनुरूप दो जुड़े हुए घटक होते हैं।
- घूर्णन (गणित) मैट्रिसेस एक उपसमूह बनाते हैं GL(2, R), द्वारा चिह्नित SO(2, R). यह अपने आप में एक लाई समूह है: विशेष रूप से, एक आयामी संक्षिप्त जुड़ा हुआ लाई समूह जो चक्र के लिए अलग-अलग है। घूर्णन कोण का उपयोग करना एक पैरामीटर के रूप में, यह समूह निम्नानुसार पैरामीट्रिक समीकरण हो सकता है:
- कोणों का जोड़ के तत्वों के गुणा के अनुरूप है SO(2, R), और विपरीत कोण लेना व्युत्क्रम से मेल खाता है। इस प्रकार गुणन और व्युत्क्रम दोनों ही अवकलनीय मानचित्र हैं।
- Affine group#Matrix प्रतिनिधित्व एक द्वि-आयामी आव्यूह लाई समूह है, जिसमें शामिल हैं वास्तविक, ऊपरी-त्रिकोणीय आव्यूह, पहली विकर्ण प्रविष्टि सकारात्मक होने के साथ और दूसरी विकर्ण प्रविष्टि 1. इस प्रकार, समूह में फॉर्म के मैट्रिसेस होते हैं
गैर उदाहरण
अब हम एक समूह का एक उदाहरण प्रस्तुत करते हैं जिसमें तत्वों की एक बेशुमार सेट संख्या होती है जो एक निश्चित सांस्थिति के तहत लाई समूह नहीं है। समूह द्वारा दिया गया
साथ एक निश्चित अपरिमेय संख्या, टोरस्र्स का एक उपसमूह है उप-स्थान सांस्थिति दिए जाने पर वह लाई समूह नहीं है।[3] यदि हम कोई छोटा पड़ोस लेते हैं (गणित) एक बिंदु का में , उदाहरण के लिए, का हिस्सा में डिस्कनेक्ट किया गया है। समूह सर्पिल के पिछले बिंदु तक पहुंचने के बिना बार-बार टोरस के चारों ओर हवाएं चलती हैं और इस प्रकार एक घने सेट उपसमूह बनाती हैं .
समूह हालाँकि, एक अलग सांस्थिति दी जा सकती है, जिसमें दो बिंदुओं के बीच की दूरी समूह में सबसे छोटे पथ की लंबाई के रूप में परिभाषित किया गया है में शामिल होने प्रति . इस सांस्थिति में, संख्या के साथ प्रत्येक तत्व की पहचान करके होमोमोर्फिक रूप से वास्तविक रेखा के साथ पहचाना जाता है की परिभाषा में . इस सांस्थिति के साथ, योग के अंतर्गत केवल वास्तविक संख्याओं का समूह है और इसलिए यह एक लाई समूह है।
समूह लाई समूह का एक उदाहरण है#लाई समूह का लाई उपसमूह जो बंद नहीं है। बुनियादी अवधारणाओं पर अनुभाग में लाई उपसमूहों की नीचे चर्चा देखें।
आव्यूह लाई समूह
होने देना के समूह को निरूपित करें में प्रविष्टियों के साथ व्युत्क्रमणीय आव्यूह . का कोई बंद उपसमूह प्रमेय एक लाई समूह है,[4] इस तरह के लाई समूहों को आव्यूह लाई समूह कहा जाता है। चूंकि लाई समूहों के अधिकांश दिलचस्प उदाहरणों को आव्यूह लाई समूहों के रूप में महसूस किया जा सकता है, इसलिए कुछ पाठ्यपुस्तकें इस वर्ग पर ध्यान केंद्रित करती हैं, जिनमें हॉल,[5] रॉसमैन,[6] और स्टिलवेल।[7] आव्यूह लाई समूहों पर ध्यान केंद्रित करने से लाई बीजगणित और घातीय मानचित्र की परिभाषा सरल हो जाती है। निम्नलिखित आव्यूह लाई समूहों के मानक उदाहरण हैं।
- विशेष रेखीय समूह खत्म तथा , तथा , को मिलाकर निर्धारक एक और प्रविष्टियों के साथ आव्यूह या
- एकात्मक समूह और विशेष एकात्मक समूह, तथा , को मिलाकर जटिल मैट्रिसेस संतोषजनक (और भी के मामले में )
- ऑर्थोगोनल समूह और विशेष ऑर्थोगोनल समूह, तथा , को मिलाकर वास्तविक मैट्रिसेस संतोषजनक (और भी के मामले में )
पूर्ववर्ती सभी उदाहरण चिरसम्मत समूहों के शीर्षक के अंतर्गत आते हैं।
संबंधित अवधारणाएं
एक जटिल लाई समूह को उसी तरह से परिभाषित किया जाता है जैसे वास्तविक लोगों के बजाय जटिल कई गुना (उदाहरण: ), और होलोमोर्फिक मानचित्र। इसी प्रकार, एक वैकल्पिक पूर्ण मीट्रिक स्थान का उपयोग करना#पूरा करना , कोई p-adic लाइ समूह को p-adic number|p-adic नंबरों पर परिभाषित कर सकता है, एक सांस्थितिक समूह जो एक विश्लेषणात्मक p-adic बहुविध भी है, जैसे कि समूह संचालन विश्लेषणात्मक हैं। विशेष रूप से, प्रत्येक बिंदु का एक p-adic पड़ोस होता है।
हिल्बर्ट की पांचवीं समस्या ने पूछा कि क्या अलग-अलग बहुविध को सांस्थितिक या एनालिटिक वाले के साथ बदलने से नए उदाहरण मिल सकते हैं। इस प्रश्न का उत्तर नकारात्मक निकला: 1952 में, एंड्रयू ग्लीसन, डीन मोंटगोमरी और लियो ज़िप्पिन ने दिखाया कि यदि 'जी' निरंतर समूह संचालन के साथ एक सामयिक कई गुना है, तो 'जी' पर बिल्कुल एक विश्लेषणात्मक संरचना मौजूद है। जो इसे लाई समूह में बदल देता है (हिल्बर्ट-स्मिथ अनुमान भी देखें)। यदि अंतर्निहित बहुविध को अनंत-आयामी (उदाहरण के लिए, एक हिल्बर्ट कई गुना) होने की अनुमति है, तो एक अनंत-आयामी लाइ समूह की धारणा पर आता है। लाई प्रकार के कई समूहों के अनुरूप परिभाषित करना संभव है, और ये परिमित सरल समूहों के अधिकांश उदाहरण देते हैं।
श्रेणी सिद्धांत की भाषा लाई समूहों के लिए एक संक्षिप्त परिभाषा प्रदान करती है: एक लाई समूह चिकनी मैनिफोल्ड्स की श्रेणी (गणित) में एक समूह वस्तु है। यह महत्वपूर्ण है, क्योंकि यह सुपरग्रुप (भौतिकी) के लिए लाई समूह की धारणा के सामान्यीकरण की अनुमति देता है। यह स्पष्ट दृष्टिकोण लाई समूहों के एक अलग सामान्यीकरण की ओर भी लाइ जाता है, जिसका नाम है लाई बोलना, जो आगे की आवश्यकता के साथ चिकनी मैनिफोल्ड्स की श्रेणी में ग्रुपॉयड वस्तु हैं।
सामयिक परिभाषा
एक लाइ ग्रुप को एक (हॉसडॉर्फ स्पेस) सांस्थितिक ग्रुप के रूप में परिभाषित किया जा सकता है, जो पहचान तत्व के पास, एक परिवर्तन समूह की तरह दिखता है, जिसमें अलग-अलग मैनिफोल्ड्स का कोई संदर्भ नहीं है।[8] सबसे पहले, हम सामान्य रेखीय समूह के एक उपसमूह जी के रूप में एक अत्यधिक रैखिक लाई समूह को परिभाषित करते हैं ऐसा है कि
- जी में पहचान तत्व ई के कुछ पड़ोस वी के लिए, वी पर सांस्थिति का उप-स्थान सांस्थिति है और वी बंद है .
- G में अधिक से अधिक गणनीय सेट कनेक्टेड कंपोनेंट्स हैं।
(उदाहरण के लिए, का एक बंद उपसमूह , अर्थात्, एक आव्यूह लाई समूह उपरोक्त शर्तों को पूरा करता है।)
फिर एक लाई समूह को एक सांस्थितिक समूह के रूप में परिभाषित किया जाता है जो (1) स्थानीय रूप से आइसोमोर्फिक पहचान के पास एक अत्यधिक रैखिक लाई समूह के पास होता है और (2) में सबसे अधिक संख्या में कई जुड़े हुए घटक होते हैं। सांस्थितिक परिभाषा दिखाना सामान्य के बराबर है तकनीकी है (और शुरुआती पाठकों को निम्नलिखित को छोड़ देना चाहिए) लेकिन मोटे तौर पर निम्नानुसार किया जाता है:
- सामान्य कई गुना अर्थों में एक लाई समूह जी को देखते हुए, लाई समूह-लाई बीजगणित पत्राचार (या लाई के तीसरे प्रमेय का एक संस्करण) एक विसर्जित लाई उपसमूह बनाता है ऐसा है कि समान लाई बीजगणित साझा करें, इस प्रकार, वे स्थानीय रूप से आइसोमॉर्फिक हैं। इसलिए, G उपरोक्त सांस्थितिक परिभाषा को संतुष्ट करता है।
- इसके विपरीत, G को एक सांस्थितिक समूह होने दें, जो उपरोक्त सांस्थितिक अर्थों में एक लाई समूह है और एक बेहद रैखिक लाई समूह का चयन करें वह जी के लिए स्थानीय रूप से आइसोमॉर्फिक है। फिर, बंद उपसमूह प्रमेय के एक संस्करण द्वारा, एक वास्तविक-विश्लेषणात्मक कई गुना है और फिर, स्थानीय समरूपता के माध्यम से, जी पहचान तत्व के पास कई गुना संरचना प्राप्त करता है। एक तो दिखाता है कि जी पर समूह कानून औपचारिक शक्ति श्रृंखला द्वारा दिया जा सकता है,[9] इसलिए समूह संचालन वास्तविक-विश्लेषणात्मक हैं और G स्वयं एक वास्तविक-विश्लेषणात्मक कई गुना है।
सांस्थितिक परिभाषा का अर्थ यह कथन है कि यदि दो लाइ समूह सांस्थितिक समूहों के रूप में आइसोमोर्फिक हैं, तो वे लाइ समूह के रूप में आइसोमोर्फिक हैं। वास्तव में, यह सामान्य सिद्धांत बताता है कि, काफी हद तक, समूह कानून के साथ एक लाई समूह की सांस्थिति समूह की ज्यामिति निर्धारित करती है।
लाई बोलने वाले समूहों के अधिक उदाहरण
लाई समूह पूरे गणित और भौतिकी में बहुतायत में पाए जाते हैं। आव्यूह समूह या बीजगणितीय समूह (मोटे तौर पर) आव्यूह के समूह हैं (उदाहरण के लिए, ऑर्थोगोनल समूह और सहानुभूति समूह), और ये लाई समूहों के अधिक सामान्य उदाहरण देते हैं।
आयाम एक और दो
आयाम एक के साथ केवल जुड़े हुए समूह ही वास्तविक रेखा हैं (समूह संचालन के अतिरिक्त होने के साथ) और वृत्त समूह निरपेक्ष मान एक के साथ जटिल संख्याओं का (समूह संचालन गुणन के साथ)। h> समूह को अक्सर के रूप में निरूपित किया जाता है , का समूह एकात्मक आव्यूह।
दो आयामों में, यदि हम केवल जुड़े हुए समूहों पर ध्यान केंद्रित करते हैं, तो उन्हें उनके लाई बीजगणित द्वारा वर्गीकृत किया जाता है। (समरूपता तक) आयाम दो के केवल दो लाई बीजगणित हैं। जुड़े बस जुड़े हुए लाई समूह हैं (समूह संचालन के साथ वेक्टर जोड़ रहा है) और affine समूह पहले आयाम में, पहले उदाहरणों के तहत पिछले उपखंड में वर्णित है।
अतिरिक्त उदाहरण
- विशेष एकात्मक समूह#n_.3D_2|समूह SU(2) का समूह है निर्धारक के साथ एकात्मक matrices . सामयिक रूप से, है -वृत्त , एक समूह के रूप में, इसे इकाई चतुष्कोणों के समूह के साथ पहचाना जा सकता है।
- हाइजेनबर्ग समूह एक जुड़ा हुआ नीलपोटेंट समूह लाइ समूह का आयाम है , क्वांटम यांत्रिकी में एक महत्वपूर्ण भूमिका निभा रहा है।
- लोरेंत्ज़ समूह मिन्कोव्स्कीसमष्टि के रैखिक समरूपता का 6-आयामी लाई समूह है।
- पॉइंकेयर समूह मिन्कोवस्कीसमष्टि के affine परिवर्तन आइसोमेट्रीज़ का 10-आयामी लाई समूह है।
- जी2 (गणित) प्रकार के असाधारण लाई समूह|जी2, F4 (गणित)|F4, ई6 (गणित)|ई6, ई7 (गणित)|ई7, ई8 (गणित)|ई8आयाम 14, 52, 78, 133, और 248 हैं। सरल लाई समूहों की ए-बी-सी-डी श्रृंखला के साथ, असाधारण समूह सरल लाई समूहों की सूची को पूरा करते हैं।
- सहानुभूति समूह सभी के होते हैं मैट्रिसेस पर एक संसुघटित रूप का संरक्षण . यह आयाम का एक जुड़ा हुआ समूह है .
निर्माण
पुराने से नए लाई समूह बनाने के कई मानक तरीके हैं:
- दो लाई समूहों का उत्पाद एक लाई समूह है।
- लाई समूह का कोई भी बंद सेट उपसमूह एक लाई समूह है। इसे बंद उपसमूह प्रमेय या कार्टन प्रमेय के रूप में जाना जाता है।
- एक बंद सामान्य उपसमूह द्वारा एक लाई समूह का भागफल एक लाई समूह है।
- एक जुड़े हुए लाई समूह का सार्वभौमिक आवरण एक लाई समूह है। उदाहरण के लिए, समूह वृत्त समूह का सार्वभौम आवरण है . वास्तव में एक अलग-अलग कई गुना का कोई भी आवरण भी एक अलग-अलग कई गुना है, लेकिन सार्वभौमिक कवर को निर्दिष्ट करके, एक समूह संरचना (इसकी अन्य संरचनाओं के साथ संगत) की गारंटी देता है।
संबंधित धारणाएं
समूहों के कुछ उदाहरण जो लाई समूह नहीं हैं (तुच्छ अर्थों को छोड़कर किसी भी समूह में सबसे अधिक संख्या में कई तत्व होते हैं) असतत सांस्थिति के साथ 0-आयामी लाई समूह के रूप में देखा जा सकता है), हैं:
- अनंत-आयामी समूह, जैसे कि एक अनंत-आयामी वास्तविक सदिश स्थान का योगात्मक समूह, या कई गुना से सुचारू कार्यों का स्थान एक लाई समूह के लिए , . ये लाई समूह नहीं हैं क्योंकि वे परिमित-आयामी कई गुना नहीं हैं।
- कुछ पूरी तरह से अलग किए गए समूह, जैसे क्षेत्रों के अनंत विस्तार का गैलोज़ समूह, या पी-एडिक संख्याओं का योगात्मक समूह। ये लाई समूह नहीं हैं क्योंकि उनके अंतर्निहित स्थान वास्तविक कई गुना नहीं हैं। (इनमें से कुछ समूह p-adic लाई समूह हैं।) सामान्य तौर पर, केवल समान स्थानीय संपत्ति वाले 'R' के समान सामयिक समूहn कुछ सकारात्मक पूर्णांक n के लिए लाई समूह हो सकते हैं (निश्चित रूप से उनके पास एक भिन्न संरचना भी होनी चाहिए)।
बुनियादी अवधारणाएँ
=== एक लाई समूह === के साथ जुड़े लाई बीजगणित
प्रत्येक लाई समूह के लिए हम एक लाई बीजगणित को जोड़ सकते हैं जिसका अंतर्निहित सदिश स्थान पहचान तत्व पर लाई समूह का स्पर्शरेखा स्थान है और जो समूह की स्थानीय संरचना को पूरी तरह से पकड़ लेता है। अनौपचारिक रूप से हम लाई बीजगणित के तत्वों को समूह के तत्वों के रूप में सोच सकते हैं जो पहचान के लिए असीम रूप से करीब हैं, और लाई बीजगणित का लाई ब्रैकेट दो ऐसे अपरिमेय तत्वों के कम्यूटेटर से संबंधित है। अमूर्त परिभाषा देने से पहले हम कुछ उदाहरण देते हैं:
- सदिश समष्टि R का झूठा बीजगणितn बस 'आर' हैn
[A, B] = 0.
द्वारा दिए गए लाइ ब्रैकेट के साथ। .) - व्युत्क्रमणीय आव्यूह के सामान्य रैखिक समूह GL(n, 'C') का लाई बीजगणित वर्ग मैट्रिसेस का वेक्टर स्पेस M(n, 'C') है, जिसका लाई ब्रैकेट
[A, B] द्वारा दिया गया है। = एबी − बीए। - यदि G, GL(n, 'C') का एक बंद उपसमूह है, तो G के लाई बीजगणित को अनौपचारिक रूप से M(n, 'C') के आव्यूह m के रूप में माना जा सकता है, जैसे कि 1 + εm G में है, जहां ε ε के साथ एक अपरिमेय धनात्मक संख्या है2 = 0 (बेशक, ऐसी कोई वास्तविक संख्या ε मौजूद नहीं है)। उदाहरण के लिए, लंबकोणीय समूह O(n, 'R') में AA के साथ आव्यूह A होते हैंT = 1, इसलिए लाई बीजगणित में (1 + εm)(1 + εm) वाले आव्यूह m होते हैंटी = 1, जो एम + एम के बराबर हैटी = 0 क्योंकि ε2</सुप> = 0.
- पिछले विवरण को निम्नानुसार अधिक कठोर बनाया जा सकता है। जीएल (एन, 'सी') के एक बंद उपसमूह जी के लाई बीजगणित की गणना की जा सकती है
- [10][5]जहां exp(tX) को आव्यूह घातीय का उपयोग करके परिभाषित किया गया है। तब यह दिखाया जा सकता है कि G का लाई बीजगणित एक वास्तविक वेक्टर स्पेस है जो ब्रैकेट ऑपरेशन के तहत बंद है, .[11]
आव्यूह समूहों के लिए ऊपर दी गई ठोस परिभाषा के साथ काम करना आसान है, लेकिन इसमें कुछ छोटी समस्याएं हैं: इसका उपयोग करने के लिए हमें सबसे पहले एक लाई समूह को आव्यूह के समूह के रूप में प्रस्तुत करना होगा, लेकिन सभी लाई समूहों को इस तरह से प्रदर्शित नहीं किया जा सकता है, और यह भी स्पष्ट नहीं है कि लाई बीजगणित हमारे द्वारा उपयोग किए जाने वाले प्रतिनिधित्व से स्वतंत्र है।[12] इन समस्याओं से निजात पाने के लिए हम देते हैं लाई समूह के लाई बीजगणित की सामान्य परिभाषा (4 चरणों में): किसी भी सहजता बहुविध M पर #वेक्टर फ़ील्ड को व्युत्पत्ति (अमूर्त बीजगणित) एक्स के रूप में माना जा सकता है, जो कि कई गुना सुचारू कार्यों की अंगूठी है, और इसलिए लाइ ब्रैकेट [X, Y] = XY − YX के तहत एक झूठा बीजगणित बनाते हैं, क्योंकि किन्हीं दो व्युत्पत्तियों के सदिश क्षेत्रों का लाई कोष्ठक एक व्युत्पत्ति है।
- यदि G कई गुना M पर सुचारू रूप से कार्य करने वाला कोई समूह है, तो यह सदिश क्षेत्रों पर कार्य करता है, और समूह द्वारा तय किए गए सदिश क्षेत्रों का सदिश स्थान लाई ब्रैकेट के नीचे बंद होता है और इसलिए एक लाई बीजगणित भी बनाता है।
- हम इस निर्माण को उस मामले में लागू करते हैं जब कई गुना M एक लाई समूह G का अंतर्निहित स्थान होता है, G के साथ G = M पर बाएं अनुवाद L द्वारा कार्य करता हैg(ज) = घ। इससे पता चलता है कि बाएं अपरिवर्तनीय वेक्टर फ़ील्ड का स्थान (वेक्टर फ़ील्ड एल को संतुष्ट करता हैg*Xh= एक्सghG में प्रत्येक h के लिए, जहाँ Lg* एल के अंतर को दर्शाता हैg) on a Lie समूह सदिश क्षेत्रों के Lie कोष्ठक के अंतर्गत एक Lie बीजगणित है।
- लाई समूह की पहचान पर किसी भी स्पर्शरेखा सदिश को स्पर्शरेखा सदिश को कई गुना के अन्य बिंदुओं पर स्थानांतरित करके बाएं अपरिवर्तनीय वेक्टर क्षेत्र में बढ़ाया जा सकता है। विशेष रूप से, पहचान पर स्पर्शरेखा स्थान के एक तत्व v का बायाँ अपरिवर्तनीय विस्तार v^ द्वारा परिभाषित वेक्टर क्षेत्र हैg= एलg*v। यह स्पर्शरेखा स्थान T की पहचान करता हैeजी बाएं अपरिवर्तनीय सदिश क्षेत्रों के स्थान के साथ पहचान पर, और इसलिए पहचान पर स्पर्शरेखा स्थान को लाइ बीजगणित में बनाता है, जिसे जी का लाई बीजगणित कहा जाता है, जिसे आमतौर पर एक फ्रैक्टुर (टाइपफेस उप-वर्गीकरण) द्वारा निरूपित किया जाता है। इस प्रकार लेट ब्रैकेट ऑन [v, w] = [v^, w^] द्वारा स्पष्ट रूप से दिया गया हैe.
यह लाई बीजगणित परिमित-आयामी है और इसका कई गुना G के समान आयाम है। G का लाई बीजगणित G को स्थानीय समरूपता तक निर्धारित करता है, जहां दो लाई समूहों को 'स्थानीय रूप से समरूप' कहा जाता है यदि वे पहचान तत्व के पास समान दिखते हैं। लाई समूहों के बारे में समस्याएं अक्सर लाई बीजगणित के लिए संबंधित समस्या को हल करके हल की जाती हैं, और समूहों के परिणाम आमतौर पर आसानी से अनुसरण करते हैं। उदाहरण के लिए, साधारण लाई समूहों को आमतौर पर संबंधित लाई बीजगणित को पहले वर्गीकृत करके वर्गीकृत किया जाता है।
हम T पर एक लाई बीजगणित संरचना को भी परिभाषित कर सकते हैंeबाएं अपरिवर्तनीय वेक्टर फ़ील्ड के बजाय सही अपरिवर्तनीय वेक्टर फ़ील्ड का उपयोग करना। यह समान लाई बीजगणित की ओर जाता है, क्योंकि जी पर व्युत्क्रम मानचित्र का उपयोग दाएं अपरिवर्तनीय वेक्टर क्षेत्रों के साथ बाएं अपरिवर्तनीय वेक्टर क्षेत्रों की पहचान करने के लिए किया जा सकता है, और स्पर्शरेखा स्थान टी पर -1 के रूप में कार्य करता है।e.
टी पर लाई बीजगणित संरचनाeइस प्रकार भी वर्णित किया जा सकता है: कम्यूटेटर ऑपरेटर
- (एक्स, वाई) → xy-1य-1
जी × जी पर ई को (ई, ई) भेजता है, इसलिए इसका व्युत्पन्न टी पर बिलिनियर ऑपरेटर उत्पन्न करता हैeजी। यह बिलिनियर ऑपरेशन वास्तव में शून्य मानचित्र है, लेकिन दूसरा व्युत्पन्न, स्पर्शरेखा रिक्त स्थान की उचित पहचान के तहत, एक ऑपरेशन उत्पन्न करता है जो लाई बीजगणित # परिभाषा और पहले गुणों के स्वयंसिद्धों को संतुष्ट करता है, और यह दो बार परिभाषित एक के बराबर है बाएं-अपरिवर्तनीय वेक्टर फ़ील्ड के माध्यम से।
समरूपता और समरूपता
यदि G और H लाई समूह हैं, तो एक लाई समूह समरूपता f : G → H एक सहज समूह समाकारिता है। जटिल लाई समूहों के मामले में, इस तरह के समरूपता को होलोमॉर्फिक नक्शा नक्शा होना आवश्यक है। हालाँकि, ये आवश्यकताएँ थोड़ी कठोर हैं, वास्तविक लाई समूहों के बीच हर निरंतर समरूपता (वास्तविक) विश्लेषणात्मक मानचित्र बन जाती है।[13] दो लाइ होमोमोर्फिज्म की संरचना फिर से एक होमोमोर्फिज्म है, और सभी लाइ समूहों का वर्ग, इन रूपों के साथ मिलकर एक श्रेणी सिद्धांत बनाता है। इसके अलावा, प्रत्येक लाई समूह होमोमोर्फिज्म इसी लाई बीजगणित के बीच एक होमोमोर्फिज्म को प्रेरित करता है। होने देना एक लाई समूह होमोमोर्फिज्म हो और चलो सर्वसमिका पर इसका पुश्फॉरवर्ड (अंतर) हो। अगर हम पहचान तत्वों पर उनके स्पर्शरेखा रिक्त स्थान के साथ जी और एच के लाई बीजगणित की पहचान करते हैं, तो इसी लाई बीजगणित के बीच एक नक्शा है:
जो एक लाई बीजगणित होमोमोर्फिज्म निकला (जिसका अर्थ है कि यह एक रैखिक नक्शा है जो लेट ब्रैकेट को संरक्षित करता है)। श्रेणी सिद्धांत की भाषा में, तब हमारे पास लाई समूहों की श्रेणी से लाई बीजगणित की श्रेणी के लिए एक सहसंयोजक ऑपरेटर होता है जो पहचान पर इसके व्युत्पन्न के लिए एक लाई समूह को उसके लाई बीजगणित और एक लाई समूह समरूपता को भेजता है।
दो लाई समूहों को आइसोमोर्फिक कहा जाता है यदि उनके बीच एक विशेषण समरूपता मौजूद है जिसका व्युत्क्रम भी एक लाई समूह समरूपता है। समतुल्य रूप से, यह एक भिन्नता है जो एक समूह समरूपता भी है। ध्यान दें कि, ऊपर से, एक लाई समूह से एक निरंतर समरूपता एक लाई समूह के लिए लाई समूहों का एक समरूपता है यदि और केवल यदि यह विशेषण है।
लाई समूह बनाम लाई बीजगणित समरूपता
आइसोमॉर्फिक लाइ समूहों में आवश्यक रूप से आइसोमोर्फिक लाइ बीजगणित होते हैं, तब यह पूछना वाजिब है कि कैसे लाई समूहों के समरूपतावाद वर्ग लाई बीजगणित के समरूपता वर्गों से संबंधित हैं।
इस दिशा में पहला परिणाम लाइ का तीसरा प्रमेय है, जिसमें कहा गया है कि प्रत्येक परिमित-आयामी, वास्तविक लाई बीजगणित कुछ (रैखिक) लाई समूह का झूठा बीजगणित है। लाई के तीसरे प्रमेय को साबित करने का एक तरीका एडो के प्रमेय का उपयोग करना है, जो कहता है कि प्रत्येक परिमित-आयामी वास्तविक लाई बीजगणित आव्यूह लाई बीजगणित के लिए आइसोमोर्फिक है। इस बीच, प्रत्येक परिमित-आयामी आव्यूह लाई बीजगणित के लिए, इस बीजगणित के साथ एक रेखीय समूह (आव्यूह लाइ समूह) होता है जो इसके लाई बीजगणित के रूप में होता है।[14] दूसरी ओर, आइसोमोर्फिक लाई बीजगणित वाले लाई समूहों को आइसोमोर्फिक होने की आवश्यकता नहीं है। इसके अलावा, यह परिणाम तब भी सही रहता है जब हम मानते हैं कि समूह जुड़े हुए हैं। इसे अलग तरीके से रखने के लिए, एक लाई समूह की वैश्विक संरचना उसके लाई बीजगणित द्वारा निर्धारित नहीं होती है, उदाहरण के लिए, यदि Z, G के केंद्र का कोई असतत उपसमूह है तो G और G/Z का एक ही लाई बीजगणित है (उदाहरण के लिए लाई समूहों की तालिका देखें)। भौतिकी में महत्व का एक उदाहरण समूह Special_unitary_group#The_group_SU(2)|SU(2) और घूर्णन समूह SO(3)|SO(3) हैं। इन दो समूहों में आइसोमोर्फिक लाई बीजगणित है,[15] लेकिन समूह स्वयं समरूपी नहीं हैं, क्योंकि SU(2) केवल जुड़ा हुआ है लेकिन SO(3) नहीं है।[16] दूसरी ओर, यदि हमें आवश्यकता है कि लाई समूह सरलता से जुड़ा हो, तो वैश्विक संरचना इसके लाई बीजगणित द्वारा निर्धारित की जाती है: आइसोमॉर्फिक लाई बीजगणित के साथ दो बस जुड़े हुए लाई समूह आइसोमोर्फिक हैं।[17] (आसानी से जुड़े लाई समूहों के बारे में अधिक जानकारी के लिए अगला उपखंड देखें।) लाई के तीसरे प्रमेय के प्रकाश में, इसलिए हम कह सकते हैं कि परिमित-आयामी वास्तविक लाई बीजगणित और आइसोमोर्फिज्म कक्षाओं के समरूपता वर्गों के बीच एक-से-एक पत्राचार है। बस जुड़े हुए लाई समूह।
बस जुड़े लाई समूह
एक लाई समूह कहा जाता है कि अगर हर लूप अंदर आता है तो बस जुड़ा हुआ स्थान होता है में एक बिंदु तक लगातार सिकुड़ा जा सकता है . यह धारणा निम्नलिखित परिणाम के कारण महत्वपूर्ण है जिसमें एक परिकल्पना के रूप में सरल जुड़ाव है:
- प्रमेय:[18] मान लीजिए तथा लाई बीजगणित वाले लाई समूह हैं तथा और कि एक लाई बीजगणित समरूपता है। यदि बस जुड़ा हुआ है, तो एक अद्वितीय लाई समूह समरूपता है ऐसा है कि , कहाँ पे का अंतर है पहचान पर।
लाई ग्रुप-लाई बीजगणित पत्राचार#द करस्पोंडेंस|लाई का तीसरा प्रमेय कहता है कि प्रत्येक परिमित-आयामी वास्तविक लाई बीजगणित एक लाई समूह का लाई बीजगणित है। यह लाइ के तीसरे प्रमेय और पूर्ववर्ती परिणाम से आता है कि प्रत्येक परिमित-आयामी वास्तविक लाइ बीजगणित एक अद्वितीय सरलता से जुड़े लाइ समूह का झूठा बीजगणित है।
सरलता से जुड़े समूह का एक उदाहरण विशेष एकात्मक समूह विशेष एकात्मक समूह #n_.3D_2|SU(2) है, जो कि कई गुना 3-क्षेत्र है। दूसरी ओर, घूर्णन समूह SO(3), केवल जुड़ा हुआ नहीं है। (घूर्णन समूह SO(3)#सांस्थिति|SO(3) की सांस्थिति देखें।) SO(3) के आसानी से जुड़े होने की विफलता क्वांटम यांत्रिकी में पूर्णांक स्पिन और अर्ध-पूर्णांक स्पिन के बीच के अंतर से घनिष्ठ रूप से जुड़ी हुई है। आसानी से जुड़े हुए समूहों के अन्य उदाहरणों में विशेष एकात्मक समूह एसयू (एन), स्पिन समूह (घूर्णन समूह का दोहरा कवर) स्पिन (एन) शामिल हैं , और संक्षिप्त संसुघटित समूह संसुघटित समूह#Sp.28n.29|Sp(n).[19] यह निर्धारित करने के तरीके कि क्या कोई लाई समूह बस जुड़ा हुआ है या नहीं, मौलिक समूह # लाई समूहों पर आलेख में चर्चा की गई है।
एक्सपोनेंशियल मैप
लाई बीजगणित से घातीय नक्शा (लाई सिद्धांत)। सामान्य रैखिक समूह का प्रति सामान्य शक्ति श्रृंखला द्वारा दिए गए आव्यूह घातांक द्वारा परिभाषित किया गया है:
आव्यूह के लिए . यदि का एक बंद उपसमूह है , तब घातीय मानचित्र का लाई बीजगणित लेता है में , इस प्रकार, हमारे पास सभी आव्यूह समूहों के लिए एक घातीय मानचित्र है। का हर तत्व जो पर्याप्त रूप से पहचान के करीब है, लाई बीजगणित में एक आव्यूह का घातीय है।[20] उपरोक्त परिभाषा का उपयोग करना आसान है, लेकिन यह लाई समूहों के लिए परिभाषित नहीं है जो आव्यूह समूह नहीं हैं, और यह स्पष्ट नहीं है कि लाई समूह का घातीय मानचित्र आव्यूह समूह के रूप में इसके प्रतिनिधित्व पर निर्भर नहीं करता है। हम घातीय मानचित्र की अधिक सार परिभाषा का उपयोग करके दोनों समस्याओं को हल कर सकते हैं जो सभी लाई समूहों के लिए काम करता है, निम्नानुसार है।
प्रत्येक वेक्टर के लिए लाई बीजगणित में का (यानी, स्पर्शरेखा स्थान को पहचान पर), एक यह साबित करता है कि एक अद्वितीय एक-पैरामीटर उपसमूह है ऐसा है कि . कहते हुए की एक एक-पैरामीटर उपसमूह है जिसका अर्थ बस यही है में एक सहज मानचित्र है और कि
सभी के लिए तथा . दाहिनी ओर की संक्रिया समूह गुणन है . घातीय फलन के लिए मान्य सूत्र के साथ इस सूत्र की औपचारिक समानता परिभाषा को सही ठहराती है
इसे एक्सपोनेंशियल मैप कहा जाता है, और यह लाई बीजगणित को मैप करता है लाई समूह में . यह 0 इंच के पड़ोस (सांस्थिति) के बीच एक भिन्नता प्रदान करता है और का एक पड़ोस में . यह घातीय मानचित्र वास्तविक संख्याओं के लिए घातीय फलन का एक सामान्यीकरण है (क्योंकि गुणन के साथ धनात्मक वास्तविक संख्याओं के लाई समूह का झूठा बीजगणित है), जटिल संख्याओं के लिए (क्योंकि गुणा के साथ गैर-शून्य जटिल संख्याओं के लाई समूह का झूठा बीजगणित है) और आव्यूह (गणित) के लिए (क्योंकि नियमित कम्यूटेटर के साथ लाइ समूह का लाई बीजगणित है सभी उलटा मैट्रिसेस)।
क्योंकि घातीय नक्शा कुछ पड़ोस पर विशेषण है का , समूह के लाई बीजगणित अनंत जनरेटर के तत्वों को कॉल करना आम है . का उपसमूह द्वारा उत्पन्न का पहचान घटक है .
एक्सपोनेंशियल मैप और लाई बीजगणित, बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूले के कारण, हर जुड़े हुए लाई समूह की स्थानीय समूह संरचना का निर्धारण करते हैं: एक पड़ोस मौजूद है के शून्य तत्व का , ऐसे के लिए अपने पास
जहां छोड़े गए शब्द ज्ञात हैं और इसमें चार या अधिक तत्वों के लेटे ब्रैकेट शामिल हैं। यदि तथा कम्यूट, यह सूत्र परिचित घातीय कानून को कम करता है एक्सपोनेंशियल मैप लाइ ग्रुप होमोमोर्फिज्म से संबंधित है। यानी अगर एक लाई समूह समरूपता है और इसी लाई बीजगणित पर प्रेरित नक्शा, फिर सभी के लिए अपने पास
दूसरे शब्दों में, निम्न आरेख क्रमविनिमेय आरेख,[Note 1]
(संक्षेप में, ऍक्स्प लाई समूहों की श्रेणी पर फ़ैक्टर लाइ से आइडेंटिटी फ़ैक्टर के लिए एक प्राकृतिक परिवर्तन है।)
लाई बीजगणित से लाई समूह तक घातीय मानचित्र हमेशा चालू नहीं होता है, भले ही समूह जुड़ा हुआ हो (हालांकि यह जुड़े हुए समूहों के लिए लाई समूह पर मैप करता है जो या तो संक्षिप्त या निलपोटेंट हैं)। उदाहरण के लिए, SL(2, R) का घातीय नक्शा विशेषण नहीं है। साथ ही, घातीय नक्शा अनंत-आयामी (नीचे देखें) के लिए न तो विशेषण है और न ही इंजेक्शन है (नीचे देखें) लाई समूह सी∞ फ्रेचेट स्पेस पर मॉडलिंग करते हैं, यहां तक कि 0 के मनमाने छोटे पड़ोस से 1 के संबंधित पड़ोस तक भी।
लाई उपसमूह
एक लाई उपसमूह एक लाई समूह का एक लाई समूह है जो का उपसमुच्चय है और ऐसा है कि समावेशन मानचित्र से प्रति एक इंजेक्शन विसर्जन (गणित) और समूह समरूपता है। बंद उपसमूह प्रमेय के अनुसार | कार्टन की प्रमेय, का एक बंद उपसमूह एक अद्वितीय चिकनी संरचना को स्वीकार करता है जो इसे एक एम्बेडिंग लाई उपसमूह बनाता है -अर्थात। एक लाई उपसमूह ऐसा है कि समावेशन मानचित्र एक चिकनी एम्बेडिंग है।
गैर-बंद उपसमूहों के उदाहरण बहुतायत से हैं, उदाहरण के लिए लाइ लो आयाम 2 या उससे अधिक का टोरस होना, और चलो तर्कहीन ढलान का एक-पैरामीटर उपसमूह हो, यानी वह जो जी में चारों ओर घूमता है। फिर एक लाई समूह समरूपता होता है साथ . का क्लोजर (सांस्थिति)। में एक उप-टॉरस होगा .
एक्सपोनेंशियल मैप (लाई सिद्धांत) एक लाई समूह-लाई बीजगणित पत्राचार देता है और लाई बीजगणित के सबलजेब्रस .[21] आमतौर पर, सबलजेब्रा से संबंधित उपसमूह एक बंद उपसमूह नहीं होता है। केवल संरचना के आधार पर कोई मानदंड नहीं है जो यह निर्धारित करता है कि कौन से सबलजेब्रस बंद उपसमूहों के अनुरूप हैं।
प्रतिनिधित्व
लाई समूहों के अध्ययन का एक महत्वपूर्ण पहलू उनका निरूपण है, अर्थात जिस तरह से वे सदिश स्थानों पर (रैखिक रूप से) कार्य कर सकते हैं। भौतिकी में, लाई समूह अक्सर एक भौतिक प्रणाली की समरूपता को कूटबद्ध करते हैं। सिस्टम का विश्लेषण करने में मदद करने के लिए जिस तरह से कोई इस समरूपता का उपयोग करता है वह अक्सर प्रतिनिधित्व सिद्धांत के माध्यम से होता है। उदाहरण के लिए, क्वांटम यांत्रिकी में समय-स्वतंत्र श्रोडिंगर समीकरण पर विचार करें, . मान लें कि सिस्टम में समरूपता के रूप में घूर्णन समूह SO(3) है, जिसका अर्थ हैमिल्टनियन ऑपरेटर है वेव फंक्शन पर SO(3) की क्रिया के साथ संचार करता है . (इस तरह की प्रणाली का एक महत्वपूर्ण उदाहरण हाइड्रोजन परमाणु है, जिसमें एक एकल गोलाकार कक्षीय है।) इस धारणा का जरूरी अर्थ यह नहीं है कि समाधान घूर्णी रूप से अपरिवर्तनीय कार्य हैं। बल्कि, इसका अर्थ है कि समाधानों का स्थान घूर्णन के तहत अपरिवर्तनीय है (प्रत्येक निश्चित मान के लिए ). इसलिए, यह स्थान SO(3) का प्रतिनिधित्व करता है। ये अभ्यावेदन एक लाई समूह # एक उदाहरण का प्रतिनिधित्व करते हैं: घूर्णन समूह SO.283.29 और वर्गीकरण एक पर्याप्त हाइड्रोजन जैसे परमाणु की ओर जाता है, अनिवार्य रूप से एक त्रि-आयामी आंशिक अंतर समीकरण को एक-आयामी साधारण अंतर समीकरण में परिवर्तित करता है।
कनेक्टेड संक्षिप्त लाइ ग्रुप K (SO(3) के अभी-उल्लेखित मामले सहित) का मामला विशेष रूप से ट्रैक्टेबल है।[22] उस स्थिति में, K का प्रत्येक परिमित-आयामी प्रतिनिधित्व अप्रासंगिक अभ्यावेदन के प्रत्यक्ष योग के रूप में विघटित होता है। अलघुकरणीय अभ्यावेदन, बदले में, हरमन वेइल द्वारा वर्गीकृत किए गए थे। संक्षिप्त समूह # एक जुड़े हुए संक्षिप्त लाई समूह का प्रतिनिधित्व सिद्धांत प्रतिनिधित्व के उच्चतम भार के संदर्भ में है। वर्गीकरण लाई बीजगणित प्रतिनिधित्व से निकटता से संबंधित है # लाई बीजगणित के परिमित-आयामी प्रतिनिधित्वों को वर्गीकृत करना।
कोई भी एक मनमाने ढंग से लाई समूह (जरूरी नहीं कि संक्षिप्त ) के एकात्मक प्रतिनिधित्व (सामान्य अनंत-आयामी में) का अध्ययन कर सकता है। उदाहरण के लिए, SL2(R)|समूह SL(2,R) के प्रतिनिधित्व और विग्नेर%27s वर्गीकरण|पोंकारे समूह के प्रतिनिधित्व के प्रतिनिधित्व सिद्धांत का एक अपेक्षाकृत सरल स्पष्ट विवरण देना संभव है।
वर्गीकरण
लाई समूहों को समरूपता के सुचारु रूप से भिन्न परिवारों के रूप में सोचा जा सकता है। समरूपता के उदाहरणों में एक अक्ष के चारों ओर घूमना शामिल है। क्या समझा जाना चाहिए 'छोटे' परिवर्तनों की प्रकृति है, उदाहरण के लिए, छोटे कोणों के माध्यम से घूर्णन, जो पास के परिवर्तनों को जोड़ता है। इस संरचना को कैप्चर करने वाली गणितीय वस्तु को लाइ बीजगणित कहा जाता है (सोफस लाई ने स्वयं उन्हें अतिसूक्ष्म समूह कहा है)। इसे परिभाषित किया जा सकता है क्योंकि लेट समूह सहजता कई गुना होते हैं, इसलिए प्रत्येक बिंदु पर स्पर्शरेखा स्थान होते हैं।
किसी भी संक्षिप्त लाइ समूह का लाई बीजगणित (बहुत मोटे तौर पर: एक जिसके लिए समरूपता एक बंधे हुए सेट का निर्माण करती है) को एक एबेलियन लाइ बीजगणित के मॉड्यूल के प्रत्यक्ष योग और कुछ सरल लाई समूह वाले के रूप में विघटित किया जा सकता है। एक एबेलियन लाइ बीजगणित की संरचना गणितीय रूप से निर्बाध है (चूंकि लाइ ब्रैकेट समान रूप से शून्य है), ब्याज साधारण रकम में है। इसलिए सवाल उठता है: संक्षिप्त समूहों के साधारण लाई समूह क्या हैं? यह पता चला है कि वे ज्यादातर चार अनंत परिवारों में आते हैं, चिरसम्मत लाई बीजगणित एn, बीn, सीn और डीn, जिनका यूक्लिडियनसमष्टि की समरूपता के संदर्भ में सरल विवरण है। लेकिन केवल पांच असाधारण लाई बीजगणित भी हैं जो इनमें से किसी भी परिवार में नहीं आते हैं। इ8 इनमें से सबसे बड़ा है।
लाई समूहों को उनके बीजगणितीय गुणों (सरल समूह, अर्धसरल समूह, हल करने योग्य समूह, निलपोटेंट समूह, एबेलियन समूह), उनकी संबद्धता (जुड़ा हुआ स्थान या बस जुड़ा हुआ स्थान) और उनके संक्षिप्त स्थान के अनुसार वर्गीकृत किया गया है।
पहला मुख्य परिणाम लेवी अपघटन है, जो कहता है कि प्रत्येक सरलता से जुड़ा हुआ लाइ समूह एक हल करने योग्य सामान्य उपसमूह और एक अर्धसरल उपसमूह का अर्ध-प्रत्यक्ष उत्पाद है।
- संयुक्तता संक्षिप्त लाई समूह सभी ज्ञात हैं: वे सर्कल समूह एस की प्रतियों के उत्पाद के परिमित केंद्रीय भागफल हैं1 और सरल संक्षिप्त लाई समूह (जो कनेक्टेड डायकिन आरेखों के अनुरूप हैं)।
- कोई भी आसानी से जुड़ा हुआ सॉल्व करने योग्य लाइ समूह कुछ रैंक के उलटे ऊपरी त्रिकोणीय मैट्रिसेस के समूह के एक बंद उपसमूह के लिए आइसोमोर्फिक है, और ऐसे समूह का कोई भी परिमित-आयामी इर्रेड्यूबल प्रतिनिधित्व 1-आयामी है। हल करने योग्य समूह कुछ छोटे आयामों को छोड़कर वर्गीकृत करने के लिए बहुत गन्दा हैं।
- कोई भी सरल रूप से जुड़ा हुआ निलपोटेंट लाइ समूह, किसी रैंक के विकर्ण पर 1 के साथ उल्टे ऊपरी त्रिकोणीय मैट्रिसेस के समूह के एक बंद उपसमूह के लिए आइसोमॉर्फिक है, और ऐसे समूह का कोई भी परिमित-आयामी इर्रेड्यूबल प्रतिनिधित्व 1-आयामी है। हल करने योग्य समूहों की तरह, निलपोटेंट समूह कुछ छोटे आयामों को छोड़कर वर्गीकृत करने के लिए बहुत गन्दा हैं।
- सरल लाई समूहों को कभी-कभी उन लोगों के रूप में परिभाषित किया जाता है जो अमूर्त समूहों के रूप में सरल होते हैं, और कभी-कभी एक साधारण लाई बीजगणित के साथ जुड़े लाई समूहों के रूप में परिभाषित होते हैं। उदाहरण के लिए, SL2(R)|SL(2, R) दूसरी परिभाषा के अनुसार सरल है लेकिन पहली के अनुसार नहीं। वे सभी साधारण लाई बोलने वाले समूहों की सूची रहे हैं (किसी भी परिभाषा के लिए)।
- अर्धसरल समूह लाई समूह लाई समूह होते हैं जिनका लाई बीजगणित सरल लाई बीजगणित का एक उत्पाद है।[23] वे साधारण लाई समूहों के उत्पादों के केंद्रीय विस्तार हैं।
किसी भी लाई समूह का पहचान घटक एक खुला सामान्य उपसमूह है, और भागफल समूह एक असतत समूह है। किसी भी जुड़े लाई समूह का सार्वभौमिक आवरण एक सरल रूप से जुड़ा हुआ समूह है, और इसके विपरीत कोई भी जुड़ा हुआ समूह केंद्र के असतत सामान्य उपसमूह द्वारा बस जुड़े हुए समूह का एक अंश है। किसी भी लाई समूह G को विहित तरीके से असतत, सरल और आबेली समूहों में निम्नानुसार विघटित किया जा सकता है। लिखना
- जीcon पहचान के जुड़े घटक के लिए
- जीsol सबसे बड़े जुड़े सामान्य हल करने योग्य उपसमूह के लिए
- जीnil सबसे बड़े जुड़े हुए सामान्य निलपोटेंट उपसमूह के लिए
ताकि हमारे पास सामान्य उपसमूहों का एक क्रम हो
- 1 ⊆ जीnil ⊆ जीsol ⊆ जीcon ⊆ जी.
फिर
- जी / जीcon असतत है
- जीcon/जीsol सरल लाई समूहों की सूची के उत्पाद का एक समूह विस्तार है।
- जीsol/जीnil एबेलियन है। एक जुड़ा एबेलियन लाइ समूह आर और सर्कल समूह 'एस' की प्रतियों के उत्पाद के लिए आइसोमोर्फिक है1</उप>।
- जीnil/1 शून्य है, और इसलिए इसकी आरोही केंद्रीय श्रृंखला में सभी भागफल आबेली हैं।
इसका उपयोग लाई समूहों के बारे में कुछ समस्याओं को कम करने के लिए किया जा सकता है (जैसे कि उनके एकात्मक प्रतिनिधित्व को खोजना) जुड़े हुए सरल समूहों और छोटे आयामों के शून्य और हल करने योग्य उपसमूहों के लिए समान समस्याओं के लिए।
- लाई समूह का डिफियोमोर्फिज्म, लाई समूह पर सकर्मक रूप से कार्य करता है
- प्रत्येक लाई समूह समांतर है, और इसलिए एक कुंडा कई गुना (इसकी स्पर्शरेखा बंडल और पहचान पर स्पर्शरेखा स्थान के साथ स्वयं के उत्पाद के बीच एक फाइबर बंडल है)
अनंत-आयामी लाई समूह
लाई समूहों को अक्सर परिमित-आयामी के रूप में परिभाषित किया जाता है, लेकिन अनंत-आयामी होने के अलावा, ऐसे कई समूह हैं जो लाई समूहों के समान हैं। अनंत-आयामी लाई समूहों को परिभाषित करने का सबसे आसान तरीका उन्हें स्थानीय रूप से बनच रिक्त स्थान (परिमित-आयामी मामले में यूक्लिडियनसमष्टि के विपरीत) परप्रतिरूपकरना है, और इस मामले में बहुत से बुनियादी सिद्धांत परिमित-आयामी लाई के समान हैं समूह। हालांकि यह कई अनुप्रयोगों के लिए अपर्याप्त है, क्योंकि अनंत-आयामी लाई समूहों के कई प्राकृतिक उदाहरण बनच बहुविध नहीं हैं। इसके बजाय किसी को अधिक सामान्य स्थानीय रूप से उत्तलसमष्टि सांस्थितिक वेक्टर रिक्त स्थान पर मॉडलिंग किए गए लाई समूहों को परिभाषित करने की आवश्यकता है। इस मामले में लाई बीजगणित और लाई समूह के बीच संबंध बल्कि सूक्ष्म हो जाता है, और परिमित-आयामी लाई समूहों के बारे में कई परिणाम अब पकड़ में नहीं आते हैं।
साहित्य अपनी शब्दावली में पूरी तरह से एक समान नहीं है, क्योंकि वास्तव में अनंत-आयामी समूहों के कौन से गुण समूह को लाई समूह में उपसर्ग के लिए अर्हता प्राप्त करते हैं। मामलों के लाई बीजगणित पक्ष पर, चीजें सरल होती हैं क्योंकि लाई बीजगणित में उपसर्ग के लिए योग्यता मानदंड पूरी तरह से बीजगणितीय हैं। उदाहरण के लिए, एक अनंत-आयामी लाई बीजगणित में संबंधित लाई समूह हो सकता है या नहीं भी हो सकता है। अर्थात्, लाई बीजगणित के अनुरूप एक समूह हो सकता है, लेकिन यह लाई समूह कहलाने के लिए पर्याप्त अच्छा नहीं हो सकता है, या समूह और लाई बीजगणित के बीच का संबंध पर्याप्त अच्छा नहीं हो सकता है (उदाहरण के लिए, विफलता) पहचान के पड़ोस पर होने के लिए घातीय मानचित्र)। यह काफी अच्छा है जिसे सार्वभौमिक रूप से परिभाषित नहीं किया गया है।
अध्ययन किए गए कुछ उदाहरणों में शामिल हैं:
- कई गुना के डिफियोमोर्फिज्म का समूह। वृत्त के विरूपताओं के समूह के बारे में काफी कुछ जाना जाता है। इसका लाई बीजगणित (अधिक या कम) विट बीजगणित है, जिसका लाई बीजगणित विरासोरो बीजगणित का विस्तार करता है (इस तथ्य की व्युत्पत्ति के लिए लाई बीजगणित विस्तार#विरासोरो बीजगणित देखें) द्वि-आयामी अनुरूप क्षेत्र सिद्धांत का समरूपता बीजगणित है। बड़े आयाम के संक्षिप्त मैनिफोल्ड्स के डिफियोमोर्फिज्म समूह सुविधाजनक वेक्टर स्पेस # नियमित लाई समूह हैं। नियमित फ्रेचेट लाई समूह, उनकी संरचना के बारे में बहुत कम जानकारी है।
- अंतरिक्ष-समय का डिफियोमोर्फिज्म समूह कभी-कभी परिमाणीकरण (भौतिकी) गुरुत्व के प्रयासों में प्रकट होता है।
- बहुविध से परिमित-आयामी लाई समूह तक सहजता नक्शों का समूह एक गेज समूह (बिंदुवार गुणन के संचालन के साथ) का एक उदाहरण है, और इसका उपयोग क्वांटम क्षेत्र सिद्धांत और डोनाल्डसन सिद्धांत में किया जाता है। यदि बहुविध एक वृत्त है, तो इन्हें लूप समूह कहा जाता है, और केंद्रीय विस्तार होते हैं, जिनके लाई बीजगणित (अधिक या कम) केएसी-मूडी बीजगणित होते हैं।
- सामान्य रेखीय समूहों, ऑर्थोगोनल समूहों, और इसी तरह के अनंत-आयामी अनुरूप हैं।[24] एक महत्वपूर्ण पहलू यह है कि इनमें सरल सांस्थितिक गुण हो सकते हैं: उदाहरण के लिए कुइपर की प्रमेय देखें। एम-सिद्धांत में, उदाहरण के लिए, एक 10-आयामी एसयू(एन) गेज सिद्धांत एक 11-आयामी सिद्धांत बन जाता है जब एन अनंत हो जाता है।
यह भी देखें
- झूठ बोलने वाले समूह का संयुक्त प्रतिनिधित्व
- हार उपाय
- सजातीय स्थान
- झूठ समूह विषयों की सूची
- झूठ बोलने वाले समूहों का प्रतिनिधित्व
- क्वांटम यांत्रिकी में समरूपता
- झूठ बिंदु समरूपता, अंतर समीकरणों के अध्ययन के लिए झूठ समूहों के आवेदन के बारे में।
टिप्पणियाँ
व्याख्यात्मक नोट
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2011-09-28. Retrieved 2014-10-11.
उद्धरण
- ↑ Arthur Tresse (1893). "परिवर्तनों के निरंतर समूहों के विभेदक आक्रमणकारियों पर". Acta Mathematica. 18: 1–88. doi:10.1007/bf02418270.
- ↑ Borel (2001).
- ↑ Rossmann 2001, Chapter 2.
- ↑ Hall 2015 Corollary 3.45
- ↑ 5.0 5.1 Hall 2015
- ↑ Rossmann 2001
- ↑ Stillwell 2008
- ↑ Kobayashi & Oshima 1999, Definition 5.3.
- ↑ This is the statement that a Lie group is a formal Lie group. For the latter concept, for now, see F. Bruhat, Lectures on Lie Groups and Representations of Locally Compact Groups.
- ↑ Helgason 1978, Ch. II, § 2, Proposition 2.7.
- ↑ Hall 2015 Theorem 3.20
- ↑ But see Hall 2015, Proposition 3.30 and Exercise 8 in Chapter 3
- ↑ Hall 2015 Corollary 3.50. Hall only claims smoothness, but the same argument shows analyticity.
- ↑ Hall 2015 Theorem 5.20
- ↑ Hall 2015 Example 3.27
- ↑ Hall 2015 Section 1.3.4
- ↑ Hall 2015 Corollary 5.7
- ↑ Hall 2015 Theorem 5.6
- ↑ Hall 2015 Section 13.2
- ↑ Hall 2015 Theorem 3.42
- ↑ Hall 2015 Theorem 5.20
- ↑ Hall 2015 Part III
- ↑ Helgason, Sigurdur (1978). डिफरेंशियल ज्योमेट्री, लाई ग्रुप्स और सिमेट्रिक स्पेसेस. New York: Academic Press. p. 131. ISBN 978-0-12-338460-7.
- ↑ Bäuerle, de Kerf & ten Kroode 1997
संदर्भ
- Adams, John Frank (1969), Lectures on Lie Groups, Chicago Lectures in Mathematics, Chicago: Univ. of Chicago Press, ISBN 978-0-226-00527-0, MR 0252560.
- Bäuerle, G.G.A; de Kerf, E.A.; ten Kroode, A. P. E. (1997). A. van Groesen; E.M. de Jager (eds.). Finite and infinite dimensional Lie algebras and their application in physics. Studies in mathematical physics. Vol. 7. North-Holland. ISBN 978-0-444-82836-1 – via ScienceDirect.
- Borel, Armand (2001), Essays in the history of Lie groups and algebraic groups, History of Mathematics, vol. 21, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0288-5, MR 1847105
- Bourbaki, Nicolas, Elements of mathematics: Lie groups and Lie algebras. Chapters 1–3 ISBN 3-540-64242-0, Chapters 4–6 ISBN 3-540-42650-7, Chapters 7–9 ISBN 3-540-43405-4
- Chevalley, Claude (1946), Theory of Lie groups, Princeton: Princeton University Press, ISBN 978-0-691-04990-8.
- P. M. Cohn (1957) Lie Groups, Cambridge Tracts in Mathematical Physics.
- J. L. Coolidge (1940) A History of Geometrical Methods, pp 304–17, Oxford University Press (Dover Publications 2003).
- Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics (in British English). Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
- Robert Gilmore (2008) Lie groups, physics, and geometry: an introduction for physicists, engineers and chemists, Cambridge University Press ISBN 9780521884006 doi:10.1017/CBO9780511791390.
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666.
- F. Reese Harvey (1990) Spinors and calibrations, Academic Press, ISBN 0-12-329650-1.
- Hawkins, Thomas (2000), Emergence of the theory of Lie groups, Sources and Studies in the History of Mathematics and Physical Sciences, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-1202-7, ISBN 978-0-387-98963-1, MR 1771134 Borel's review
- Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/034, ISBN 978-0-8218-2848-9, MR 1834454
- Knapp, Anthony W. (2002), Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140 (2nd ed.), Boston: Birkhäuser, ISBN 978-0-8176-4259-4.
- Kobayashi, Toshiyuki; Oshima, Toshio. (2005), Lie Groups and Representation Theory (in Japanese), Iwanami, ISBN 4-00-006142-9
{{citation}}: CS1 maint: unrecognized language (link). - Sophus Lie (1876), "Theorie der Transformations-Gruppen (I, II)", Archiv for Mathematik og Naturvidenskab, 1: 19–57, 152–193
- Nijenhuis, Albert (1959). "Review: Lie groups, by P. M. Cohn". Bulletin of the American Mathematical Society. 65 (6): 338–341. doi:10.1090/s0002-9904-1959-10358-x.
- Rossmann, Wulf (2001), Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford University Press, ISBN 978-0-19-859683-7. The 2003 reprint corrects several typographical mistakes.
- Sattinger, David H.; Weaver, O. L. (1986). Lie groups and algebras with applications to physics, geometry, and mechanics. Springer-Verlag. doi:10.1007/978-1-4757-1910-9. ISBN 978-3-540-96240-3. MR 0835009.
- Serre, Jean-Pierre (1965), Lie Algebras and Lie Groups: 1964 Lectures given at Harvard University, Lecture notes in mathematics, vol. 1500, Springer, ISBN 978-3-540-55008-2.
- Stillwell, John (2008). Naive Lie Theory. Undergraduate Texts in Mathematics. Springer. doi:10.1007/978-0-387-78214-0. ISBN 978-0387782140.
- Heldermann Verlag Journal of Lie Theory
- Warner, Frank W. (1983), Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, New York Berlin Heidelberg: Springer-Verlag, doi:10.1007/978-1-4757-1799-0, ISBN 978-0-387-90894-6, MR 0722297
- Steeb, Willi-Hans (2007), Continuous Symmetries, Lie algebras, Differential Equations and Computer Algebra: second edition, World Scientific Publishing, doi:10.1142/6515, ISBN 978-981-270-809-0, MR 2382250.
- Lie Groups. Representation Theory and Symmetric Spaces Wolfgang Ziller, Vorlesung 2010
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- अलग करने योग्य कई गुना
- चिकनाई
- भौतिक विज्ञान
- विभेदक समीकरण
- विशेष समारोह
- आंशिक विभेदक समीकरण
- अर्धसरल लाई बीजगणित
- चतुर्भुज (गणित)
- अनिश्चितकालीन अभिन्न
- मंडल समूह
- निरपेक्ष मूल्य
- एर्लांगेन कार्यक्रम
- प्रक्षेपण समूह
- समूह क्रिया (गणित)
- एक लाई समूह का प्रतिनिधित्व
- जी संरचना
- गुणा
- चिकना नक्शा
- उलटा आव्यूह
- सिद्ध
- डिफियोमॉर्फिक
- सबस्पेस सांस्थिति
- पड़ोस (गणित)
- घना सेट
- विशेष रैखिक समूह
- लाई प्रकार का समूह
- संसुघटित समूह
- निलपोटेंट समूह
- चार का समुदाय
- पूरी तरह से डिस्कनेक्ट समूह
- गाल्वा समूह
- बहुत छोता
- व्युत्पत्ति (सार बीजगणित)
- सदिश क्षेत्रों का लेट ब्रैकेट
- फ़रक्टुर (टाइपफेस उप-वर्गीकरण)
- विश्लेषणात्मक नक्शा
- पुशफॉरवर्ड (अंतर)
- लाई बीजगणित समरूपता
- द्विभाजित
- डिफियोमोर्फिज्म
- लाई समूहों की तालिका
- बस जुड़ा हुआ है
- वह, न)
- आधा पूर्णांक स्पिन
- घातांक प्रकार्य
- सकारात्मक वास्तविक संख्या
- विशेषण समारोह
- सबसेट
- समावेशन नक्शा
- हाइड्रोजन जैसा परमाणु
- मॉड्यूल का प्रत्यक्ष योग
- संक्षिप्त लाई समूह
- साधारण समूह
- डायनकिन आरेख
- एबेलियन लाइ समूह
- में चलाने योग्य
- लाई बीजगणित विस्तार
- स्थानीय रूप से उत्तल स्थान
- बनच स्थान
- virasoro बीजगणित
- उसका नाप
- एक लाई समूह का संलग्न प्रतिनिधित्व
बाहरी संबंध
- File:Commons-logo.svg Media related to Lie groups at Wikimedia Commons