हैमिल्टन-जैकोबी समीकरण

From Vigyanwiki
Revision as of 12:32, 27 April 2023 by alpha>Artiverma

भौतिकी में, हैमिल्टन-जैकोबी समीकरण, विलियम रोवन हैमिल्टन और कार्ल गुस्ताव जैकब जैकोबी के नाम पर आधारित यांत्रिकी का वैकल्पिक सूत्रीकरण है, जो न्यूटन के गति के नियमों, लैग्रैंगियन यांत्रिकी और हैमिल्टन यांत्रिकी जैसे अन्य योगों के समान है। हैमिल्टन-जैकोबी समीकरण यांत्रिक प्रणालियों के लिए संरक्षित मात्राओं को प्रमाणित करने में विशेष रूप से उपयोगी है, जो तब भी संभव हो सकता है जब यांत्रिक समस्या का पूर्ण रूप से समाधान नहीं किया जा सकता है।

हैमिल्टन-जैकोबी समीकरण यांत्रिकी का सूत्रीकरण है जिसमें कण की गति को तरंग के रूप में दर्शाया जा सकता है। प्रकाश का संचरण और कण की गति के मध्य समानता ज्ञात करने के लिए सैद्धांतिक भौतिकी (अठारहवीं शताब्दी में जोहान बर्नौली) के लक्ष्य को पूर्ण किया गया। यांत्रिक प्रणाली में तरंग समीकरण, श्रोडिंगर समीकरण के समान नहीं है, जैसा कि नीचे वर्णित है, इसलिए, हैमिल्टन-जैकोबी समीकरण को क्वांटम यांत्रिकी के निकटतम दृष्टिकोण माना जाता है।[1][2]

गणित में, विचरण कलन से प्रश्नों के सामान्यीकरण में ज्यामिति का वर्णन करने के लिए हैमिल्टन-जैकोबी समीकरण आवश्यक स्तिथि है। गतिशील प्रोग्रामिंग में हैमिल्टन-जैकोबी-बेलमैन समीकरण का अध्ययन विशेष विषय के रूप में किया जाता है|

रेफरी>Kálmán, Rudolf E. (1963). "The Theory of Optimal Control and the Calculus of Variations". In Bellman, Richard (ed.). गणितीय अनुकूलन तकनीक. Berkeley: University of California Press. pp. 309–331. OCLC 1033974.</ref>

नोटेशन

बोल्डफेस चर जैसे , सामान्यीकृत निर्देशांक की सूची का प्रतिनिधित्व करते हैं,

चर या सूची पर बिंदु समय के व्युत्पन्न को दर्शाता है (न्यूटन के अंकन देखें)। उदाहरण के लिए,

निर्देशांकों की समान संख्या की दो सूचियों के मध्य डॉट गुणनफल संकेतन संबंधित घटकों के गुणनफल के योग के लिए आशुलिपि है, जैसे कि


हैमिल्टन का प्रमुख कार्य

परिभाषा

माना, हेसियन मैट्रिक्स व्युत्क्रमणीय है। यह सम्बन्ध

दर्शाता है कि यूलर-लैग्रेंज समीकरण द्वितीय कोटि के साधारण अवकल समीकरणों की प्रणाली बनाते हैं। मैट्रिक्स का व्युत्क्रम इस प्रणाली को परिवर्तित कर देता है

माना, तात्कालिक समय और बिंदु विन्यास स्थान में स्थायी है। अस्तित्व और विशिष्टता प्रमेय आश्वासन देते हैं कि, प्रत्येक के लिए स्तिथियों और के साथ प्रारंभिक मान समस्या का स्थानीय रूप से अद्वितीय समाधान है| इसके अतिरिक्त, उचित समय अंतराल है जैसे कि विभिन्न प्रारंभिक वेग के साथ एक्स्ट्रीमल्स में प्रतिच्छेद नहीं करेंगे| के लिए और कोई अधिकतम अतिवादी हो सकता है जिसके लिए और है| को ऐक्शन में रखने पर एचपीएफ में परिणाम होगा-

जहाँ,


संवेग के लिए सूत्र: pi(क्यू, टी) = ∂S/∂qमैं

संवेग को राशियों के रूप में परिभाषित किया गया है यह खंड दर्शाता है कि पर की निर्भरता एचपीएफ ज्ञात होने के पश्चात् लुप्त हो जाती है।

वास्तव में, एक समय तत्काल दें और एक बिंदु कॉन्फ़िगरेशन स्थान में तय किया जाना चाहिए। हर बार तत्काल के लिए और एक बिंदु होने देना हैमिल्टन के प्रमुख कार्य की परिभाषा से (अद्वितीय) चरम हो पुकारना वेग पर . तब

Proof

While the proof below assumes the configuration space to be an open subset of the underlying technique applies equally to arbitrary spaces. In the context of this proof, the calligraphic letter denotes the action functional, and the italic the Hamilton's principal function.

Step 1. Let be a path in the configuration space, and a vector field along . (For each the vector is called perturbation, infinitesimal variation or virtual displacement of the mechanical system at the point ). Recall that the variation of the action at the point in the direction is given by the formula

where one should substitute and after calculating the partial derivatives on the right-hand side. (This formula follows from the definition of Gateaux derivative via integration by parts).

Assume that is an extremal. Since now satisfies the Euler–Lagrange equations, the integral term vanishes. If 's starting point is fixed, then, by the same logic that was used to derive the Euler–Lagrange equations, Thus,

Step 2. Let be the (unique) extremal from the definition of HPF, a vector field along and a variation of "compatible" with In precise terms,

By definition of HPF and Gateaux derivative,

Here, we took into account that and dropped for compactness.

Step 3. We now substitute and into the expression for from Step 1 and compare the result with the formula derived in Step 2. The fact that, for the vector field was chosen arbitrarily completes the proof.

गणितीय सूत्रीकरण

हैमिल्टनियन यांत्रिकी को देखते हुए एक यांत्रिक प्रणाली का, हैमिल्टन-जैकोबी समीकरण एक प्रथम-क्रम, गैर-रैखिक अंतर समीकरण है। हैमिल्टन के प्रमुख कार्य के लिए गैर-रैखिक आंशिक अंतर समीकरण ,[3]

Derivation

For an extremal where is the initial speed (see discussion preceding the definition of HPF),

From the formula for and the coordinate-based definition of the Hamiltonian

with satisfying the (uniquely solvable for equation obtain
where and

वैकल्पिक रूप से, जैसा कि नीचे वर्णित है, हैमिल्टन-जैकोबी समीकरण को हेमिल्टनियन यांत्रिकी से इलाज करके प्राप्त किया जा सकता है शास्त्रीय हैमिल्टन के एक विहित परिवर्तन के लिए जनरेटिंग फ़ंक्शन (भौतिकी) के रूप में

संयुग्म संवेग के पहले डेरिवेटिव के अनुरूप है सामान्यीकृत निर्देशांक के संबंध में

हैमिल्टन-जैकोबी समीकरण के समाधान के रूप में, मुख्य कार्य में शामिल हैं अनिर्धारित स्थिरांक, पहला उनमें से के रूप में दर्शाया गया है , और अंतिम एक के एकीकरण से आ रहा है .

बीच के रिश्ते और फिर गति के इन स्थिरांकों के संदर्भ में चरण अंतरिक्ष में कक्षा का वर्णन करता है। इसके अलावा, मात्राएँ

गति के स्थिरांक भी हैं, और इन समीकरणों को खोजने के लिए उल्टा किया जा सकता है सभी के एक समारोह के रूप में और स्थिरांक और समय।[4]

यांत्रिकी के अन्य योगों के साथ तुलना

हैमिल्टन-जैकोबी समीकरण के कार्य के लिए एक एकल, प्रथम-क्रम आंशिक अंतर समीकरण है सामान्यीकृत निर्देशांक और समय . के डेरिवेटिव के अलावा सामान्यीकृत संवेग प्रकट नहीं होता है . उल्लेखनीय रूप से, समारोह क्रिया (भौतिकी) के बराबर है।

तुलना के लिए, समतुल्य यूलर-लैग्रेंज समीकरण | लैग्रैंगियन यांत्रिकी की गति के यूलर-लग्रेंज समीकरणों में, संयुग्म संवेग भी प्रकट नहीं होता है; हालाँकि, वे समीकरण एक प्रणाली हैं सामान्यीकृत निर्देशांक के समय के विकास के लिए आम तौर पर दूसरे क्रम के समीकरण। इसी तरह, हैमिल्टन के समीकरण | हैमिल्टन की गति के समीकरण सामान्यीकृत निर्देशांक के समय विकास और उनके संयुग्म संवेग के लिए 2N प्रथम-क्रम समीकरणों की एक अन्य प्रणाली है। .

चूँकि HJE हैमिल्टन के सिद्धांत जैसी एक अभिन्न न्यूनीकरण समस्या की एक समान अभिव्यक्ति है, HJE विविधताओं की कलन की अन्य समस्याओं में उपयोगी हो सकता है, और अधिक आम तौर पर, गणित और भौतिकी की अन्य शाखाओं में, जैसे कि गतिशील प्रणाली, सहानुभूतिपूर्ण ज्यामिति और क्वांटम अराजकता। उदाहरण के लिए, हैमिल्टन-जैकोबी समीकरणों का उपयोग रीमैनियन कई गुना पर geodesic ्स निर्धारित करने के लिए किया जा सकता है, जो कि रिमेंनियन ज्यामिति में विविधताओं का एक महत्वपूर्ण कैलकुलेशन है।

एक विहित रूपांतरण का उपयोग करके व्युत्पत्ति

टाइप -2 जनरेटिंग फ़ंक्शन (भौतिकी) को शामिल करने वाला कोई भी विहित परिवर्तन सम्बन्धों की ओर ले जाता है

और हैमिल्टन के समीकरण नए चर के संदर्भ में और नया हैमिल्टनियन एक ही रूप है:

HJE को व्युत्पन्न करने के लिए, एक जनरेटिंग फ़ंक्शन इस तरह से चुना जाता है कि, यह नया हैमिल्टनियन बना देगा . इसलिए, इसके सभी डेरिवेटिव भी शून्य हैं, और रूपांतरित हैमिल्टन के समीकरण तुच्छ हो जाते हैं

इसलिए नए सामान्यीकृत निर्देशांक और संवेग गति के स्थिरांक हैं। जैसा कि वे स्थिर हैं, इस संदर्भ में नया सामान्यीकृत संवेग आमतौर पर निरूपित होते हैं , अर्थात। और नए सामान्यीकृत निर्देशांक आमतौर पर के रूप में चिह्नित किया जाता है , इसलिए .

जनरेटिंग फ़ंक्शन को हैमिल्टन के मुख्य फ़ंक्शन के साथ-साथ एक स्वेच्छ स्थिरांक के बराबर सेट करना :

HJE स्वचालित रूप से उत्पन्न होता है

जब के लिए हल किया गया , ये हमें उपयोगी समीकरण भी देते हैं

या स्पष्टता के लिए घटकों में लिखा गया है

आदर्श रूप से, इन एन समीकरणों को मूल सामान्यीकृत निर्देशांक खोजने के लिए उलटा किया जा सकता है स्थिरांक के एक समारोह के रूप में और , इस प्रकार मूल समस्या को हल करना।

क्रिया और हैमिल्टन के कार्य

हैमिल्टन का मुख्य फलन S और शास्त्रीय फलन H दोनों ही क्रिया (भौतिकी) से निकटता से संबंधित हैं। का कुल अंतर है:

इसलिए S का समय व्युत्पन्न है

इसलिए,

इसलिए S वास्तव में शास्त्रीय क्रिया है और एक अनिर्धारित स्थिरांक है।

जब एच स्पष्ट रूप से समय पर निर्भर नहीं करता है,

इस मामले में डब्ल्यू 'सहानुभूतिपूर्ण क्रिया' के समान है।

चरों का पृथक्करण

HJE सबसे अधिक उपयोगी होता है जब इसे चरों के पृथक्करण के माध्यम से हल किया जा सकता है, जो सीधे गति के स्थिरांक की पहचान करता है। उदाहरण के लिए, समय टी को अलग किया जा सकता है यदि हैमिल्टन समय पर स्पष्ट रूप से निर्भर नहीं करता है। उस मामले में, समय व्युत्पन्न एचजेई में एक स्थिर होना चाहिए, आमतौर पर निरूपित किया जाता है (), पृथक्कृत विलयन दे रहा है

जहां समय-स्वतंत्र कार्य करता है कभी-कभी हैमिल्टन का अभिलक्षणिक फलन कहा जाता है। घटाए गए हैमिल्टन-जैकोबी समीकरण को तब लिखा जा सकता है

अन्य चरों के लिए पृथक्करणीयता को स्पष्ट करने के लिए, एक निश्चित सामान्यीकृत निर्देशांक और इसका व्युत्पन्न एक समारोह के रूप में एक साथ प्रकट होने के लिए माना जाता है

हैमिल्टनियन में

उस स्थिति में, फलन S को दो फलनों में विभाजित किया जा सकता है, एक जो केवल q पर निर्भर करता हैkऔर दूसरा जो केवल शेष सामान्यीकृत निर्देशांकों पर निर्भर करता है

हैमिल्टन-जैकोबी समीकरण में इन सूत्रों के प्रतिस्थापन से पता चलता है कि फ़ंक्शन ψ एक स्थिर होना चाहिए (यहाँ के रूप में दर्शाया गया है ), के लिए प्रथम-क्रम साधारण अंतर समीकरण उत्पन्न करना

भाग्यशाली मामलों में, function में पूरी तरह से अलग किया जा सकता है कार्य

ऐसे में समस्या विकराल हो जाती है सामान्य अवकल समीकरण।

S की पृथक्करणीयता हैमिल्टनियन और सामान्यीकृत निर्देशांकों के चुनाव दोनों पर निर्भर करती है। ऑर्थोगोनल निर्देशांक और हैमिल्टन के लिए जिनकी कोई समय निर्भरता नहीं है और सामान्यीकृत गति में द्विघात कार्य हैं, पूरी तरह से वियोज्य होगा यदि संभावित ऊर्जा प्रत्येक समन्वय में योगात्मक रूप से वियोज्य है, जहां प्रत्येक समन्वय के लिए संभावित ऊर्जा शब्द हैमिल्टनियन (स्टैकेल स्थितियों) के संबंधित गति अवधि में समन्वय-निर्भर कारक से गुणा किया जाता है। चित्रण के लिए, ऑर्थोगोनल निर्देशांकों में कई उदाहरणों पर अगले अनुभागों में कार्य किया गया है।

विभिन्न समन्वय प्रणालियों में उदाहरण

गोलाकार निर्देशांक

गोलाकार निर्देशांक में एक रूढ़िवादी क्षमता यू में गतिमान मुक्त कण का हैमिल्टनियन लिखा जा सकता है

इन निर्देशांकों में हैमिल्टन-जैकोबी समीकरण पूरी तरह से वियोज्य है बशर्ते कि कार्य मौजूद हों: ऐसा है कि अनुरूप रूप में लिखा जा सकता है

पूरी तरह से अलग किए गए समाधान का प्रतिस्थापन

HJE पैदावार में

इस समीकरण को साधारण अंतर समीकरणों के क्रमिक एकीकरण द्वारा हल किया जा सकता है, जिसकी शुरुआत के लिए समीकरण से होती है

कहाँ गति का एक स्थिरांक है जो समाप्त करता है हैमिल्टन-जैकोबी समीकरण से निर्भरता

अगले साधारण अंतर समीकरण में शामिल है सामान्यीकृत समन्वय

कहाँ पुनः गति का एक स्थिरांक है जो विलोपित करता है निर्भरता और HJE को अंतिम साधारण अंतर समीकरण में कम कर देता है

जिसका एकीकरण समाधान को पूरा करता है .

अण्डाकार बेलनाकार निर्देशांक

अण्डाकार बेलनाकार निर्देशांक में हैमिल्टनियन लिखा जा सकता है

जहां दीर्घवृत्त का फोकस (ज्यामिति) स्थित है पर -एक्सिस। इन निर्देशांकों में हैमिल्टन-जैकोबी समीकरण पूरी तरह से वियोज्य है, बशर्ते कि एक समान रूप है

कहाँ : , और मनमाना कार्य हैं। पूरी तरह से अलग किए गए समाधान का प्रतिस्थापन

HJE पैदावार में

पहले साधारण अंतर समीकरण को अलग करना

कम हैमिल्टन-जैकोबी समीकरण प्राप्त करता है (हर द्वारा दोनों पक्षों की पुन: व्यवस्था और गुणा के बाद)

जिसे स्वयं दो स्वतंत्र साधारण अवकल समीकरणों में पृथक किया जा सकता है

कि, हल करने पर, के लिए एक पूर्ण समाधान प्रदान करें .

परवलयिक बेलनाकार निर्देशांक

परवलयिक बेलनाकार निर्देशांक में हैमिल्टनियन लिखा जा सकता है

इन निर्देशांकों में हैमिल्टन-जैकोबी समीकरण पूरी तरह से वियोज्य है, बशर्ते कि एक समान रूप है

कहाँ , , और मनमाना कार्य हैं। पूरी तरह से अलग किए गए समाधान का प्रतिस्थापन

HJE पैदावार में

पहले साधारण अंतर समीकरण को अलग करना

कम हैमिल्टन-जैकोबी समीकरण प्राप्त करता है (हर द्वारा दोनों पक्षों की पुन: व्यवस्था और गुणा के बाद)

जिसे स्वयं दो स्वतंत्र साधारण अवकल समीकरणों में पृथक किया जा सकता है

कि, हल करने पर, के लिए एक पूर्ण समाधान प्रदान करें .

तरंगें और कण

ऑप्टिकल तरंग मोर्चों और प्रक्षेपवक्र

HJE प्रक्षेपवक्र और तरंग मोर्चों के बीच एक द्वैत स्थापित करता है।[5] उदाहरण के लिए, ज्यामितीय प्रकाशिकी में, प्रकाश को "किरणों" या तरंगों के रूप में माना जा सकता है। तरंग मोर्चे को सतह के रूप में परिभाषित किया जा सकता है कि प्रकाश समय पर उत्सर्जित होता है समय पर पहुंच गया है . प्रकाश किरणें और तरंग अग्रभाग द्वैत हैं: यदि एक ज्ञात है, तो दूसरे का अनुमान लगाया जा सकता है।

अधिक सटीक रूप से, ज्यामितीय प्रकाशिकी एक परिवर्तनशील समस्या है जहाँ "कार्रवाई" यात्रा का समय है एक पथ के साथ,

कहाँ माध्यम का अपवर्तक सूचकांक है और एक अपरिमेय चाप लंबाई है। उपरोक्त फॉर्मूलेशन से, यूलर-लैग्रेंज फॉर्मूलेशन का उपयोग करके किरण पथों की गणना की जा सकती है; वैकल्पिक रूप से, हैमिल्टन-जैकोबी समीकरण को हल करके तरंग मोर्चों की गणना की जा सकती है। एक को जानना दूसरे को जानने की ओर ले जाता है।

उपरोक्त द्वैत बहुत सामान्य है और सभी प्रणालियों पर लागू होता है जो एक परिवर्तनशील सिद्धांत से प्राप्त होता है: या तो यूलर-लैग्रेंज समीकरणों का उपयोग करके प्रक्षेपवक्र की गणना करें या हैमिल्टन-जैकोबी समीकरण का उपयोग करके लहर मोर्चों।

समय पर लहर सामने , शुरू में एक प्रणाली के लिए समय पर , को अंकों के संग्रह के रूप में परिभाषित किया गया है ऐसा है कि . अगर ज्ञात होने पर, संवेग का तुरंत अनुमान लगाया जाता है।

एक बार जाना जाता है, प्रक्षेपवक्र के लिए स्पर्शरेखा समीकरण को हल करके गणना की जाती है
के लिए , कहाँ Lagrangian है। प्रक्षेपवक्र तब के ज्ञान से पुनर्प्राप्त किए जाते हैं .

श्रोडिंगर समीकरण से संबंध

समारोह की isosurfaces किसी भी समय टी निर्धारित किया जा सकता है। एक की गति समय के एक कार्य के रूप में आइसोसर्फेस को बिंदुओं से शुरू होने वाले कणों की गति से परिभाषित किया जाता है आइसोसफेस पर। इस तरह की आइसोसफेस की गति को एक लहर के रूप में आगे बढ़ने के बारे में सोचा जा सकता है -स्पेस, हालांकि यह तरंग समीकरण का बिल्कुल पालन नहीं करता है। इसे दर्शाने के लिए मान लीजिए S तरंग की कला (तरंगों) को निरूपित करता है

कहाँ घातीय तर्क को आयाम रहित बनाने के लिए एक स्थिरांक (प्लैंक का स्थिरांक) पेश किया गया है; तरंग के आयाम में परिवर्तन को प्रदर्शित किया जा सकता है एक जटिल संख्या हो। हैमिल्टन-जैकोबी समीकरण को फिर से लिखा जाता है

जो श्रोडिंगर समीकरण है।

इसके विपरीत, श्रोडिंगर समीकरण और हमारे ansatz for , इसका अंदाजा लगाया जा सकता है[6]

शास्त्रीय सीमा () उपरोक्त श्रोडिंगर समीकरण हैमिल्टन-जैकोबी समीकरण के निम्नलिखित संस्करण के समान हो जाता है,


अनुप्रयोग

एक गुरुत्वाकर्षण क्षेत्र में HJE

रूप में ऊर्जा-संवेग संबंध का उपयोग करना[7]

विराम द्रव्यमान के एक कण के लिए घुमावदार स्थान में यात्रा करना, जहाँ आइंस्टीन क्षेत्र समीकरणों से हल किए गए मीट्रिक टेंसर (यानी, मीट्रिक टेन्सर # व्युत्क्रम मीट्रिक) के वैक्टर निर्देशांक के सहप्रसरण और विपरीतता हैं, और प्रकाश की गति है। चार-गति की स्थापना कार्रवाई के चार-ढाल के बराबर ,

मीट्रिक द्वारा निर्धारित ज्यामिति में हैमिल्टन-जैकोबी समीकरण देता है :

दूसरे शब्दों में, एक गुरुत्वाकर्षण क्षेत्र में।

विद्युत चुम्बकीय क्षेत्रों में HJE

विराम द्रव्यमान के एक कण के लिए और इलेक्ट्रिक चार्ज विद्युत चुम्बकीय क्षेत्र में चार-विभव के साथ घूम रहा है निर्वात में, मीट्रिक टेन्सर द्वारा निर्धारित ज्यामिति में हैमिल्टन-जैकोबी समीकरण एक रूप है

और हैमिल्टन प्रिंसिपल एक्शन फंक्शन के लिए हल किया जा सकता है कण प्रक्षेपवक्र और संवेग के लिए और समाधान प्राप्त करने के लिए:[8]

,

कहाँ और साथ वेक्टर क्षमता का चक्र औसत।

एक गोलाकार ध्रुवीकृत तरंग

परिपत्र ध्रुवीकरण के मामले में,

,
,

इस तरह

कहाँ , एक स्थायी त्रिज्या के साथ एक गोलाकार प्रक्षेपवक्र के साथ चलने वाले कण को ​​लागू करना और गति का एक अचल मूल्य एक चुंबकीय क्षेत्र वेक्टर के साथ निर्देशित।

एक एकवर्णी रैखिक ध्रुवीकृत समतल तरंग

एक क्षेत्र के साथ फ्लैट, मोनोक्रोमैटिक, रैखिक रूप से ध्रुवीकृत तरंग के लिए अक्ष के साथ निर्देशित

इस तरह

,
,

विद्युत क्षेत्र के साथ-साथ लंबे समय तक अक्ष उन्मुख के साथ कण आकृति -8 प्रक्षेपवक्र को लागू करना वेक्टर।

सोलेनोइडल चुंबकीय क्षेत्र के साथ एक विद्युत चुम्बकीय तरंग

अक्षीय (सोलनॉइडल) चुंबकीय क्षेत्र के साथ विद्युत चुम्बकीय तरंग के लिए:[9]

इस तरह

कहाँ प्रभावी त्रिज्या के साथ सोलेनोइड में चुंबकीय क्षेत्र परिमाण है , आगमनात्मकता , वाइंडिंग्स की संख्या , और एक विद्युत प्रवाह परिमाण सोलनॉइड वाइंडिंग्स के माध्यम से। कण गति चित्र-8 प्रक्षेपवक्र के साथ होती है मनमाने दिगंश कोण के साथ परिनालिका अक्ष के लम्बवत् समतल सेट सोलनॉइडल चुंबकीय क्षेत्र की अक्षीय समरूपता के कारण।

यह भी देखें

संदर्भ

  1. Goldstein, Herbert (1980). शास्त्रीय यांत्रिकी (2nd ed.). Reading, MA: Addison-Wesley. pp. 484–492. ISBN 978-0-201-02918-5. (विशेष रूप से चर्चा पृष्ठ 491 के अंतिम पैराग्राफ से शुरू होती है)
  2. सकुराई, पीपी. 103-107.
  3. Hand, L. N.; Finch, J. D. (2008). विश्लेषणात्मक यांत्रिकी. Cambridge University Press. ISBN 978-0-521-57572-0.
  4. Goldstein, Herbert (1980). शास्त्रीय यांत्रिकी (2nd ed.). Reading, MA: Addison-Wesley. p. 440. ISBN 978-0-201-02918-5.
  5. Houchmandzadeh, Bahram (2020). "The Hamilton-Jacobi Equation : an alternative approach". American Journal of Physics. 85 (5): 10.1119/10.0000781. arXiv:1910.09414. Bibcode:2020AmJPh..88..353H. doi:10.1119/10.0000781. S2CID 204800598.
  6. Goldstein, Herbert (1980). शास्त्रीय यांत्रिकी (2nd ed.). Reading, MA: Addison-Wesley. pp. 490–491. ISBN 978-0-201-02918-5.
  7. Wheeler, John; Misner, Charles; Thorne, Kip (1973). आकर्षण-शक्ति. W.H. Freeman & Co. pp. 649, 1188. ISBN 978-0-7167-0344-0.
  8. Landau, L.; Lifshitz, E. (1959). खेतों का शास्त्रीय सिद्धांत. Reading, Massachusetts: Addison-Wesley. OCLC 17966515.
  9. E. V. Shun'ko; D. E. Stevenson; V. S. Belkin (2014). "Inductively Coupling Plasma Reactor With Plasma Electron Energy Controllable in the Range from ~6 to ~100 eV". IEEE Transactions on Plasma Science. 42, part II (3): 774–785. Bibcode:2014ITPS...42..774S. doi:10.1109/TPS.2014.2299954. S2CID 34765246.


अग्रिम पठन