विश्लेषणात्मक यांत्रिकी

From Vigyanwiki


सैद्धांतिक भौतिकी और गणितीय भौतिकी में, विश्लेषणात्मक यांत्रिकी, या सैद्धांतिक यांत्रिकी, शास्त्रीय यांत्रिकी के अतिसंबद्‍ध वैकल्पिक योगों का एक संग्रह है।इसे कई वैज्ञानिकों और गणितज्ञों ने 18वीं शताब्दी के दौरान और उसके बाद न्यूटनियन यांत्रिकी के बाद विकसित किया था। चूंकि न्यूटनियन यांत्रिकी गति की सदिश मात्राओं को मानता है, विशेष रूप से त्वरण, गति, बल, प्रणाली के घटकों के लिए न्यूटन के नियमों और यूलर के नियमों द्वारा शासित यांत्रिकी के लिए एक वैकल्पिक नाम सदिश यांत्रिकी है।

इसके विपरीत, विश्लेषणात्मक यांत्रिकी गति के अदिश गुणों का उपयोग करती है जो प्रणाली को समग्र रूप से दर्शाती है, आमतौर पर इसकी कुल गतिज ऊर्जा और स्थितिज ऊर्जा न्यूटन के व्यक्तिगत कणों के सदिश बल नहीं होते हैं।[1] अदिश एक मात्रा है, जबकि एक सदिश मात्रा और दिशा द्वारा दर्शाया जाता है। गति के समीकरण अदिश राशि से अदिश की भिन्नता के बारे में कुछ अंतर्निहित सिद्धांत द्वारा व्युत्पन्न होते हैं।

विश्लेषणात्मक यांत्रिकी समस्याओं को हल करने के लिए एक प्रणाली की बाध्यताओं का लाभ उठाता है। बाध्यताएँ स्वतंत्रता की डिग्री को सीमित करती हैं और गति को हल करने के लिए आवश्यक निर्देशांक की संख्या को कम करने के लिए इसका उपयोग किया जा सकता है। औपचारिकता सामान्यीकृत निर्देशांक के रूप में ज्ञात निर्देशांक के यादृच्छिक विकल्पों के अनुकूल है। प्रणाली की गतिज और संभावित ऊर्जाओं को इन सामान्यीकृत निर्देशांक या गति का उपयोग करके व्यक्त किया जाता है, और गति के समीकरणों को आसानी से स्थापित किया जा सकता है, इस प्रकार विश्लेषणात्मक यांत्रिकी कई यांत्रिक समस्याओं को पूरी तरह से सदिश विधियों की तुलना में अधिक दक्षता के साथ हल करने की अनुमति देता है। यह हमेशा गैर-संरक्षी बलों या घर्षण जैसे विघटनकारी बलों के लिए काम नहीं करता है, इस स्थिति में कोई भी न्यूटनियन यांत्रिकी पर वापस जा सकता है।

विश्लेषणात्मक यांत्रिकी की दो प्रमुख शाखाएं हैं लैग्रेंजियन यांत्रिकी (संरूपण स्थान में सामान्यीकृत निर्देशांक और संबंधित सामान्यीकृत वेगों का उपयोग करके) और हैमिल्टनियन यांत्रिकी (चरण स्थान में निर्देशांक और संबंधित गति का उपयोग करके)। दोनों निरुपण सामान्यीकृत निर्देशांक, वेग और गति पर एक लेजेंडर परिवर्तन के बराबर हैं, इसलिए दोनों में एक प्रणाली की गतिशीलता का वर्णन करने के लिए समान जानकारी होती है। हैमिल्टन-जैकोबी सिद्धांत, रूथियन यांत्रिकी और एपेल के गति के समीकरण जैसे अन्य सूत्र भी हैं। किसी भी औपचारिकता में कणों और क्षेत्रों के लिए गति के सभी समीकरण व्यापक रूप से लागू परिणाम से प्राप्त किए जा सकते हैं जिसे कम से कम कार्रवाई का सिद्धांत कहा जाता है। परिणाम नोएदर की प्रमेय है, एक कथन जो संरक्षण नियमों को उनके संबंधित समरूपता से जोड़ता है।

विश्लेषणात्मक यांत्रिकी नई भौतिकी का परिचय नहीं देता है और न्यूटनियन यांत्रिकी की तुलना में अधिक सामान्य नहीं है। बल्कि यह समान औपचारिकताओं का एक संग्रह है जिसका व्यापक अनुप्रयोग होता है। वास्तव में समान सिद्धांतों और औपचारिकताओं का उपयोग सापेक्षतावादी यांत्रिकी और सामान्य सापेक्षता में और कुछ संशोधनों, क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत के साथ किया जा सकता है।

विश्लेषणात्मक यांत्रिकी का व्यापक रूप से उपयोग किया जाता है, मौलिक भौतिकी से लेकर अनुप्रयुक्त गणित विशेष रूप से अराजकता सिद्धांत तक।

विश्लेषणात्मक यांत्रिकी के तरीके असतत कणों पर लागू होते हैं, प्रत्येक में स्वतंत्रता की डिग्री की एक सीमित संख्या होती है। निरंतर क्षेत्रों या तरल पदार्थों का वर्णन करने के लिए उन्हें संशोधित किया जा सकता है, जिसमें स्वतंत्रता की अनंत डिग्री होती है। परिभाषाओं और समीकरणों का यांत्रिकी के साथ घनिष्ठ समानता है।

विश्लेषणात्मक यांत्रिकी का विषय

यांत्रिक सिद्धांत का सबसे स्पष्ट लक्ष्य भौतिकी या खगोल विज्ञान में उत्पन्न होने वाली यांत्रिक समस्याओं को हल करना है। एक भौतिक अवधारणा से प्रारम्भ होकर, जैसे कि एक तंत्र या एक तारा प्रणाली, एक गणितीय अवधारणा, या मॉडल, एक अंतर समीकरण या समीकरण के रूप में विकसित किया जाता है और फिर उन्हें हल करने का प्रयास किया जाता है।

न्यूटन द्वारा स्थापित यांत्रिकी के लिए सदिशीय दृष्टिकोण, न्यूटन के नियमों पर आधारित है जो बल, वेग, त्वरण जैसे वेक्टर मात्राओं की सहायता से गति का वर्णन करते हैं। ये मात्राएँ एक पिंड की गति को दर्शाती हैं जिसे एक "द्रव्यमान बिंदु" या "कण" के रूप में आदर्शित किया जाता है, जिसे एक बिंदु के रूप में समझा जाता है जिससे एक द्रव्यमान जुड़ा होता है। न्यूटन की विधि सफल रही और भौतिक समस्याओं की एक विस्तृत श्रृंखला के लिए लागू की गई, जो पृथ्वी के गुरुत्वाकर्षण क्षेत्र में एक कण की गति से प्रारम्भ होती है और फिर सूर्य की क्रिया के तहत ग्रहों की गति तक विस्तारित होती है। इस दृष्टिकोण में, न्यूटन के नियम एक अंतर समीकरण द्वारा गति का वर्णन करते हैं और फिर समस्या उस समीकरण को हल करने के लिए कम हो जाती है।

जब कण कणों की एक प्रणाली का एक हिस्सा होता है, जैसे कि ठोस शरीर या तरल पदार्थ, जिसमें कण स्वतंत्र रूप से नहीं चलते हैं लेकिन एक दूसरे के साथ परस्पर क्रिया करते हैं, न्यूटन का दृष्टिकोण अभी भी उचित सावधानियों के तहत लागू होता है जैसे कि प्रत्येक कण को अन्य कण से अलग करना, उस पर कार्य करने वाले सभी बलों को निर्धारित करना जो पूरे सिस्टम पर कार्य करते हैं और साथ ही सिस्टम में अन्य सभी कणों के साथ प्रत्येक कण की पारस्परिक क्रिया का निर्धारण करते हैं। इस तरह का विश्लेषण अपेक्षाकृत सरल प्रणालियों में भी बोझिल हो सकता है। एक नियम के रूप में, अंतःक्रियात्मक बल अज्ञात या कठिन होते हैं, जिससे यह निर्धारित किया जा सकता है कि नए अभिधारणाओं को पेश करना आवश्यक है। न्यूटन ने सोचा था कि उनका तीसरा नियम "क्रिया प्रतिक्रिया के बराबर है" सभी जटिलताओं का ध्यान रखेगा। एक ठोस पिंड के घूर्णन जैसी सरल प्रणाली के लिए भी ऐसा नहीं है। अधिक जटिल प्रणालियों में, सदिश दृष्टिकोण पर्याप्त विवरण नहीं दे सकता है।

गति की समस्या के लिए विश्लेषणात्मक दृष्टिकोण कण को एक पृथक इकाई के रूप में नहीं बल्कि एक यांत्रिक प्रणाली के एक भाग के रूप में देखता है जिसे कणों के एक समन्वायोजन के रूप में समझा जाता है जो एक दूसरे के साथ परस्पर क्रिया करते हैं। जैसे ही पूरी प्रणाली पर विचार किया जाता है, एकल कण अपना महत्व खो देता है, गतिकीय समस्या में पूरी प्रणाली को भागों में तोड़े बिना सम्मिलित किया जाता है। यह गणना को महत्वपूर्ण रूप से सरल करता है क्योंकि सदिश दृष्टिकोण में प्रत्येक कण के लिए बलों को अलग-अलग निर्धारित करना पड़ता है जबकि विश्लेषणात्मक दृष्टिकोण में यह एक एकल कार्य को जानने के लिए पर्याप्त होता है जिसमें प्रणाली और प्रणाली में कार्य करने वाले सभी बल निहित होते है। इस तरह का सरलीकरण प्रायः कुछ निश्चित गतिज स्थितियों का उपयोग करके किया जाता है जिन्हें प्राथमिकता दी जाती है। वे पहले से मौजूद हैं और कुछ मजबूत बलों की क्रिया के कारण हैं। हालाँकि, विश्लेषणात्मक उपचार के लिए इन बलों के ज्ञान की आवश्यकता नहीं होती है और इन गतिज स्थितियों को मान लिया जाता है। यह देखते हुए कि इन स्थितियों को बनाए रखने वाले बलों की बहुसंख्या की तुलना में ये स्थितियां कितनी सरल हैं,सदिश पर विश्लेषणात्मक दृष्टिकोण की श्रेष्ठता स्पष्ट हो जाती है।

फिर भी, एक जटिल यांत्रिक प्रणाली की गति के समीकरणों के लिए बड़ी संख्या में अलग-अलग अंतर समीकरणों की आवश्यकता होती है, जिन्हें कुछ एकीकृत आधार के बिना प्राप्त नहीं किया जा सकता है, जिससे वे अनुसरण करते हैं। यह आधार परिवर्तनशील सिद्धांत हैं: समीकरणों के प्रत्येक सेट के पीछे एक सिद्धांत होता है जो पूरे सेट के अर्थ को व्यक्त करता है। 'क्रिया' नामक एक मौलिक और सार्वभौमिक मात्रा को देखते हुए, यह सिद्धांत कि यह क्रिया किसी अन्य यांत्रिक मात्रा के छोटे बदलाव के तहत स्थिर हो, अवकल समीकरणों के आवश्यक सेट को उत्पन्न करती है। सिद्धांत के बयान के लिए किसी विशेष समन्वय प्रणाली की आवश्यकता नहीं होती है, और सभी परिणाम सामान्यीकृत निर्देशांक में व्यक्त किए जाते हैं। इसका मतलब यह है कि गति के विश्लेषणात्मक समीकरण एक समन्वय परिवर्तन पर नहीं बदलते हैं, एक अपरिवर्तनीय संपत्ति जिसमें गति के सदिश समीकरणों की कमी होती है।[2]

यह पूरी तरह से स्पष्ट नहीं है कि अवकल समीकरणों के समुच्चय को 'हल' करने का क्या अर्थ है। एक समस्या को हल माना जाता है जब कण समय पर समन्वय करते हैं, टी के सरल कार्यों और प्रारंभिक स्थिति और वेगों को परिभाषित करने वाले पैरामीटर के रूप में व्यक्त किए जाते हैं। हालाँकि, 'सरल कार्य' एक अच्छी तरह से परिभाषित अवधारणा नहीं है। आजकल, एक फ़ंक्शन f(t) को t (प्राथमिक कार्य) में औपचारिक अभिव्यक्ति के रूप में नहीं माना जाता है, जैसा कि न्यूटन के समय में था, लेकिन आमतौर पर t द्वारा निर्धारित मात्रा के रूप में माना जाता था। 'सरल' और 'सरल नहीं' कार्यों के बीच एक स्पष्ट रेखा खींचना संभव नहीं है। यदि कोई केवल 'कार्य' की बात करता है, तो प्रत्येक यांत्रिक समस्या का समाधान तब होता है जब इसे अवकल समीकरणों में अच्छी तरह से बताया गया हो, क्योंकि प्रारंभिक स्थितियों को देखते हुए और टी पर निर्देशांक निर्धारित करते हैं। यह विशेष रूप से वर्तमान में कंप्यूटर मॉडलिंग के आधुनिक तरीकों के साथ एक तथ्य है जो किसी भी वांछित सटीकता के लिए यांत्रिक समस्याओं के अंकगणितीय समाधान प्रदान करता है, अंतर समीकरणों को अंतर समीकरणों द्वारा प्रतिस्थापित किया जा रहा है।

फिर भी, हालांकि सटीक परिभाषाओं का अभाव है, यह स्पष्ट है कि दो निकायों की समस्या का एक सरल समाधान है, जबकि तीन निकायों की समस्या नहीं है। दो निकायों की समस्या का समाधान मापदंडों से जुड़े सूत्रों द्वारा किया जाता है। सभी समाधानों के वर्ग, यानी समस्या की गणितीय संरचना का अध्ययन करने के लिए उनके मानों को बदला जा सकता है। इसके अलावा, दो निकायों की गति के लिए एक सटीक मानसिक या खींचा गया चित्र बनाया जा सकता है, और यह वास्तविक और सटीक हो सकता है जैसे कि वास्तविक शरीर चलते और बातचीत करते हैं। तीन निकायों की समस्या में, पैरामीटर के विशिष्ट मान भी निर्दिष्ट किए जा सकते हैं। हालाँकि, इन निर्दिष्ट मानों पर समाधान या ऐसे समाधानों का संग्रह समस्या की गणितीय संरचना को प्रकट नहीं करता है। कई अन्य समस्याओं की तरह, गणितीय संरचना को केवल अंतर समीकरणों की जांच करके ही स्पष्ट किया जा सकता है।

विश्लेषणात्मक यांत्रिकी का लक्ष्य और भी अधिक है एक यांत्रिक समस्या की गणितीय संरचना को समझने के लिए नहीं, बल्कि समस्याओं के एक वर्ग को इतना व्यापक समझना कि उनमें अधिकांश यांत्रिकी समाहित कर लेते हैं। यह उन प्रणालियों पर ध्यान केंद्रित करता है जिन पर गति के लैग्रेंजियन या हैमिल्टनियन समीकरण लागू होते हैं और इसमें वास्तव में समस्याओं की एक विस्तृत श्रृंखला शामिल होती है।[3]

विश्लेषणात्मक यांत्रिकी के विकास के दो उद्देश्य हैं: (i) प्रयोज्यता की एक विस्तृत श्रृंखला के साथ मानक तकनीकों को विकसित करके हल करने योग्य समस्याओं की सीमा में वृद्धि, और (ii) यांत्रिकी की गणितीय संरचना को समझना। हालांकि, लंबे समय में, (ii) विशिष्ट समस्याओं पर ध्यान केंद्रित करने से अधिक (i) मदद कर सकता है, जिसके लिए पहले से ही तरीके तैयार किए जा चुके हैं।

आंतरिक गति

सामान्यीकृत निर्देशांक और बाधाएं

न्यूटनियन यांत्रिकी में, गति के दौरान किसी पिंड की स्थिति को संदर्भित करने के लिए, एक प्रथागत रूप से सभी तीन कार्टेशियन निर्देशांक, या अन्य 3D समन्वय प्रणाली का उपयोग करता है। भौतिक प्रणालियों में, हालांकि, कुछ संरचना या अन्य प्रणाली आमतौर पर पिंड की गति को कुछ दिशाओं और मार्गों से रोकती है। इसलिए कार्टेशियन निर्देशांक का एक पूरा सेट प्रायः अनावश्यक होता है, क्योंकि बाधाएं निर्देशांक के बीच विकसित संबंधों को निर्धारित करती हैं, जो संबंधों को बाधाओं के अनुरूप समीकरणों द्वारा तैयार किया जा सकता है। लैग्रैन्जियन और हैमिल्टनियन औपचारिकताओं में, बाधाओं को गति को ज्यामिति में सम्मिलित किया जाता है, जिससे गति को मॉडल करने के लिए निर्देशांक की संख्या न्यूनतम आवश्यक हो जाती है। इन्हें सामान्यीकृत निर्देशांक के रूप में जाना जाता है, जिन्हें ची (i = 1, 2, 3...) के रूप में निरूपित किया जाता है।[4]


वक्रता और सामान्यीकृत निर्देशांक के बीच अंतर

सामान्यीकृत निर्देशांक प्रणाली पर बाधाओं को निहित करते हैं। स्वतंत्रता की प्रत्येक डिग्री के लिए एक सामान्यीकृत निर्देशांक ची है (सूचकांक i = 1, 2...N द्वारा लेबल की गई सुविधा के लिए), अर्थात हर तरह से प्रणाली इसके विन्यास को बदल सकता है वक्राकार लम्बाई या घूर्णन कोण के रूप में। सामान्यीकृत निर्देशांक वक्रतापूर्ण निर्देशांक के समान नहीं होते हैं। वक्रीय निर्देशांक की संख्या प्रश्न में स्थिति स्थान के आयाम के बराबर होती है (आमतौर पर थ्री डी स्थान के लिए 3), जबकि सामान्यीकृत निर्देशांक की संख्या आवश्यक रूप से इस आयाम के बराबर नहीं होती है; बाधाएं स्वतंत्रता की डिग्री की संख्या को कम कर सकती हैं (इसलिए प्रणाली के विन्यास को परिभाषित करने के लिए आवश्यक सामान्यीकृत निर्देशांक की संख्या), सामान्य नियम का पालन करते हुए।[5]

[स्थिति स्थान का आयाम (आमतौर पर 3)] × [प्रणाली के घटकों की संख्या ("कणों")] - (बाधाओं की संख्या)

= (स्वतंत्रता की डिग्री की संख्या) = (सामान्यीकृत निर्देशांक की संख्या)

स्वतंत्रता की एन डिग्री वाली प्रणाली के लिए, सामान्यीकृत निर्देशांक को एन-टुपल में एकत्र किया जा सकता है।


और इस टपल के समय व्युत्पन्न (यहाँ एक ओवरडॉट द्वारा दर्शाया गया है) सामान्यीकृत वेग देते हैं।


डी'अलेम्बर्ट का सिद्धांत

जिस नींव पर विषय बनाया गया है वह डी'अलेम्बर्ट का सिद्धांत है।

यह सिद्धांत बताता है कि प्रतिवर्ती विस्थापनों में एक बल द्वारा किया गया अनंत आभासी कार्य शून्य है, जो कि प्रणाली के आदर्श बाधाओं के अनुरूप एक बल द्वारा किया गया कार्य है। एक बाधा का विचार उपयोगी है - चूंकि यह प्रणाली क्या कर सकती है, और प्रणाली की गति के समाधान के लिए चरण प्रदान कर सकता है। डी'अलेम्बर्ट के सिद्धांत के लिए समीकरण है।

जहाँ,
सामान्यीकृत बल हैं (सामान्य q के बजाय स्क्रिप्ट q का उपयोग यहां नीचे विहित परिवर्तनों के साथ संघर्ष को रोकने के लिए किया जाता है) और q सामान्यीकृत निर्देशांक हैं। इससे विश्लेषणात्मक यांत्रिकी की भाषा में न्यूटन के नियमों का सामान्यीकृत रूप सामने आता है।
जहाँ T निकाय की कुल गतिज ऊर्जा और संकेतन है


एक उपयोगी शार्ट-हैंड है (इस अंकन के लिए आव्यूह कैलकुलस देखें)।

होलोनोमिक बाधाएं

यदि वक्रीय निर्देशांक प्रणाली को मानक स्थिति सदिश r द्वारा परिभाषित किया जाता है, और यदि स्थिति वेक्टर को सामान्यीकृत निर्देशांक q और समय t के रूप में लिखा जा सकता है।

और यह संबंध हमेशा t के लिए धारण करता है, फिर q को होलोनोमिक बाधाएँ कहा जाता है।[6] सदिस r स्पष्ट रूप से उन मामलों में t पर निर्भर है जब बाधाएं समय के साथ बदलती हैं, न कि केवल q(t) के कारण। समय-स्वतंत्र स्थितियों के लिए, बाधाओं को स्क्लेरोनोमिक भी कहा जाता है, समय-निर्भर मामलों के लिए उन्हें रियोनोमिक कहा जाता है।[5]


लैग्रेंजियन यांत्रिकी

लैग्रेंजियन और यूलर-लैग्रेंज समीकरण

सामान्यीकृत निर्देशांक और मौलिक लग्रांगियन फ़ंक्शन का परिचय:

जहां टी कुल गतिज ऊर्जा है और V पूरी प्रणाली की कुल संभावित ऊर्जा है, जो या तो विविधताओं के कैलकुस का पालन करते हुए या उपरोक्त सूत्र का उपयोग करते हुए - यूलर-लैग्रेंज समीकरणों की ओर ले जाते हैं।

जो N दूसरे क्रम के साधारण अंतर समीकरणों का एक सेट है, प्रत्येक qi(t) के लिए एक।

यह सूत्रीकरण गति द्वारा अनुसरण किए जाने वाले वास्तविक पथ की पहचान उस पथ के चयन के रूप में करता है जिस पर गतिज ऊर्जा का समय समाकलन कम से कम है, यह मानते हुए कि कुल ऊर्जा स्थिर है, और पारगमन के समय कोई शर्त नहीं है।

विन्यास स्थान

लैग्रेंजियन सूत्रीकरण प्रणाली के विन्यास स्थान का उपयोग करता है, सभी संभव सामान्यीकृत निर्देशांक का सेट:

जहाँ एन-आयामी वास्तविक स्थान है (सेट-बिल्डर नोटेशन भी देखें)। यूलर-लैग्रेंज समीकरणों के विशेष समाधान को एक (विन्यास) पथ या प्रक्षेपवक्र कहा जाता है, अर्थात एक विशेष q(t) जो आवश्यक प्रारंभिक शर्तों के अधीन होता है। सामान्य समाधान समय के कार्यों के रूप में संभावित विन्यासों का एक समूह बनाते हैं।

सांस्थितिक कई गुना और स्पर्शरेखीय बंडल के संदर्भ में विन्यास स्थान को अधिक आम तौर पर और वास्तव में अधिक गहराई से परिभाषित किया जा सकता है।

हैमिल्टनियन यांत्रिकी

हैमिल्टनियन और हैमिल्टन के समीकरण

लैग्रैन्जियन का लीजेंड्रे परिवर्तन सामान्यीकृत निर्देशांक और वेग (q, q̇) को (q, p) से बदल देता है, सामान्यीकृत निर्देशांक और सामान्यीकृत क्षण सामान्यीकृत निर्देशांक के संयुग्मित होते हैं।

और हैमिल्टनियन (जो सामान्यीकृत निर्देशांक और गति के संदर्भ में है) का परिचय देता है।

जहां • डॉट उत्पाद को दर्शाता है, जिससे हैमिल्टन के समीकरण भी बनते हैं।

जो अब 2N प्रथम-क्रम साधारण अंतर समीकरणों का एक समूह है, प्रत्येक qi(t) और pi(t) के लिए एक। लीजेंड्रे परिवर्तन से एक और परिणाम लैग्रेंजियन और हैमिल्टनियन के समय डेरिवेटिव से संबंधित है।

जिसे अक्सर हैमिल्टन के गति के समीकरणों में से एक माना जाता है। सामान्यीकृत गति को सामान्यीकृत बलों के संदर्भ में उसी तरह लिखा जा सकता है जैसे न्यूटन का दूसरा नियम।

सामान्यीकृत गति स्थान

विन्यास स्थान के अनुरूप, सभी गति का सेट गति स्थान है (तकनीकी रूप से इस संदर्भ में, सामान्यीकृत गति स्थान)।

"मोमेंटम स्पेस" का अर्थ "के-स्पेस" भी है; क्वांटम यांत्रिकी और तरंगों के सिद्धांत में उपयोग किए जाने वाले सभी तरंग वैक्टर (डी ब्रोगली संबंधों द्वारा दिए गए) का सेट इस संदर्भ में संदर्भित नहीं है।

चरण स्थान

सभी पदों और संवेगों का समुच्चय चरण स्थान का निर्माण करता है।

अर्थात्, विन्यास स्थान का कार्तीय गुणन × और सामान्यीकृत संवेग स्थान।

हैमिल्टन के समीकरणों के एक विशेष समाधान को चरण पथ कहा जाता है, एक विशेष वक्र (q(t),p(t)) आवश्यक प्रारंभिक शर्तों के अधीन होता है। सभी चरण पथों का सेट, अंतर समीकरणों का सामान्य समाधान, चरण चित्र है।

पॉइसन ब्रैकेट

सभी गत्यात्मक चरों को स्थिति r, संवेग p और समय t से प्राप्त किया जा सकता है, और इन्हें इनके एक फलन के रूप में लिखा जा सकता है: A = A(q, p, t)। यदि A(q, p, t) और B(q, p, t) दो अदिश मान वाले गतिशील चर हैं, तो पॉइसन कोष्ठक को सामान्यीकृत निर्देशांक और संवेग द्वारा परिभाषित किया जाता है।

इनमें से किसी एक के कुल व्युत्पन्न की गणना को A कहते हैं, और परिणाम में हैमिल्टन के समीकरणों को प्रतिस्थापित करने से A का समय विकास होता है।

ए में यह समीकरण क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में गति के समीकरण से निकटता से संबंधित है, जिसमें चिरसम्मत गतिशील चर क्वांटम ऑपरेटर बन जाते हैं (हैट्स (^) द्वारा इंगित), और पॉइसन ब्रैकेट को डिराक के माध्यम से संचालको के कम्यूटेटर द्वारा प्रतिस्थापित किया जाता है। विहित परिमाणीकरण-


लैग्रैन्जियन और हैमिल्टन के कार्यों के गुण

लैग्रेंजियन और हैमिल्टनियन कार्यों के बीच अतिव्यापी गुण निम्नलिखित हैं।[5][7]

  • सभी व्यक्तिगत सामान्यीकृत निर्देशांक qi(t), वेग q̇i(t) और संवेग pi(t) स्वतंत्रता की प्रत्येक डिग्री के लिए परस्पर स्वतंत्र हैं। किसी फ़ंक्शन की स्पष्ट समय-निर्भरता का अर्थ है कि फ़ंक्शन में वास्तव में q(t), p(t) के अलावा एक चर के रूप में समय t शामिल है, न कि केवल q(t) और p(t) के माध्यम से एक पैरामीटर के रूप में, जिसका अर्थ स्पष्ट होगा समय-स्वतंत्रता।
  • लैग्रेंजियन q' और t के किसी भी फलन के कुल समय व्युत्पन्न के अतिरिक्त अपरिवर्तनीय है, अर्थात्
    इसलिए प्रत्येक लैग्रेंजियन L और L बिल्कुल एक ही गति का वर्णन करते हैं। दूसरे शब्दों में, एक प्रणाली का लैग्रेंजियन अद्वितीय नहीं है।
  • समान रूप से, हैमिल्टनियन q, p और t के किसी भी फलन के आंशिक समय व्युत्पन्न के योग के तहत अपरिवर्तनीय है, जो है-
    (K इस मामले में प्रायः इस्तेमाल किया जाने वाला अक्षर है)। इस गुण का उपयोग विहित परिवर्तनों में किया जाता है (नीचे देखें)।

ऐसे निर्देशांक "चक्रीय" या "अनदेखा" हैं। यह दिखाया जा सकता है कि हैमिल्टनियन भी बिल्कुल समान सामान्यीकृत निर्देशांक में चक्रीय है।

  • यदि लग्रांगियन समय-स्वतंत्र है तो हैमिल्टनियन भी समय-स्वतंत्र है (अर्थात दोनों समय में स्थिर हैं)।
  • यदि गतिज ऊर्जा सामान्यीकृत वेगों की डिग्री 2 का एक सजातीय कार्य है, और लग्रांगियन स्पष्ट रूप से समय-स्वतंत्र है, तो-
    जहां λ एक स्थिरांक है, तो हैमिल्टन की कुल संरक्षित ऊर्जा, निकाय की कुल गतिज और स्थितिज ऊर्जा के बराबर होगी।
    यह श्रोडिंगर समीकरण का आधार है, क्वांटम ऑपरेटरों को सम्मिलित करने से यह सीधे प्राप्त होता है।

कम से कम क्रिया का सिद्धांत

जैसे-जैसे प्रणाली विकसित होता है, q विन्यास स्थान के माध्यम से पथ का पता लगाता है (केवल कुछ दिखाए जाते हैं)। प्रणाली (redq) के विन्यास में छोटे बदलावों के तहत प्रणाली (लाल) द्वारा लिए गए पथ में एक स्थिर क्रिया (δS = 0) होती है।[8]

लैग्रेंजियन के कार्यात्मक के रूप में परिभाषित विश्लेषणात्मक यांत्रिकी में क्रिया एक और मात्रा है।

क्रिया से गति के समीकरणों को ज्ञात करने का एक सामान्य तरीका कम से कम क्रिया का सिद्धांत है।[9]

जहां प्रस्थान टी1 और आगमन टी2 समय निश्चित है।[1] शब्द "पथ" या "प्रक्षेपवक्र" प्रणाली के समय के विकास को विन्यास स्थान C के माध्यम से पथ के रूप में दर्शाता है दूसरे शब्दों में q(t), C में एक पथ का पता लगाता है जिस पथ के लिए क्रिया सबसे कम है, वह प्रणाली द्वारा लिया गया मार्ग है।

इस सिद्धांत से, चिरसम्मत यांत्रिकी में गति के सभी समीकरण प्राप्त किए जा सकते हैं। इस दृष्टिकोण को कणों की एक प्रणाली (नीचे देखें) के बजाय क्षेत्रों तक बढ़ाया जा सकता है, और क्वांटम यांत्रिकी के पथ अभिन्न सूत्रीकरण को रेखांकित करते है,[10][11] और सामान्य सापेक्षता में भूगणितीय गति की गणना के लिए उपयोग किया जाता है।[12]


हैमिल्टनियन-जैकोबी यांत्रिकी

विहित परिवर्तन

हैमिल्टनियन का अप्रसरण (p, q, और t के एक मनमाना फलन के आंशिक समय व्युत्पन्न के अतिरिक्त) हैमिल्टनियन को निर्देशांक q और संवेग p के एक सेट में एक नए सेट Q = Q(q, p, t) तथा P = P(q, p, t), चार संभावित तरीकों से-

P और Q पर प्रतिबंध के साथ जैसे कि रूपांतरित हैमिल्टन प्रणााली है।

उपरोक्त परिवर्तनों को विहित परिवर्तन कहा जाता है, प्रत्येक फ़ंक्शन Gn को "nth प्रकार" या "टाइप-एन" का एक उत्पन्न कार्य कहा जाता है। निर्देशांक और संवेग का परिवर्तन किसी समस्या के लिए हैमिल्टन के समीकरणों को हल करने के लिए सरलीकरण की अनुमति दे सकता है।

Q और P का चुनाव पूरी तरह से मनमाना है, लेकिन हर चुनाव एक विहित परिवर्तन की ओर नहीं ले जाता है। एक रूपांतरण के लिए एक सरल मानदंड q → Q और p → P विहित होना है, पॉइसन ब्रैकेट एकता है।

सभी के लिए i = 1, 2,...N. यदि यह धारण नहीं करता है तो परिवर्तन विहित नहीं है।[5]

हैमिल्टन -जैकोबी समीकरण

विहित रूप से रूपांतरित हैमिल्टनियन K = 0, और टाइप -2 जनरेटिंग फ़ंक्शन को हैमिल्टन के मुख्य फ़ंक्शन के बराबर सेट करके (यह भी क्रिया ) और एक मनमाना स्थिरांक C

सामान्यीकृत क्षण बन जाते है।

और P स्थिर है, तो हैमिल्टनियन-जैकोबी समीकरण (एचजेई) टाइप -2 विहित परिवर्तन से प्राप्त किया जा सकता है।

जहाँ H पहले की तरह हैमिल्टनियन है।

एक अन्य संबंधित कार्य हैमिल्टन का अभिलक्षणिक फलन है

समय-स्वतंत्र हैमिल्टनियन एच के लिए चर के योगात्मक पृथक्करण द्वारा एचजेई (HJE) को हल करने के लिए उपयोग किया जाता है।

हैमिल्टन-जैकोबी समीकरणों के समाधान के अध्ययन से स्वाभाविक रूप से संसुघटित कई गुना और संसुघटित टोपोलॉजी का अध्ययन होता है।[13][14]इस सूत्रीकरण में, हैमिल्टन-जैकोबी समीकरणों के समाधान हैमिल्टनियन सदिस क्षेत्रों के अभिन्न वक्र हैं।

रूथियन यांत्रिकी

रूथियन यांत्रिकी लैग्रेंजियन और हैमिल्टनियन यांत्रिकी का एक संकर सूत्रीकरण है, जिसका उपयोग प्रायः नहीं किया जाता है, लेकिन विशेष रूप से चक्रीय निर्देशांक को हटाने के लिए उपयोगी होता है। यदि किसी तंत्र के लैग्रेंजियन में चक्रीय निर्देशांक q = q1, q2, ... qs संयुग्मी संवेग p = p1, p2, ... ps के साथ शेष निर्देशांक गैर-चक्रीय और निरूपित = ζ1, 1 है। , ..., N - s, उन्हें रूथियन का परिचय देकर हटाया जा सकता है।

जो चक्रीय निर्देशांक q के लिए 2s हैमिल्टनियन समीकरणों के एक सेट की ओर जाता है,,

और N - S गैर-चक्रीय निर्देशांक 'ζ' में लैग्रैन्जियन समीकरण।

इस तरह से स्थापित करें, हालांकि रूथियन के पास हैमिल्टनियन का रूप है, इसे एन-एस स्वतंत्रता की डिग्री के साथ एक लैग्रैंगियन माना जा सकता है।

निर्देशांक q को चक्रीय नहीं होना चाहिए, जिस विभाजन के बीच निर्देशांक हैमिल्टन के समीकरणों में प्रवेश करते हैं और जो लैग्रेन्जियन समीकरणों में प्रवेश करते हैं, वह मनमाना है। हैमिल्टन के समीकरणों को चक्रीय निर्देशांकों को हटाने देना आसान है, गैर-चक्रीय निर्देशांक को गति के लैग्रैन्जियन समीकरणों के लिए छोड़कर।

अपीलीय यांत्रिकी

गति के अपील के समीकरण में सामान्यीकृत त्वरण शामिल हैं, सामान्यीकृत निर्देशांक के दूसरी बार व्युत्पन्न-

साथ ही डी'अलेम्बर्ट के सिद्धांत में ऊपर वर्णित सामान्यीकृत बल। समीकरण हैं-

जहाँ,

k कण का त्वरण है, जो इसकी स्थिति सदिश का दूसरी बार व्युत्पन्न है। प्रत्येक त्वरण ak को सामान्यीकृत त्वरण αr के रूप में व्यक्त किया जाता है, इसी तरह प्रत्येक rk को सामान्यीकृत निर्देशांक qr के रूप में व्यक्त किया जाता है।

चिरसम्मत क्षेत्र सिद्धांत का विस्तार

लग्रांगियन क्षेत्र सिद्धांत

सामान्यीकृत निर्देशांक असतत कणों पर लागू होते हैं। N अदिश क्षेत्र φi(r, t) के लिए जहाँ i = 1, 2, ... N, लैग्रेन्जियन घनत्व इन क्षेत्रों और उनके स्थान और समय के व्युत्पन्न का एक कार्य है, और संभवतः स्थान और समय स्वयं को समन्वित करते हैं।

और यूलर-लैग्रेंज समीकरणों में क्षेत्रों के लिए एक एनालॉग है
जहां ∂μ 4-ग्रेडिएंट को दर्शाता है और योग सम्मेलन का उपयोग किया गया है। एन स्केलर फ़ील्ड के लिए, ये लैग्रैन्जियन फ़ील्ड समीकरण फ़ील्ड में N दूसरे क्रम के आंशिक अंतर समीकरणों का एक सेट हैं, जो सामान्य रूप से युग्मित और अरेखीय होंगे।

इस स्केलर फील्ड फॉर्मूलेशन को वेक्टर फील्ड्स, टेंसर फील्ड्स और स्पिनर फील्ड्स तक बढ़ाया जा सकता है।

लैग्रैन्जियन लैग्रैन्जियन घनत्व का आयतन समाकलन है।[11][15]

मूल रूप से चिरसम्मत क्षेत्रों के लिए विकसित उपरोक्त सूत्रीकरण चिरसम्मत, क्वांटम और सापेक्षतावादी स्थितियों में सभी भौतिक क्षेत्रों पर लागू होता है: जैसे न्यूटनियन गुरुत्वाकर्षण, चिरसम्मत विद्युत चुंबकत्व, सामान्य सापेक्षता, और क्वांटम क्षेत्र सिद्धांत। यह सही क्षेत्र समीकरण उत्पन्न करने के लिए सही लैग्रैन्जियन घनत्व का निर्धारण करने का प्रश्न है।

हैमिल्टनियन क्षेत्र सिद्धांत

संबंधित "गति" क्षेत्र घनत्व N अदिश क्षेत्र i(r, t) से संयुग्मित होते हैं।[11]

जहां इस संदर्भ में ओवरडॉट एक आंशिक समय व्युत्पन्न को दर्शाता है, न कि कुल समय व्युत्पन्न। हैमिल्टनियन घनत्व यांत्रिकी के साथ सादृश्य द्वारा परिभाषित किया गया है।
गति के समीकरण हैं।
जहां भिन्नात्मक व्युत्पन्न
केवल आंशिक व्युत्पन्न के बजाय उपयोग किया जाना चाहिए। N क्षेत्रों के लिए, ये हैमिल्टनियन क्षेत्र समीकरण 2N पहले क्रम के आंशिक अंतर समीकरणों का एक समूह है, जो सामान्य रूप से युग्मित और अरेखीय होगा।

फिर से, हैमिल्टनियन घनत्व का आयतन समाकलन हैमिल्टनियन है।


समरूपता, संरक्षण, और नोएदर का प्रमेय

चिरसम्मत स्थान और समय में समरूपता परिवर्तन

प्रत्येक परिवर्तन को एक ऑपरेटर द्वारा वर्णित किया जा सकता है (अर्थात स्थिति r या संवेग p चरों को बदलने के लिए कार्य करने वाला कार्य)। निम्नलिखित मामले हैं जब ऑपरेटर r या p नहीं बदलता है, अर्थात् समरूपता।[10]

Transformation Operator Position Momentum
Translational symmetry
Time translation
Rotational invariance
Galilean transformations
Parity
T-symmetry

जहाँ R(n̂) इकाई सदिश n̂ और कोण द्वारा परिभाषित अक्ष के परितः घूर्णन आव्यूह है।

नोएदर का प्रमेय

नूथर के प्रमेय में कहा गया है कि क्रिया की एक निरंतर समरूपता परिवर्तन एक संरक्षण नियम से मेल खाता है, अर्थात् क्रिया (और इसलिए लैग्रैन्जियन) एक पैरामीटर एस (s) द्वारा एक परिवर्तन के तहत नहीं बदलता है।

लैग्रैन्जियन s से स्वतंत्र उसी गति का वर्णन करता है, जो लंबाई, घूर्णन कोण या समय हो सकता है। q के संगत संवेग को संरक्षित किया जाएगा।[5]


यह भी देखें

  • लैग्रैन्जियन यांत्रिकी
  • हैमिल्टन यांत्रिकी
  • सैद्धांतिक यांत्रिकी
  • चिरसम्मत यांत्रिकी
  • गतिकी
  • नज़री मेक्सानिका
  • हैमिल्टन -जैकोबी समीकरण
  • हैमिल्टन का सिद्धांत
  • शुद्धगतिकी
  • गतिविज्ञान (भौतिकी)
  • गैर-स्वायत्त यांत्रिकी
  • उदवाडिया-कलाबा समीकरण[neutrality is disputed]


संदर्भ और नोट्स

  1. 1.0 1.1 Lanczos, Cornelius (1970). The variational principles of mechanics (4th ed.). New York: Dover Publications Inc. Introduction, pp. xxi–xxix. ISBN 0-486-65067-7.
  2. Lanczos, Cornelius (1970). The variational principles of mechanics (4th ed.). New York: Dover Publications Inc. pp. 3–6. ISBN 978-0-486-65067-8.
  3. Synge, J. L. (1960). "Classical dynamics". In Flügge, S. (ed.). Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie. Encyclopedia of Physics / Handbuch der Physik. Vol. 2 / 3 / 1. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-45943-6. ISBN 978-3-540-02547-4. OCLC 165699220.
  4. The Road to Reality, Roger Penrose, Vintage books, 2007, ISBN 0-679-77631-1
  5. 5.0 5.1 5.2 5.3 5.4 Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  6. McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  7. Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, ISBN 0-07-084018-0
  8. Penrose, R. (2007). The Road to Reality. Vintage books. p. 474. ISBN 978-0-679-77631-4.
  9. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
  10. 10.0 10.1 Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
  11. 11.0 11.1 11.2 Quantum Field Theory, D. McMahon, Mc Graw Hill (US), 2008, ISBN 978-0-07-154382-8
  12. Relativity, Gravitation, and Cosmology, R.J.A. Lambourne, Open University, Cambridge University Press, 2010, ISBN 978-0-521-13138-4
  13. Arnolʹd, VI (1989). Mathematical methods of classical mechanics (2nd ed.). Springer. Chapter 8. ISBN 978-0-387-96890-2.
  14. Doran, C; Lasenby, A (2003). Geometric algebra for physicists. Cambridge University Press. p. §12.3, pp. 432–439. ISBN 978-0-521-71595-9.
  15. Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0

]