स्थिर बिंदु: Difference between revisions
(text) |
(text) |
||
| Line 41: | Line 41: | ||
वर्तन बिंदु का एक सरल उदाहरण फलन ''f''(''x'') = ''x''<sup>3</sup> है। बिंदु x = 0 के बारे में उत्तलता का स्पष्ट परिवर्तन है, और हम इसे कलन के माध्यम से सिद्ध कर सकते हैं। एफ का दूसरा व्युत्पन्न हर जगह-निरंतर 6x है, और x = 0, f<nowiki>''</nowiki> = 0 पर, और इस बिंदु के बारे में संकेत बदलता है। अतः x = 0 एक विभक्ति बिंदु है। | वर्तन बिंदु का एक सरल उदाहरण फलन ''f''(''x'') = ''x''<sup>3</sup> है। बिंदु x = 0 के बारे में उत्तलता का स्पष्ट परिवर्तन है, और हम इसे कलन के माध्यम से सिद्ध कर सकते हैं। एफ का दूसरा व्युत्पन्न हर जगह-निरंतर 6x है, और x = 0, f<nowiki>''</nowiki> = 0 पर, और इस बिंदु के बारे में संकेत बदलता है। अतः x = 0 एक विभक्ति बिंदु है। | ||
अधिक सामान्यतः, वास्तविक मूल्यवान फलन के स्थिर बिंदु <math>f\colon \mathbb{R}^{n} \to \mathbb{R}</math> उन अंक x<sub>0</sub> के बराबर है जहां हर दिशा में व्युत्पन्न शून्य के बराबर है, या समकक्ष, अनुप्रवण शून्य है। | |||
अंक | |||
=== उदाहरण === | === उदाहरण === | ||
फलन f(x) = x | फलन f(x) = x<sup>4</sup> के लिए हमारे पास f<nowiki>'</nowiki>(0) = 0 और f(0) = 0 है। भले ही f(0) = 0, यह बिंदु विभक्ति का बिंदु नहीं है। इसका कारण यह है कि f'(x) का चिह्न ऋणात्मक से धनात्मक में बदलता है। | ||
फलन f(x) = sin(x) के लिए हमारे पास f<nowiki>'</nowiki>(0) ≠ 0 और f<nowiki></nowiki>(0) = 0 है। लेकिन यह एक स्थिर बिंदु नहीं है बल्कि यह विभक्ति का बिंदु है। ऐसा इसलिए है क्योंकि अवतल नीचे की ओर अवतल से ऊपर की ओर अवतल में बदलता है और f'(x) का चिन्ह नहीं बदलता है; यह सकारात्मक रहता है। | फलन f(x) = sin(x) के लिए हमारे पास f<nowiki>'</nowiki>(0) ≠ 0 और f<nowiki></nowiki>(0) = 0 है। लेकिन यह एक स्थिर बिंदु नहीं है बल्कि यह विभक्ति का बिंदु है। ऐसा इसलिए है क्योंकि अवतल नीचे की ओर अवतल से ऊपर की ओर अवतल में बदलता है और f'(x) का चिन्ह नहीं बदलता है; यह सकारात्मक रहता है। | ||
फलन f(x) = x | फलन f(x) = x<sup>3</sup> के लिए हमारे पास f<nowiki>'</nowiki>(0) = 0 और f(0) = 0 है। यह एक स्थिर बिंदु और वर्तन का बिंदु दोनों है। ऐसा इसलिए है क्योंकि अवतलता नीचे की ओर अवतल से ऊपर की ओर अवतल में बदलता है और f<nowiki>'</nowiki>(x) का चिह्न नहीं बदलता है; यह सकारात्मक रहता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[अनुकूलन (गणित)]] | * [[अनुकूलन (गणित)]] | ||
* | * फर्मेट का प्रमेय | ||
* [[व्युत्पन्न परीक्षण]] | * [[व्युत्पन्न परीक्षण]] | ||
* [[निश्चित बिंदु (गणित)]] | * [[निश्चित बिंदु (गणित)]] | ||
* | * पल्याण बिन्दु | ||
==संदर्भ== | ==संदर्भ== | ||
Revision as of 23:16, 7 February 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (March 2016) (Learn how and when to remove this template message) |
गणित में, विशेष रूप से कलन में, एक चर के एक अलग-अलग कार्य का एक स्थिर बिंदु फलन के लेखाचित्र पर एक बिंदु होता है जहां फलन का व्युत्पन्न शून्य होता है।[1][2][3]अनौपचारिक रूप से, यह एक ऐसा बिंदु है जहां फलन बढ़ना या घटना बंद हो जाता है।
कई वास्तविक चरों के अलग-अलग फलन के लिए, एक स्थिर बिंदु लेखाचित्र की सतह (गणित) पर एक बिंदु होता है जहां इसके सभी आंशिक व्युत्पन्न शून्य होते हैं (समतुल्य रूप से, अनुप्रवण शून्य होता है)।
स्थिर बिंदुओं को एक चर के फलन के लेखाचित्र पर देखना आसान होता है: वे लेखाचित्र पर उन बिंदुओं के अनुरूप होते हैं जहां स्पर्शरेखा क्षैतिज होती है (अर्थात, भुज के समानांतर (ज्यामिति))। दो चर के एक फलन के लिए, वे लेखाचित्र पर उन बिंदुओं के अनुरूप हैं जहां स्पर्शरेखा तल xy तल के समानांतर है।
वर्तन बिंदु
वर्तन बिंदु वह बिंदु होता है जिस पर व्युत्पन्न परिवर्तन का चिन्ह होता है।[2] एक वर्तन बिंदु या तो सापेक्ष अधिकतम या सापेक्ष न्यूनतम (स्थानीय न्यूनतम और अधिकतम के रूप में भी जाना जाता है) हो सकता है। यदि फलन अवकलनीय है, तो एक वर्तन बिंदु एक स्थिर बिंदु है; हालाँकि सभी स्थिर बिंदु वर्तन बिंदु नहीं होते हैं। यदि फलन दो बार अलग-अलग होता है, तो स्थिर बिंदु जो वर्तन बिंदु नहीं हैं, वे क्षैतिज विभक्ति बिंदु हैं। उदाहरण के लिए, फलन पर एक स्थिर बिंदु x = 0 है, जो एक विभक्ति बिंदु भी है, लेकिन एक महत्वपूर्ण वर्तन नहीं है।[3]
वर्गीकरण
एक के पृथक स्थिर बिंदु वास्तविक मूल्यवान फलन को पहले व्युत्पन्न परीक्षण द्वारा चार प्रकारों में वर्गीकृत किया गया है:
- एक स्थानीय न्यूनतम (न्यूनतम वर्तन बिंदु या सापेक्ष न्यूनतम) वह है जहां फलन का व्युत्पन्न नकारात्मक से सकारात्मक में बदल जाता है;
- एक स्थानीय दीर्घतम (अधिकतम वर्तन बिंदु या सापेक्ष अधिकतम) वह है जहां फलन का व्युत्पन्न सकारात्मक से नकारात्मक में बदल जाता है;
- एक बढ़ता हुआ वर्तन बिंदु (या वर्तन) वह है जहां फलन का व्युत्पन्न स्थिर बिंदु के दोनों किनारों पर सकारात्मक होता है; ऐसा बिंदु अवतल कार्य में परिवर्तन को चिह्नित करता है;
- नति परिवर्तन (या नति परिवर्तन) का एक गिरता हुआ बिंदु वह होता है जहां स्थिर बिंदु के दोनों ओर फलन का अवकलज ऋणात्मक होता है; ऐसा बिंदु समतलता में परिवर्तन का प्रतीक है।
पहले दो विकल्पों को सामूहिक रूप से दीर्घतम और न्यूनतम के रूप में जाना जाता है। इसी प्रकार एक बिंदु जो वैश्विक (या पूर्ण) अधिकतम या वैश्विक (या पूर्ण) न्यूनतम है, वैश्विक (या पूर्ण) चरम कहा जाता है। अंतिम दो विकल्प-स्थिर बिंदु जो स्थानीय चरम पर नहीं हैं- पल्याण बिंदु के रूप में जाने जाते हैं।
फर्मेट के प्रमेय, सीमा पर या स्थिर बिंदुओं पर वैश्विक एक्स्ट्रेमा होना चाहिए (एक के लिए फलन)।
वक्र रेखाचित्र
स्थिर बिंदुओं की स्थिति और प्रकृति का निर्धारण अलग-अलग कार्यों के वक्र रेखाचित्र में सहायता करता है। समीकरण f'(x) = 0 को हल करना सभी स्थिर बिंदुओं के x-निर्देशांक लौटाता है; y-निर्देशांक तुच्छ रूप से उन x-निर्देशांकों पर फलन मान हैं।
x पर एक स्थिर बिंदु की विशिष्ट प्रकृति कुछ मामलों में दूसरे व्युत्पन्न f''(x) की जांच करके निर्धारित की जा सकती है:
- यदि f(x) < 0, x पर स्थिर बिंदु अवतल है; एक अधिकतम चरम।
- यदि f(x) > 0, x पर स्थिर बिंदु अवतल है; एक न्यूनतम चरम।
- यदि f(x) = 0, स्थिर बिंदु की प्रकृति को अन्य तरीकों से निर्धारित किया जाना चाहिए, प्रायः उस बिंदु के चारों ओर एक संकेत परिवर्तन को ध्यान में रखते हुए।
एक स्थिर बिंदु की प्रकृति का निर्धारण करने का एक अधिक सरल तरीका स्थिर बिंदुओं के बीच फलन मानों की जांच करना है (यदि फलन परिभाषित है और उनके बीच निरंतर है)।
वर्तन बिंदु का एक सरल उदाहरण फलन f(x) = x3 है। बिंदु x = 0 के बारे में उत्तलता का स्पष्ट परिवर्तन है, और हम इसे कलन के माध्यम से सिद्ध कर सकते हैं। एफ का दूसरा व्युत्पन्न हर जगह-निरंतर 6x है, और x = 0, f'' = 0 पर, और इस बिंदु के बारे में संकेत बदलता है। अतः x = 0 एक विभक्ति बिंदु है।
अधिक सामान्यतः, वास्तविक मूल्यवान फलन के स्थिर बिंदु उन अंक x0 के बराबर है जहां हर दिशा में व्युत्पन्न शून्य के बराबर है, या समकक्ष, अनुप्रवण शून्य है।
उदाहरण
फलन f(x) = x4 के लिए हमारे पास f'(0) = 0 और f(0) = 0 है। भले ही f(0) = 0, यह बिंदु विभक्ति का बिंदु नहीं है। इसका कारण यह है कि f'(x) का चिह्न ऋणात्मक से धनात्मक में बदलता है।
फलन f(x) = sin(x) के लिए हमारे पास f'(0) ≠ 0 और f(0) = 0 है। लेकिन यह एक स्थिर बिंदु नहीं है बल्कि यह विभक्ति का बिंदु है। ऐसा इसलिए है क्योंकि अवतल नीचे की ओर अवतल से ऊपर की ओर अवतल में बदलता है और f'(x) का चिन्ह नहीं बदलता है; यह सकारात्मक रहता है।
फलन f(x) = x3 के लिए हमारे पास f'(0) = 0 और f(0) = 0 है। यह एक स्थिर बिंदु और वर्तन का बिंदु दोनों है। ऐसा इसलिए है क्योंकि अवतलता नीचे की ओर अवतल से ऊपर की ओर अवतल में बदलता है और f'(x) का चिह्न नहीं बदलता है; यह सकारात्मक रहता है।
यह भी देखें
- अनुकूलन (गणित)
- फर्मेट का प्रमेय
- व्युत्पन्न परीक्षण
- निश्चित बिंदु (गणित)
- पल्याण बिन्दु
संदर्भ
- ↑ Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (3rd ed.). New York: McGraw-Hill. p. 236. ISBN 0-07-010813-7.
- ↑ 2.0 2.1 Saddler, David; Shea, Julia; Ward, Derek (2011), "12 B Stationary Points and Turning Points", Cambridge 2 Unit Mathematics Year 11, Cambridge University Press, p. 318, ISBN 9781107679573
- ↑ 3.0 3.1 "Turning points and stationary points". TCS FREE high school mathematics 'How-to Library'. Retrieved 30 October 2011.