द्विपद प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 127: Line 127:


==== सामान्य स्थिति ====
==== सामान्य स्थिति ====
{{math|1=(''x'' + ''y'')<sup>''n''</sup>}} का विस्तार करने पर {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} के रूप में {{math|2<sup>''n''</sup>}} उत्पादों का योग प्राप्त होता है, जहां प्रत्येक {{math|''e''<sub>''i''</sub>}}, {{mvar|''x''}} या{{mvar|y}} है पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद {{math|0}} तथा {{mvar|n}} के बीच कुछ {{mvar|k}} के लिए {{math|''x''<sup>''n''&minus;''k''</sup>''y''<sup>''k''</sup>}} के बराबर होते है।  
{{math|1=(''x'' + ''y'')<sup>''n''</sup>}} का विस्तार करने पर {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} के रूप में {{math|2<sup>''n''</sup>}} उत्पादों का योग प्राप्त होता है, जहां प्रत्येक {{math|''e''<sub>''i''</sub>}}, {{mvar|''x''}} या {{mvar|y}} है, पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद {{math|0}} तथा {{mvar|n}} के बीच कुछ {{mvar|k}} के लिए {{math|''x''<sup>''n''&minus;''k''</sup>''y''<sup>''k''</sup>}} के बराबर होते है।  
* प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के विस्तार में,
* प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के विस्तार में है।
*बिल्कुल {{mvar|k}} स्थितियों में {{mvar|y}} वाले {{mvar|n}}-वर्ण {{math|''x'',''y''}} तार की संख्या में,
*बिल्कुल {{mvar|k}} स्थितियों में {{mvar|y}} वाले {{mvar|n}}-वर्ण {{math|''x'',''y''}} तार की संख्या में होते है।
* {{math|1={{mset|1, 2, ..., ''n''}}}} के {{mvar|k}}-तत्व सबसम्मुचय की संख्या है।
* {{math|1={{mset|1, 2, ..., ''n''}}}} {{mvar|k}}-तत्व सबसम्मुचय की संख्या है।  
* <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या यदि कोई परिभाषित कर रहा है तो एक संक्षिप्त संयोजी तर्क द्वारा <math>\tbinom{n}{k}</math> जैसा <math>\tfrac{n!}{k! (n-k)!}.</math> यह द्विपद प्रमेय को सिद्ध करता है।
* <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या एक छोटे संयोजक के तर्क से अगर कोई <math>\tbinom{n}{k}</math> जैसा <math>\tfrac{n!}{k! (n-k)!}.</math> को परिभाषित करता है।


=== आगमनात्मक प्रमाण ===
=== आगमनात्मक प्रमाण ===
Line 149: Line 149:
{{Main|द्विपद श्रृंखला}}
{{Main|द्विपद श्रृंखला}}


1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। हालाँकि, एक यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं।
1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत करते है। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। चूँकि, यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं।
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.-->
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.-->
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए खड़ा है। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> और r कोई सम्मिश्र संख्या है, जिसे किसी ने परिभाषित किया है,
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए लंबवत है। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> और r कोई सम्मिश्र संख्या है, जिसे किसी ने परिभाषित किया है,
<math display="block">\begin{align}
<math display="block">\begin{align}
   (x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\
   (x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\
Line 159: Line 159:




जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक {{math|1=''k'' > ''r''}} शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक {{math|1=''r'' + 1}} शून्येतर पद होते हैं। {{mvar|r}}, के अन्य मूल्यों के लिए, श्रृंखला में सामान्यता असीम रूप से कई गैर शून्य शब्द होते हैं।
जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक {{math|1=''k'' > ''r''}} शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक {{math|1=''r'' + 1}} शून्येतर पद देते हैं। {{mvar|r}}, के अन्य मूल्यों के लिए, श्रृंखला में सामान्यता असीम रूप से कई गैर शून्य शब्द होते हैं।


उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math>
उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math>
Line 168: Line 168:
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
=== आगे सामान्यीकरण ===
=== आगे सामान्यीकरण ===
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्णसममितिक शाखा का उपयोग करके {{math|1=''x'' + ''y''}} और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्ण सममितिक शाखा का उपयोग करके {{math|1=''x'' + ''y''}} और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है
 
द्विपद प्रमेय का एक संस्करण निम्नलिखित पोचहैमर प्रतीक के लिए मान्य है, जैसे किसी दिए गए वास्तविक स्थिरांक {{mvar|c}}, के लिए बहुपदों का परिवार, परिभाषित करें <math> x^{(0)} = 1 </math> तथा<math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math>


द्विपद प्रमेय का संस्करण निम्नलिखित पोचहैमर प्रतीक के लिए मान्य है, जैसे किसी दिए गए वास्तविक स्थिरांक {{mvar|c}}, के लिए बहुपदों का समूह, <math> x^{(0)} = 1 </math> परिभाषित करता है तथा,<math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math>


के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref>
के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref>
Line 181: Line 180:
* <math> p_0(0) = 1 </math>, तथा
* <math> p_0(0) = 1 </math>, तथा
* <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>.
* <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>.
बहुपदों के अंतराल पर ऑपरेटर <math>Q</math> को अनुक्रम का आधार कहा जाता है।<math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है और यदि इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> तो <math> a </math> ऑपरेटर द्वारा शिफ्ट के लिए <math> E^a </math> लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.है
बहुपदों के अंतराल पर ऑपरेटर <math>Q</math> को अनुक्रम का आधार कहा जाता है।<math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है, और यदि इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> तो <math> a </math> ऑपरेटर द्वारा शिफ्ट के लिए <math> E^a </math> लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.है


=== बहुपद प्रमेय ===
=== बहुपद प्रमेय ===
Line 189: Line 188:


<math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math>
<math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math>
जहां गैर-ऋणात्मक पूर्णांक सूचकांक {{math|''k''<sub>1</sub>}} से {{math|''k''<sub>''m''</sub>}} के सभी अनुक्रमों पर योग लिया जाता है, जैसे कि सभी ''{{math|''k''<sub>''i''</sub>}}'' का योग {{mvar|n}} है। विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए {{mvar|n}} गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है
जहां गैर-ऋणात्मक पूर्णांक सूचकांक {{math|''k''<sub>1</sub>}} से {{math|''k''<sub>''m''</sub>}} के सभी अनुक्रमों का योग लिया जाता है, जैसे कि सभी ''{{math|''k''<sub>''i''</sub>}}'' का योग {{mvar|n}} है। विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए {{mvar|n}} गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math>
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math>
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> आकार {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}. के असंयुक्त उपसम्मुचय में सम्मुचय {{mvar|n}}-तत्व को विभाजित करने के विभिन्न तरीकों की संख्या को सम्मिलित करता है।
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> आकार {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}. के असंयुक्त उपसम्मुचय में सम्मुचय {{mvar|n}}-तत्व को विभाजित करने के तरीकों की संख्या को दिखाता है।


=== बहु-द्विपद प्रमेय ===
=== बहु-द्विपद प्रमेय ===
अधिक आयामों में कार्य करते समय, द्विपद अभिव्यक्तियों के उत्पादों का प्रयोग करना प्रायः उपयोगी होता है।द्विपदीय प्रमेय द्वारा यह बराबर होता है।
अधिक आयामों में कार्य करते समय, द्विपद अभिव्यक्तियों के उत्पादों का प्रयोग करना प्रायः उपयोगी होता है। द्विपदीय प्रमेय में यह बराबर होता है।
<math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math>
<math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math>
यह अधिक संक्षेप में बहु-सूचकांक संकेतन द्वारा लिखा जा सकता है, जैसे
यह अधिक संक्षेप में बहु-सूचकांक संकेतन द्वारा लिखा जा सकता है, जैसे
Line 207: Line 206:
<math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math>
<math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math>


 
यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} किसी फलन के {{mvar|n}}वें व्युत्पन्न को इंगित करता है। यदि एक सेट {{math|1=''f''(''x'') = ''e''{{sup|''ax''}}}} तथा {{math|1=''g''(''x'') = ''e''{{sup|''bx''}}}} और फिर {{math|''e''{{sup|(''a'' + ''b'')''x''}}}} के उभयनिष्ठ गुणनखंड को रद्द कर देता है, तो परिणाम के दोनों पक्षों से, सामान्य द्विपद प्रमेय प्राप्त होता है।<ref>{{cite book |last1=Spivey |first1=Michael Z. |title=द्विपद पहचान सिद्ध करने की कला|date=2019 |publisher=CRC Press |isbn=978-1351215800 |page=71}}</ref>
यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} किसी फलन के {{mvar|n}}वें व्युत्पन्न को इंगित करता है। यदि कोई {{math|1=''f''(''x'') = ''e''{{sup|''ax''}}}} तथा {{math|1=''g''(''x'') = ''e''{{sup|''bx''}}}}, सेट करता है, और फिर {{math|''e''{{sup|(''a'' + ''b'')''x''}}}} के सामान्य कारक को रद्द कर देता है , तो सामान्य द्विपद प्रमेय को पुनर्प्राप्त किया जा सकता है।<ref>{{cite book |last1=Spivey |first1=Michael Z. |title=द्विपद पहचान सिद्ध करने की कला|date=2019 |publisher=CRC Press |isbn=978-1351215800 |page=71}}</ref>
== अनुप्रयोग ==
== अनुप्रयोग ==


Line 214: Line 212:
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math>
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math>


 
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक (गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या (एनएक्स) और ज्या ( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक(गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या(एनएक्स) और ज्या( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि
<math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math>
<math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math>
डी मोइवर का सूत्र हमें यह बताता है
डी मोइवर का सूत्र हमें यह बताता है
Line 229: Line 226:


=== ई के लिए श्रृंखला ===
=== ई के लिए श्रृंखला ===
संख्या {{mvar|e}}(गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है।
संख्या {{mvar|e}} (गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है।
<math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math>
<math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math>
द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से,
द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से,
Line 237: Line 234:
जैसा {{math|''n'' → ∞}}, के रूप में, दाईं ओर तर्कसंगत अभिव्यक्ति {{math|1}} तक पहुंचती है, और इसलिए,
जैसा {{math|''n'' → ∞}}, के रूप में, दाईं ओर तर्कसंगत अभिव्यक्ति {{math|1}} तक पहुंचती है, और इसलिए,
<math display="block">\lim_{n\to\infty} {n \choose k}\frac{1}{n^k} = \frac{1}{k!}.</math>
<math display="block">\lim_{n\to\infty} {n \choose k}\frac{1}{n^k} = \frac{1}{k!}.</math>


यह इंगित करता है कि {{mvar|e}} को एक श्रृंखला के रूप में लिखा जा सकता है।
यह इंगित करता है कि {{mvar|e}} को एक श्रृंखला के रूप में लिखा जा सकता है।
<math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है।
<math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है।
=== संभावना ===
=== संभावना ===
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक(गणनीय) संग्रह की प्रायिकता<math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ नहीं हो रहा है
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक (गणनीय) संग्रह की प्रायिकता <math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ ठीक नहीं है  


:<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math>
:<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math>
इस मात्रा के लिए एक ऊपरी सीमा है <math> e^{-p|S|}.</math><ref>{{Cite book|title=आधार - सामग्री संकोचन|last1=Cover|first1=Thomas M.|last2=Thomas|first2=Joy A.|date=2001-01-01|publisher=John Wiley & Sons, Inc.|isbn=9780471200611|pages=320|language=en|doi=10.1002/0471200611.ch5}}</ref>
इस मात्रा के लिए एक ऊपरी सीमा <math> e^{-p|S|}.</math><ref>{{Cite book|title=आधार - सामग्री संकोचन|last1=Cover|first1=Thomas M.|last2=Thomas|first2=Joy A.|date=2001-01-01|publisher=John Wiley & Sons, Inc.|isbn=9780471200611|pages=320|language=en|doi=10.1002/0471200611.ch5}}</ref> है




Line 254: Line 250:
द्विपद प्रमेय अधिकांशतया वलय में {{math|''x''}} तथा {{math|''y''}} दो तत्वों के लिए, या समीकारक के लिए, उपयुक्त माना जाता है, बशर्ते कि यह {{math|1=''xy'' = ''yx''}}.के, उदाहरण के लिए, यह दो {{math|''n'' × ''n''}} आव्यूह धारण करता है, बशर्ते कि इस आव्यूह का परिचालन उस आव्यूह के कंप्यूटिंग घातको में उपयोगी होता है।<ref>Artin, ''Algebra'', 2nd edition, Pearson, 2018, equation (4.7.11).</ref>
द्विपद प्रमेय अधिकांशतया वलय में {{math|''x''}} तथा {{math|''y''}} दो तत्वों के लिए, या समीकारक के लिए, उपयुक्त माना जाता है, बशर्ते कि यह {{math|1=''xy'' = ''yx''}}.के, उदाहरण के लिए, यह दो {{math|''n'' × ''n''}} आव्यूह धारण करता है, बशर्ते कि इस आव्यूह का परिचालन उस आव्यूह के कंप्यूटिंग घातको में उपयोगी होता है।<ref>Artin, ''Algebra'', 2nd edition, Pearson, 2018, equation (4.7.11).</ref>


द्विपद प्रमेय को बहुपद अनुक्रम कहकर कहा जा सकता है {{math|1={{mset|1, ''x'', ''x''<sup>2</sup>, ''x''<sup>3</sup>, ...}}}} द्विपद प्रकार का है।
द्विपद प्रमेय को बहुपद अनुक्रम कर कहा जा सकता है {{math|1={{mset|1, ''x'', ''x''<sup>2</sup>, ''x''<sup>3</sup>, ...}}}}ये द्विपद प्रकार का है।


== लोकप्रिय संस्कृति में ==
== लोकप्रिय संस्कृति में ==

Revision as of 00:51, 13 December 2022

द्विपद गुणांक(एनके) पास्कल के त्रिभुज की nवीं पंक्ति में केवें प्रविष्टि के रूप में प्रतीत होता है, गिनती 0 से शुरू होती है। प्रत्येक प्रविष्टि इसके ऊपर दो का योग होता है।

प्रारंभिक बीजगणित में, द्विपद प्रमेय (या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद (x + y)n को axbyc के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक b + c = n हैं और गुणांक a के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,

axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अधिकांशता n और b के रूप में उच्चारित किया जाता है।

इतिहास

द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।[1][2] इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]

बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।[3]: 230  10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।[4]

हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5]Cite error: Closing </ref> missing for <ref> tag अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया[6] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[6] फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[7] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।[3]: 142 

1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[8] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[9] चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[8]

आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[8][10]

कथन

प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव होता है।

जहाँ पे एक पूर्णांक है और प्रत्येक एक धनात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अधिकांशता शब्द से हटा दिया जाता है। इसलिए अधिकांशता दाहिने हाथ की ओर लिखा हुआ दिखाई देता है .) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। योग संकेतन का उपयोग करके, इसे इस रूप में लिखा जा सकता है।


अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर (गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है

द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है

या समकक्ष
या अधिक स्पष्ट रूप से[11]


उदाहरण

यहाँ द्विपद प्रमेय के पहले कुछ कारक हैं