द्विपद प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
| Line 127: | Line 127: | ||
==== सामान्य स्थिति ==== | ==== सामान्य स्थिति ==== | ||
{{math|1=(''x'' + ''y'')<sup>''n''</sup>}} का विस्तार करने पर {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} के रूप में {{math|2<sup>''n''</sup>}} उत्पादों का योग प्राप्त होता है, जहां प्रत्येक {{math|''e''<sub>''i''</sub>}}, {{mvar|''x''}} या{{mvar|y}} है पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद {{math|0}} तथा {{mvar|n}} के बीच कुछ {{mvar|k}} के लिए {{math|''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के बराबर होते है। | {{math|1=(''x'' + ''y'')<sup>''n''</sup>}} का विस्तार करने पर {{math|1=''e''<sub>1</sub>''e''<sub>2</sub> ... ''e''<sub>''n''</sub>}} के रूप में {{math|2<sup>''n''</sup>}} उत्पादों का योग प्राप्त होता है, जहां प्रत्येक {{math|''e''<sub>''i''</sub>}}, {{mvar|''x''}} या {{mvar|y}} है, पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद {{math|0}} तथा {{mvar|n}} के बीच कुछ {{mvar|k}} के लिए {{math|''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के बराबर होते है। | ||
* प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के विस्तार में | * प्रतियों की संख्या {{math|1=''x''<sup>''n''−''k''</sup>''y''<sup>''k''</sup>}} के विस्तार में है। | ||
*बिल्कुल {{mvar|k}} स्थितियों में {{mvar|y}} वाले {{mvar|n}}-वर्ण {{math|''x'',''y''}} तार की संख्या में | *बिल्कुल {{mvar|k}} स्थितियों में {{mvar|y}} वाले {{mvar|n}}-वर्ण {{math|''x'',''y''}} तार की संख्या में होते है। | ||
* {{math|1={{mset|1, 2, ..., ''n''}}}} | * {{math|1={{mset|1, 2, ..., ''n''}}}} {{mvar|k}}-तत्व सबसम्मुचय की संख्या है। | ||
* <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या | * <math>\tbinom{n}{k},</math> या तो परिभाषा के अनुसार, या एक छोटे संयोजक के तर्क से अगर कोई <math>\tbinom{n}{k}</math> जैसा <math>\tfrac{n!}{k! (n-k)!}.</math> को परिभाषित करता है। | ||
=== आगमनात्मक प्रमाण === | === आगमनात्मक प्रमाण === | ||
| Line 149: | Line 149: | ||
{{Main|द्विपद श्रृंखला}} | {{Main|द्विपद श्रृंखला}} | ||
1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत | 1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत करते है। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। चूँकि, यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं। | ||
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.--> | <math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.--> | ||
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए | जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए लंबवत है। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> और r कोई सम्मिश्र संख्या है, जिसे किसी ने परिभाषित किया है, | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
(x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\ | (x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\ | ||
| Line 159: | Line 159: | ||
जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक {{math|1=''k'' > ''r''}} शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक {{math|1=''r'' + 1}} शून्येतर पद | जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक {{math|1=''k'' > ''r''}} शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक {{math|1=''r'' + 1}} शून्येतर पद देते हैं। {{mvar|r}}, के अन्य मूल्यों के लिए, श्रृंखला में सामान्यता असीम रूप से कई गैर शून्य शब्द होते हैं। | ||
उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math> | उदाहरण के लिए, {{math|1=''r'' = 1/2}} वर्गमूल के लिए निम्नलिखित श्रृंखला देता है<math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots</math> | ||
| Line 168: | Line 168: | ||
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math> | <math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math> | ||
=== आगे सामान्यीकरण === | === आगे सामान्यीकरण === | ||
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की | सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्ण सममितिक शाखा का उपयोग करके {{math|1=''x'' + ''y''}} और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है | ||
द्विपद प्रमेय का संस्करण निम्नलिखित पोचहैमर प्रतीक के लिए मान्य है, जैसे किसी दिए गए वास्तविक स्थिरांक {{mvar|c}}, के लिए बहुपदों का समूह, <math> x^{(0)} = 1 </math> परिभाषित करता है तथा,<math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math> | |||
के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref> | के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref> | ||
| Line 181: | Line 180: | ||
* <math> p_0(0) = 1 </math>, तथा | * <math> p_0(0) = 1 </math>, तथा | ||
* <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>. | * <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>. | ||
बहुपदों के अंतराल पर ऑपरेटर <math>Q</math> को अनुक्रम का आधार कहा जाता है।<math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है और यदि इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> तो <math> a </math> ऑपरेटर द्वारा शिफ्ट के लिए <math> E^a </math> लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.है | बहुपदों के अंतराल पर ऑपरेटर <math>Q</math> को अनुक्रम का आधार कहा जाता है।<math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है, और यदि इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> तो <math> a </math> ऑपरेटर द्वारा शिफ्ट के लिए <math> E^a </math> लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.है | ||
=== बहुपद प्रमेय === | === बहुपद प्रमेय === | ||
| Line 189: | Line 188: | ||
<math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math> | <math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math> | ||
जहां गैर-ऋणात्मक पूर्णांक सूचकांक {{math|''k''<sub>1</sub>}} से {{math|''k''<sub>''m''</sub>}} के सभी अनुक्रमों | जहां गैर-ऋणात्मक पूर्णांक सूचकांक {{math|''k''<sub>1</sub>}} से {{math|''k''<sub>''m''</sub>}} के सभी अनुक्रमों का योग लिया जाता है, जैसे कि सभी ''{{math|''k''<sub>''i''</sub>}}'' का योग {{mvar|n}} है। विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए {{mvar|n}} गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है | ||
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math> | <math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math> | ||
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> आकार {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}. के असंयुक्त उपसम्मुचय में सम्मुचय {{mvar|n}}-तत्व को विभाजित करने के | संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> आकार {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}. के असंयुक्त उपसम्मुचय में सम्मुचय {{mvar|n}}-तत्व को विभाजित करने के तरीकों की संख्या को दिखाता है। | ||
=== बहु-द्विपद प्रमेय === | === बहु-द्विपद प्रमेय === | ||
अधिक आयामों में कार्य करते समय, द्विपद अभिव्यक्तियों के उत्पादों का प्रयोग करना प्रायः उपयोगी होता | अधिक आयामों में कार्य करते समय, द्विपद अभिव्यक्तियों के उत्पादों का प्रयोग करना प्रायः उपयोगी होता है। द्विपदीय प्रमेय में यह बराबर होता है। | ||
<math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math> | <math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math> | ||
यह अधिक संक्षेप में बहु-सूचकांक संकेतन द्वारा लिखा जा सकता है, जैसे | यह अधिक संक्षेप में बहु-सूचकांक संकेतन द्वारा लिखा जा सकता है, जैसे | ||
| Line 207: | Line 206: | ||
<math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math> | <math display="block">(fg)^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).</math> | ||
यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} किसी फलन के {{mvar|n}}वें व्युत्पन्न को इंगित करता है। यदि एक सेट {{math|1=''f''(''x'') = ''e''{{sup|''ax''}}}} तथा {{math|1=''g''(''x'') = ''e''{{sup|''bx''}}}} और फिर {{math|''e''{{sup|(''a'' + ''b'')''x''}}}} के उभयनिष्ठ गुणनखंड को रद्द कर देता है, तो परिणाम के दोनों पक्षों से, सामान्य द्विपद प्रमेय प्राप्त होता है।<ref>{{cite book |last1=Spivey |first1=Michael Z. |title=द्विपद पहचान सिद्ध करने की कला|date=2019 |publisher=CRC Press |isbn=978-1351215800 |page=71}}</ref> | |||
यहाँ, सुपरस्क्रिप्ट {{math|(''n'')}} किसी फलन के {{mvar|n}}वें व्युत्पन्न को इंगित करता है। यदि | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
| Line 214: | Line 212: | ||
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math> | जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math> | ||
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक (गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या (एनएक्स) और ज्या ( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि | |||
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक(गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या(एनएक्स) और ज्या( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि | |||
<math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math> | <math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math> | ||
डी मोइवर का सूत्र हमें यह बताता है | डी मोइवर का सूत्र हमें यह बताता है | ||
| Line 229: | Line 226: | ||
=== ई के लिए श्रृंखला === | === ई के लिए श्रृंखला === | ||
संख्या {{mvar|e}}(गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है। | संख्या {{mvar|e}} (गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है। | ||
<math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math> | <math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math> | ||
द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से, | द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से, | ||
| Line 237: | Line 234: | ||
जैसा {{math|''n'' → ∞}}, के रूप में, दाईं ओर तर्कसंगत अभिव्यक्ति {{math|1}} तक पहुंचती है, और इसलिए, | जैसा {{math|''n'' → ∞}}, के रूप में, दाईं ओर तर्कसंगत अभिव्यक्ति {{math|1}} तक पहुंचती है, और इसलिए, | ||
<math display="block">\lim_{n\to\infty} {n \choose k}\frac{1}{n^k} = \frac{1}{k!}.</math> | <math display="block">\lim_{n\to\infty} {n \choose k}\frac{1}{n^k} = \frac{1}{k!}.</math> | ||
यह इंगित करता है कि {{mvar|e}} को एक श्रृंखला के रूप में लिखा जा सकता है। | यह इंगित करता है कि {{mvar|e}} को एक श्रृंखला के रूप में लिखा जा सकता है। | ||
<math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है। | <math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है। | ||
=== संभावना === | === संभावना === | ||
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक(गणनीय) संग्रह की प्रायिकता<math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ नहीं | द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक (गणनीय) संग्रह की प्रायिकता <math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ ठीक नहीं है | ||
:<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math> | :<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math> | ||
इस मात्रा के लिए एक ऊपरी सीमा | इस मात्रा के लिए एक ऊपरी सीमा <math> e^{-p|S|}.</math><ref>{{Cite book|title=आधार - सामग्री संकोचन|last1=Cover|first1=Thomas M.|last2=Thomas|first2=Joy A.|date=2001-01-01|publisher=John Wiley & Sons, Inc.|isbn=9780471200611|pages=320|language=en|doi=10.1002/0471200611.ch5}}</ref> है | ||
| Line 254: | Line 250: | ||
द्विपद प्रमेय अधिकांशतया वलय में {{math|''x''}} तथा {{math|''y''}} दो तत्वों के लिए, या समीकारक के लिए, उपयुक्त माना जाता है, बशर्ते कि यह {{math|1=''xy'' = ''yx''}}.के, उदाहरण के लिए, यह दो {{math|''n'' × ''n''}} आव्यूह धारण करता है, बशर्ते कि इस आव्यूह का परिचालन उस आव्यूह के कंप्यूटिंग घातको में उपयोगी होता है।<ref>Artin, ''Algebra'', 2nd edition, Pearson, 2018, equation (4.7.11).</ref> | द्विपद प्रमेय अधिकांशतया वलय में {{math|''x''}} तथा {{math|''y''}} दो तत्वों के लिए, या समीकारक के लिए, उपयुक्त माना जाता है, बशर्ते कि यह {{math|1=''xy'' = ''yx''}}.के, उदाहरण के लिए, यह दो {{math|''n'' × ''n''}} आव्यूह धारण करता है, बशर्ते कि इस आव्यूह का परिचालन उस आव्यूह के कंप्यूटिंग घातको में उपयोगी होता है।<ref>Artin, ''Algebra'', 2nd edition, Pearson, 2018, equation (4.7.11).</ref> | ||
द्विपद प्रमेय को बहुपद अनुक्रम | द्विपद प्रमेय को बहुपद अनुक्रम कर कहा जा सकता है {{math|1={{mset|1, ''x'', ''x''<sup>2</sup>, ''x''<sup>3</sup>, ...}}}}ये द्विपद प्रकार का है। | ||
== लोकप्रिय संस्कृति में == | == लोकप्रिय संस्कृति में == | ||
Revision as of 00:51, 13 December 2022
प्रारंभिक बीजगणित में, द्विपद प्रमेय (या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद (x + y)n को axbyc के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक b + c = n हैं और गुणांक a के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,
axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अधिकांशता n और b के रूप में उच्चारित किया जाता है।
इतिहास
द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।[1][2] इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]
बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।[3]: 230 10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।[4]
हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5]Cite error: Closing </ref> missing for <ref> tag अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया[6] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[6] फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[7] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।[3]: 142
1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[8] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[9] चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[8]
आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[8][10]
कथन
प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव होता है।
अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर (गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है
द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है
उदाहरण
यहाँ द्विपद प्रमेय के पहले कुछ कारक हैं
- पदों में x के घातांक n, n − 1, ..., 2, 1, 0 हैं, अंतिम पद में अंतर्निहित रूप से x0 = 1,
- शब्दों में y के घातांक 0, 1, 2, ..., n − 1, n हैं, पहले पद में स्पष्ट रूप से y0 = 1) सम्मिलित है,
- गुणांक पास्कल के त्रिभुज की nवीं पंक्ति बनाते हैं
- समान पदों के संयोजन से पहले, विस्तार में 2n वाँ पद xiyj नहीं दिखाया गया
- समान पदों के संयोजन के बाद, n + 1 पद होते हैं, और उनके गुणांकों का योग 2n.होता है।
अंतिम दो बिंदुओं को दर्शाने वाला एक उदाहरण
साथ .
y के विशिष्ट धनात्मक मान के साथ एक सरल उदाहरण
ज्यामितीय व्याख्या
a तथा b के सकारात्मक मूल्यों के लिए द्विपद प्रमेय के साथ n = 2 ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा a + b वाले वर्ग को भुजा a वाले वर्ग, भुजा b,वाले वर्ग और भुजाओं a तथा b.वाले दो आयतों में काटा जा सकता है। n = 3 के साथ, प्रमेय कहता है कि भुजा a + b के घन को भुजा a के घन, भुजा b के घन, तीन a × a × b आयताकार बक्से, और तीन a × b × b आयताकार बक्से में काटा जा सकता है।
कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है [12] अगर कोई सम्मुचय करता है तथा b को a में एक अतिसूक्ष्म परिवर्तन के रूप में व्याख्या करना, यह चित्र एक n-आयामी अतिविम के आयतन में अतिसूक्ष्म परिवर्तन को दर्शाता है, जहां रैखिक शब्द का गुणांक (में ) है n फलकों का क्षेत्र, प्रत्येक का आयाम n − 1 है
यदि कोई इस चित्र को समाकलित करता है, जो कलन के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उससे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है - विवरण के लिए कैवलियरी के चतुर्भुज सूत्र का प्रमाण देखें।[12]
द्विपद गुणांक
द्विपद प्रसार में प्रकट होने वाले गुणांक द्विपद गुणांक कहलाते हैं। इन्हें सामान्तया के रूप में लिखा जाता है, n को चुन कर k का उच्चारण किया जाता है।
सूत्र
xn−kyk का गुणांक सूत्र द्वारा दिया गया है
मिश्रित व्याख्या
द्विपद गुणांक की व्याख्या n-तत्व सम्मुचय से k तत्वों को चुनने के तरीकों की संख्या के रूप में की जा सकती है। यह निम्नलिखित कारणों से द्विपदों से संबंधित है, यदि हम (x + y)n को गुणनफल के रूप में लिखते हैं।
फिर, वितरण नियम के अनुसार, गुणनफल के प्रत्येक द्विपद से x या y के प्रत्येक विकल्प के विस्तार में एक शब्द होता है। उदाहरण के लिए, प्रत्येक द्विपद से x को चुनने के संगत केवल एक पद xn होता है। चूँकि , xn−2y2, के रूप में कई पद होते है, y.का योगदान करने के लिए ठीक दो द्विपदों को चुनने के प्रत्येक तरीके के लिए हैं। इसलिए, समान पदों के संयोजन के बाद, का गुणांक xn−2y2 n-तत्व सम्मुचय से ठीक 2 तत्वों को चुनने के तरीकों की संख्या के बराबर होता है।
प्रमाण
संयोजन प्रमाण
उदाहरण
का गुणांक xy2 में
जहां प्रत्येक उपसमुच्चय संबंधित श्रृंखला में y की स्थिति निर्दिष्ट करता है।
सामान्य स्थिति
(x + y)n का विस्तार करने पर e1e2 ... en के रूप में 2n उत्पादों का योग प्राप्त होता है, जहां प्रत्येक ei, x या y है, पुनर्व्यवस्थित करने वाले कारकों से पता चलता है कि प्रत्येक उत्पाद 0 तथा n के बीच कुछ k के लिए xn−kyk के बराबर होते है।
- प्रतियों की संख्या xn−kyk के विस्तार में है।
- बिल्कुल k स्थितियों में y वाले n-वर्ण x,y तार की संख्या में होते है।
- {1, 2, ..., n} k-तत्व सबसम्मुचय की संख्या है।
- या तो परिभाषा के अनुसार, या एक छोटे संयोजक के तर्क से अगर कोई जैसा को परिभाषित करता है।
आगमनात्मक प्रमाण
गणितीय आगमन द्विपद प्रमेय का एक और प्रमाण देता है। जब n = 0, दोनों पक्ष 1 के बराबर होते हैं, क्योंकि x0 = 1 तथा है। अब मान लीजिए कि दिए गए n, के लिए समानता लागू होती है, हम इसे n + 1. के लिये सिद्ध करते है। और j, k ≥ 0, के लिए [f(x, y)]j,k के गुणांक को निरूपित करते है xjyk बहुपद f(x, y).में। आगमनात्मक परिकल्पना के अनुसार, (x + y)n, x और y में एक बहुपद है जैसे कि [(x + y)n]j,k है यदि j + k = n, तथा 0 अन्यथा इकाई में,
सामान्यीकरण
न्यूटन का सामान्यीकृत द्विपद प्रमेय
1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत करते है। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। चूँकि, यादृच्छिक संख्या r, के लिए परिभाषित कर सकते हैं।
जब r एक गैर-ऋणात्मक पूर्णांक, के लिए द्विपद गुणांक k > r शून्य हैं, इसलिए यह समीकरण सामान्य द्विपद प्रमेय तक कम हो जाता है, और अधिक से अधिक r + 1 शून्येतर पद देते हैं। r, के अन्य मूल्यों के लिए, श्रृंखला में सामान्यता असीम रूप से कई गैर शून्य शब्द होते हैं।
उदाहरण के लिए, r = 1/2 वर्गमूल के लिए निम्नलिखित श्रृंखला देता है
आगे सामान्यीकरण
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां x तथा y जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से |x| > |y|[Note 1]मान लेना चाहिए और x पर केंद्रित त्रिज्या |x| की एक खुली डिस्क पर परिभाषित लॉग की पूर्ण सममितिक शाखा का उपयोग करके x + y और x की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों x तथा y के लिए मान्य है जब तक कि xy = yx, और x व्युत्क्रमणीय है, और ||y/x|| < 1.है
द्विपद प्रमेय का संस्करण निम्नलिखित पोचहैमर प्रतीक के लिए मान्य है, जैसे किसी दिए गए वास्तविक स्थिरांक c, के लिए बहुपदों का समूह, परिभाषित करता है तथा,
के लिये फिर[14]
सामान्यतः, बहुपदों के अनुक्रम को द्विपद का प्रकार कहा जाता है यदि
- सभी के लिए ,
- , तथा
- सभी के लिए , , तथा .
बहुपदों के अंतराल पर ऑपरेटर को अनुक्रम का आधार कहा जाता है। यदि तथा सभी के लिए . एक क्रम द्विपद है, और यदि इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।[15] तो ऑपरेटर द्वारा शिफ्ट के लिए लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं के लिये , के लिए सामान्य व्युत्पन्न , और आगे का अंतर के लिये .है
बहुपद प्रमेय
द्विपद प्रमेय को दो से अधिक शब्दों वाली राशियों की घातो को सम्मिलित करने के लिए सामान्यीकृत किया जाता है। सामान्य संस्करण है
बहु-द्विपद प्रमेय
अधिक आयामों में कार्य करते समय, द्विपद अभिव्यक्तियों के उत्पादों का प्रयोग करना प्रायः उपयोगी होता है। द्विपदीय प्रमेय में यह बराबर होता है।
जनरल लीबनिज नियम
सामान्य लीबनिज़ नियम द्विपद प्रमेय के समान रूप में दो कार्यों के उत्पाद का nवां व्युत्पन्न होता है।[16]
यहाँ, सुपरस्क्रिप्ट (n) किसी फलन के nवें व्युत्पन्न को इंगित करता है। यदि एक सेट f(x) = eax तथा g(x) = ebx और फिर e(a + b)x के उभयनिष्ठ गुणनखंड को रद्द कर देता है, तो परिणाम के दोनों पक्षों से, सामान्य द्विपद प्रमेय प्राप्त होता है।[17]
अनुप्रयोग
बहु-कोण पहचान
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक (गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या (एनएक्स) और ज्या ( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि
ई के लिए श्रृंखला
संख्या e (गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है।
इस योग का kवाँ पद है।
यह इंगित करता है कि e को एक श्रृंखला के रूप में लिखा जा सकता है।
संभावना
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक (गणनीय) संग्रह की प्रायिकता सफलता की संभावना के साथ सब कुछ ठीक नहीं है
इस मात्रा के लिए एक ऊपरी सीमा [18] है
अमूर्त बीजगणित में
द्विपद प्रमेय अधिकांशतया वलय में x तथा y दो तत्वों के लिए, या समीकारक के लिए, उपयुक्त माना जाता है, बशर्ते कि यह xy = yx.के, उदाहरण के लिए, यह दो n × n आव्यूह धारण करता है, बशर्ते कि इस आव्यूह का परिचालन उस आव्यूह के कंप्यूटिंग घातको में उपयोगी होता है।[19]
द्विपद प्रमेय को बहुपद अनुक्रम कर कहा जा सकता है {1, x, x2, x3, ...}ये द्विपद प्रकार का है।
लोकप्रिय संस्कृति में
- कॉमिक ओपेरा द पाइरेट्स ऑफ पेन्जेंस में मेजर-जनरल के गाने में द्विपद प्रमेय का उल्लेख किया गया है।
- शर्लक होम्स द्वारा प्रोफेसर मोरियार्टी का वर्णन द्विपद प्रमेय पर एक आलेख लिखने के रूप में वर्णित किया गया है।
- पुर्तगाली कवि फर्नांडो पेसोआ ने अल्वारो डी कैम्पोस के विषम नाम का उपयोग करते हुए लिखा है कि न्यूटन का द्विपद वीनस डी मिलो जितना सुंदर है। सच तो यह है कि कम ही लोग इस पर प्रतिक्रिया करते हैं। [20]
- 2014 की फिल्म द इमिटेशन गेम में, एलन ट्यूरिंग ने बैलेचले पार्क में कमांडर डेनिस्टन के साथ अपनी पहली मुलाकात के दौरान द्विपद प्रमेय पर आइजैक न्यूटन के काम का संदर्भ दिया।
यह भी देखें
- द्विपद सन्निकटन
- द्विपद वितरण
- द्विपद व्युत्क्रम प्रमेय
- स्टर्लिंग का अनुमान
- चर्म शोधन प्रमेय
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 Weisstein, Eric W. "द्विपद प्रमेय". Wolfram MathWorld.
- ↑ 2.0 2.1 2.2 2.3 Coolidge, J. L. (1949). "द्विपद प्रमेय की कहानी". The American Mathematical Monthly. 56 (3): 147–157. doi:10.2307/2305028. JSTOR 2305028.
- ↑ 3.0 3.1 3.2 Jean-Claude Martzloff; S.S. Wilson; J. Gernet; J. Dhombres (1987). चीनी गणित का इतिहास. Springer.
- ↑ 4.0 4.1 Biggs, N. L. (1979). "कॉम्बिनेटरिक्स की जड़ें". Historia Math. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0.
- ↑ "द्विपद प्रमेय: मध्यकालीन इस्लामी गणित में एक व्यापक अवधारणा" (PDF). core.ac.uk. p. 401. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-01-08.
- ↑ 6.0 6.1 O'Connor, John J.; Robertson, Edmund F., "Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji", MacTutor History of Mathematics archive, University of St Andrews
- ↑ Landau, James A. (1999-05-08). "हिस्टोरिया मैटमैटिका मेलिंग लिस्ट आर्काइव: पुन: [एचएम] पास्कल का त्रिभुज" (mailing list email). Archives of Historia Matematica. Retrieved 2007-04-13.
- ↑ 8.0 8.1 8.2 Kline, Morris (1972). गणितीय सोच का इतिहास. Oxford University Press. p. 273.
- ↑ Katz, Victor (2009). "14.3: Elementary Probability". गणित का इतिहास: एक परिचय. Addison-Wesley. p. 491. ISBN 978-0-321-38700-4.
- ↑ Bourbaki, N. (18 November 1998). गणित पेपरबैक के इतिहास के तत्व. J. Meldrum (Translator). ISBN 978-3-540-64767-6.
- ↑ भौतिकविदों के लिए गणितीय तरीके. 2013. p. 34. doi:10.1016/c2009-0-30629-7. ISBN 9780123846549.
- ↑ 12.0 12.1 Barth, Nils R. (2004). "एन-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना". The American Mathematical Monthly. 111 (9): 811–813. doi:10.2307/4145193. ISSN 0002-9890. JSTOR 4145193.
- ↑ Binomial theorem – inductive proofs Archived February 24, 2015, at the Wayback Machine
- ↑ Sokolowsky, Dan; Rennie, Basil C. (February 1979). "समस्या 352". Crux Mathematicorum. 5 (2): 55–56.
- ↑ Aigner, Martin (1997) [Reprint of the 1979 Edition]. संयोजन सिद्धांत. Springer. p. 105. ISBN 3-540-61787-6.
- ↑ Olver, Peter J. (2000). झूठ समूहों के विभेदक समीकरणों के अनुप्रयोग. Springer. pp. 318–319. ISBN 9780387950006.
- ↑ Spivey, Michael Z. (2019). द्विपद पहचान सिद्ध करने की कला. CRC Press. p. 71. ISBN 978-1351215800.
- ↑ Cover, Thomas M.; Thomas, Joy A. (2001-01-01). आधार - सामग्री संकोचन (in English). John Wiley & Sons, Inc. p. 320. doi:10.1002/0471200611.ch5. ISBN 9780471200611.
- ↑ Artin, Algebra, 2nd edition, Pearson, 2018, equation (4.7.11).
- ↑ "पेसोआ पुरालेख: संपादित कार्य - न्यूटन का द्विपद वीनस डी मिलो जितना सुंदर है।". arquivopessoa.net.
अग्रिम पठन
- Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci. 1 (1): 68–74.
- Graham, Ronald; Knuth, Donald; Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153–256. ISBN 978-0-201-55802-9. OCLC 17649857.
इस पेज में लापता आंतरिक लिंक की सूची
बाहरी संबंध
- Solomentsev, E.D. (2001) [1994], "Newton binomial", Encyclopedia of Mathematics, EMS Press
- Binomial Theorem by Stephen Wolfram, and "Binomial Theorem(Step-by-Step)" by Bruce Colletti and Jeff Bryant, Wolfram Demonstrations Project, 2007.
- This article incorporates material from inductive proof of binomial theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.