द्विपद प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
</math>
</math>
|caption=The [[binomial coefficient]] <math>\tbinom{n}{k}</math> appears as the {{mvar|k}}th entry in the {{mvar|n}}th row of [[Pascal's triangle]] (counting starts at {{math|0}}). Each entry is the sum of the two above it.}}
|caption=The [[binomial coefficient]] <math>\tbinom{n}{k}</math> appears as the {{mvar|k}}th entry in the {{mvar|n}}th row of [[Pascal's triangle]] (counting starts at {{math|0}}). Each entry is the sum of the two above it.}}
प्रारंभिक बीजगणित में, द्विपद प्रमेय या द्विपद विस्तार एक द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद {{math|(''x'' + ''y'')<sup>''n''</sup>}} को {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के रूप में पद वाले योग से विस्तारित करना संभव है, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ गैर-ऋणात्मक पूर्णांक  {{math|1=''b'' + ''c'' = ''n''}} हैं और गुणांक {{mvar|a}} प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो {{mvar|n}} और {{mvar|b}} पर निर्भर करता है। तथा उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>
प्रारंभिक बीजगणित में, द्विपद प्रमेय (या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद {{math|(''x'' + ''y'')<sup>''n''</sup>}} को {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ गैर-ऋणात्मक पूर्णांक  {{math|1=''b'' + ''c'' = ''n''}} हैं और गुणांक {{mvar|a}} के प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो {{mvar|n}} और {{mvar|b}} पर निर्भर करता है। तथा उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>


 
{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math>उन  तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अक्सर {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।
{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जा सकता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math>उन  तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अक्सर {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।


== इतिहास ==
== इतिहास ==
Line 158: Line 157:
{{Main|द्विपद श्रृंखला}}
{{Main|द्विपद श्रृंखला}}


1665 के आसपास, आइजैक न्यूटन ने गैर-नकारात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। हालाँकि, एक  यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं।
1665 के आसपास, आइजैक न्यूटन ने गैर-ऋणात्मक पूर्णांकों के अलावा अन्य वास्तविक घातांकों की अनुमति देने के लिए द्विपद प्रमेय को सामान्यीकृत किया। वही सामान्यीकरण सम्मिश्र संख्या के घातांकों पर भी लागू होता है। इस सामान्यीकरण में, परिमित योग को एक अनंत श्रृंखला से बदल दिया जाता है। ऐसा करने के लिए, किसी यादृच्छिक ऊपरी सूचकांक के साथ द्विपद गुणांकों को अर्थ देने की आवश्यकता होती है, जो भाज्य के साथ सामान्य सूत्र का उपयोग करके नहीं किया जा सकता है। हालाँकि, एक  यादृच्छिक संख्या {{mvar|r}}, के लिए परिभाषित कर सकते हैं।
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.-->
<math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(r−k)!}. Please do not change it.-->
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए खड़ा है। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> और r कोई सम्मिश्र संख्या है, जिसे किसी ने परिभाषित किया है,
जहाँ पे <math>(\cdot)_k</math> पोचहैमर प्रतीक है, यह गिरते हुए क्रमगुणित के लिए खड़ा है। यह सामान्य परिभाषाओं से सहमत है जब {{mvar|r}} एक गैर-ऋणात्मक पूर्णांक है। तो यदि {{mvar|x}} तथा {{mvar|y}} के साथ वास्तविक संख्याएँ {{math|{{abs|''x''}} > {{abs|''y''}}}} हैं<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> और r कोई सम्मिश्र संख्या है, जिसे किसी ने परिभाषित किया है,
Line 177: Line 176:
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
=== आगे सामान्यीकरण ===
=== आगे सामान्यीकरण ===
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्णसममितिक शाखा का उपयोग करके  {{math|1=''x'' + ''y''}}  और {{mvar|x}} की घातो को परिभाषित करता है।  '''. सामान्यीकृत द्विपद प्रमेय तत्वों के लिए भी मान्य है {{mvar|x}} तथा {{mvar|y}} एक Banach बीजगणित के रूप में लंबे समय तक {{math|1=''xy'' = ''yx''}}, तथा {{mvar|x}} उलटा है, और {{math|{{norm|''y''/''x''}} < 1}}.'''
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्णसममितिक शाखा का उपयोग करके  {{math|1=''x'' + ''y''}}  और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है


द्विपद प्रमेय का एक संस्करण निम्नलिखित पोचहैमर प्रतीक के लिए मान्य है, जैसे किसी दिए गए वास्तविक स्थिरांक {{mvar|c}}, के लिए बहुपदों का परिवार, परिभाषित करें <math> x^{(0)} = 1 </math> तथा<math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math>


 


द्विपद प्रमेय का एक संस्करण बहुपदों के निम्नलिखित पोचहैमर प्रतीक-जैसे परिवार के लिए मान्य है: किसी दिए गए वास्तविक स्थिरांक के लिए {{mvar|c}}, परिभाषित करना <math> x^{(0)} = 1 </math> तथा
<math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math>
के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref>
के लिये <math> n > 0.</math> फिर<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=समस्या 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=February 1979 | pages=55–56}}</ref>
<math display="block"> (a + b)^{(n)} = \sum_{k=0}^{n}\binom{n}{k}a^{(n-k)}b^{(k)}.</math>
<math display="block"> (a + b)^{(n)} = \sum_{k=0}^{n}\binom{n}{k}a^{(n-k)}b^{(k)}.</math>
मुकदमा {{math|1=''c'' = 0}} सामान्य द्विपद प्रमेय को पुनर्प्राप्त करता है।
स्थिति {{math|1=''c'' = 0}} सामान्य द्विपदीय प्रमेय को पुनर्प्राप्त करता है।


अधिक सामान्यतः, एक अनुक्रम <math>\{p_n\}_{n=0}^\infty</math> बहुपद को द्विपद प्रकार का कहा जाता है यदि
सामान्यतः, बहुपदों के अनुक्रम <math>\{p_n\}_{n=0}^\infty</math> को द्विपद का प्रकार कहा जाता है यदि
* <math> \deg p_n = n </math> सभी के लिए <math>n</math>,
* <math> \deg p_n = n </math> सभी के लिए <math>n</math>,
* <math> p_0(0) = 1 </math>, तथा
* <math> p_0(0) = 1 </math>, तथा
* <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>.
* <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> सभी के लिए <math>x</math>, <math>y</math>, तथा <math>n</math>.
एक संचालिका <math>Q</math> बहुपदों के स्थान पर अनुक्रम का आधार संचालक कहा जाता है <math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है अगर और केवल अगर इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> लिख रहे हैं <math> E^a </math> शिफ्ट के लिए <math> a </math> ऑपरेटर, बहुपदों के उपरोक्त पोचममेर परिवारों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.
बहुपदों के अंतराल पर ऑपरेटर <math>Q</math> को अनुक्रम का आधार कहा जाता है।<math>\{p_n\}_{n=0}^\infty</math> यदि <math>Qp_0 = 0</math> तथा <math> Q p_n = n p_{n-1} </math> सभी के लिए <math> n \geqslant 1 </math>. एक क्रम <math>\{p_n\}_{n=0}^\infty</math> द्विपद है और अगर इसका आधार ऑपरेटर डेल्टा ऑपरेटर है।<ref>{{cite book |last1=Aigner |first1=Martin |title=संयोजन सिद्धांत|url=https://archive.org/details/combinatorialthe00aign_975 |url-access=limited |orig-date=Reprint of the 1979 Edition |date=1997 |publisher=Springer |isbn=3-540-61787-6 |page=[https://archive.org/details/combinatorialthe00aign_975/page/n112 105]}}</ref> तो <math> a </math> ऑपरेटर द्वारा शिफ्ट के लिए <math> E^a </math> लिखना, उपरोक्त, पौचहैमर समूहों के अनुरूप डेल्टा ऑपरेटर पिछड़े अंतर हैं <math> I - E^{-c} </math> के लिये <math> c>0 </math>, के लिए सामान्य व्युत्पन्न <math> c=0 </math>, और आगे का अंतर <math> E^{-c} - I </math> के लिये <math> c<0 </math>.है


=== बहुपद प्रमेय ===
=== बहुपद प्रमेय ===
{{Main|Multinomial theorem}}
{{Main|बहुपद प्रमेय}}
द्विपद प्रमेय को दो से अधिक शब्दों वाली राशियों की शक्तियों को शामिल करने के लिए सामान्यीकृत किया जा सकता है। सामान्य संस्करण है
 
द्विपद प्रमेय को दो से अधिक शब्दों वाली राशियों की घातो को सम्मिलित करने के लिए सामान्यीकृत किया जाता है। सामान्य संस्करण है


<math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math>
<math display="block">(x_1 + x_2 + \cdots + x_m)^n = \sum_{k_1+k_2+\cdots +k_m = n} \binom{n}{k_1, k_2, \ldots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}, </math>
जहां गैर-नकारात्मक पूर्णांक सूचकांकों के सभी अनुक्रमों का योग लिया जाता है {{math|''k''<sub>1</sub>}} के माध्यम से {{math|''k''<sub>''m''</sub>}} ऐसा कि सभी का योग {{math|''k''<sub>''i''</sub>}} है{{mvar|n}}. (विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए{{mvar|n}}). गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है
जहां गैर-ऋणात्मक पूर्णांक सूचकांक {{math|''k''<sub>1</sub>}} से {{math|''k''<sub>''m''</sub>}} के सभी अनुक्रमों पर योग लिया जाता है, जैसे कि सभी ''{{math|''k''<sub>''i''</sub>}}'' का योग {{mvar|n}} है। विस्तार में प्रत्येक पद के लिए, घातांकों को जोड़ना चाहिए {{mvar|n}} गुणांक <math> \tbinom{n}{k_1,\cdots,k_m} </math> बहुपद गुणांक के रूप में जाना जाता है, और सूत्र द्वारा गणना की जा सकती है
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math>
<math display="block"> \binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdots k_m!}.</math>
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> एक सम्मुचय के विभाजन के विभिन्न तरीकों की संख्या की गणना करता है {{mvar|n}}-तत्व आकार के सबसम्मुचय को डिसजॉइंट सम्मुचय में सम्मुचय करता है {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}.
संयुक्त रूप से, बहुपद गुणांक <math>\tbinom{n}{k_1,\cdots,k_m}</math> एक सम्मुचय के विभाजन के विभिन्न तरीकों की '''संख्या की गणना करता है {{mvar|n}}-तत्व आकार के सबसम्मुचय को असंबद्ध सम्मुचय में सम्मुचय करता है {{math|1=''k''<sub>1</sub>, ..., ''k''<sub>''m''</sub>}}.'''
 
'''किसी n-तत्व सबसम्मुचय को आकार के असंयुक्त सबसेट में विभाजित करने के विभिन्न तरीकों की संख्या की गणना करता है'''


=== {{anchor|multi-binomial}} बहु-द्विपद प्रमेय ===
=== बहु-द्विपद प्रमेय ===
अधिक आयामों में कार्य करते समय, द्विपद व्यंजकों के गुणनफलों से निपटना अक्सर उपयोगी होता है। द्विपद प्रमेय द्वारा यह बराबर है
अधिक आयामों में कार्य करते समय, द्विपद व्यंजकों के गुणनफलों से निपटना अक्सर उपयोगी होता है। द्विपद प्रमेय द्वारा यह बराबर है
<math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math>
<math display="block"> (x_1+y_1)^{n_1}\dotsm(x_d+y_d)^{n_d} = \sum_{k_1=0}^{n_1}\dotsm\sum_{k_d=0}^{n_d} \binom{n_1}{k_1} x_1^{k_1}y_1^{n_1-k_1} \dotsc \binom{n_d}{k_d} x_d^{k_d}y_d^{n_d-k_d}. </math>

Revision as of 00:13, 10 December 2022

The binomial coefficient appears as the kth entry in the nth row of Pascal's triangle (counting starts at 0). Each entry is the sum of the two above it.

प्रारंभिक बीजगणित में, द्विपद प्रमेय (या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद (x + y)n को axbyc के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक b + c = n हैं और गुणांक a के प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,

axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अक्सर n और b के रूप में उच्चारित किया जाता है।

इतिहास

द्विपद प्रमेय के विशेष मामले कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थे जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष मामले का उल्लेख किया था।.[1][2] इस बात के सबूत हैं कि घनफल के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]

बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस मिश्रित समस्या का सबसे पहला ज्ञात संदर्भ भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र (सी. 200 ई.पू.) है, जिसमें इसके समाधान के लिए एक विधि सम्मिलित है।[3]: 230  10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जा सकता है।[4]

हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5]Cite error: Closing </ref> missing for <ref> tag अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय पैटर्न का वर्णन किया[6] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[6] फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य बर्बाद हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[7] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के बहुत पहले के पाठ को दिया है, हालांकि अब वे लेख भी खो गए हैं।[3]: 142 

1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[8] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[9] हालांकि, संख्याओं का पैटर्न पहले से ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[8]

आइजैक न्यूटन को आम तौर पर सामान्यीकृत द्विपद प्रमेय का श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[8][10]

कथन

प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव है

जहाँ पे एक पूर्णांक है और प्रत्येक एक सकारात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब एक घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अक्सर शब्द से हटा दिया जाता है। इसलिए अक्सर दाहिने हाथ की ओर लिखा हुआ दिखाई देता है .) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। संकलन अंकन पद्धति का उपयोग कर के इसे इस रूप में लिखा जाता है।
अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार है कि सूत्र में द्विपद गुणकों का क्रम सममित होता है। प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का एक सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर (गणित) शामिल हो। इस रूप में, सूत्र पढ़ता है

द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, ताकि इसमें केवल एक चर सम्मिलित कर के, इसे सूत्र के रूप में सूत्र पढ़ा जा सके

या समकक्ष
या अधिक स्पष्ट रूप से[11]


उदाहरण

यहाँ द्विपद प्रमेय के पहले कुछ मामले हैं