द्विपद प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 14: Line 14:
\end{array}
\end{array}
</math>
</math>
|caption=द्विपद गुणांक(एनके) पास्कल के त्रिभुज की nवीं पंक्ति में केवें प्रविष्टि के रूप में प्रतीत होता है, गिनती 0 से शुरू होती है। प्रत्येक प्रविष्टि इसके ऊपर दो का योग होता है।}}
|caption=द्विपद गुणांक(एनके) पास्कल के त्रिभुज की nवीं पंक्ति में प्रविष्टि के रूप में प्रतीत होता है, गिनती 0 से शुरू होती है। प्रत्येक प्रविष्टि इसके ऊपर दो का योग होता है।}}
प्रारंभिक बीजगणित में, द्विपद प्रमेय (या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद {{math|(''x'' + ''y'')<sup>''n''</sup>}} को {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ गैर-ऋणात्मक पूर्णांक {{math|1=''b'' + ''c'' = ''n''}} हैं और गुणांक {{mvar|a}} के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो {{mvar|n}} और {{mvar|b}} पर निर्भर करता है। तथा उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>
प्रारंभिक बीजगणित में, द्विपद प्रमेय(या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद {{math|(''x'' + ''y'')<sup>''n''</sup>}} को {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ गैर-ऋणात्मक पूर्णांक {{math|1=''b'' + ''c'' = ''n''}} हैं और गुणांक {{mvar|a}} के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो {{mvar|n}} और {{mvar|b}} पर निर्भर करता है। तथा उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>


{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math> उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अधिकांशता {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।
{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math> उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अधिकांशता {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।
Line 22: Line 22:
द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक {{math|2}} के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।<ref name=wolfram>{{cite web| url=http://mathworld.wolfram.com/BinomialTheorem.html|title=द्विपद प्रमेय|website=Wolfram MathWorld|last=Weisstein|first=Eric W.}}</ref><ref name="Coolidge">{{cite journal|title=द्विपद प्रमेय की कहानी|first=J. L.|last=Coolidge|journal=The American Mathematical Monthly| volume=56| issue=3|date=1949|pages=147–157|doi=10.2307/2305028|jstor = 2305028}}</ref> इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।<ref name=wolfram /><ref name="Coolidge" />
द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक {{math|2}} के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।<ref name=wolfram>{{cite web| url=http://mathworld.wolfram.com/BinomialTheorem.html|title=द्विपद प्रमेय|website=Wolfram MathWorld|last=Weisstein|first=Eric W.}}</ref><ref name="Coolidge">{{cite journal|title=द्विपद प्रमेय की कहानी|first=J. L.|last=Coolidge|journal=The American Mathematical Monthly| volume=56| issue=3|date=1949|pages=147–157|doi=10.2307/2305028|jstor = 2305028}}</ref> इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।<ref name=wolfram /><ref name="Coolidge" />


बिना प्रतिस्थापन के {{mvar|n}} में {{mvar|k}} वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।<ref name=Chinese>{{cite book|title=चीनी गणित का इतिहास|author1=Jean-Claude Martzloff|author2=S.S. Wilson|author3=J. Gernet|author4=J. Dhombres|publisher=Springer| year=1987}}</ref>{{rp|230}} 10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।<ref name=Chinese /> छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए <math display="inline">\frac{n!}{(n-k)!k!}</math>,<ref name="Biggs">{{cite journal|last=Biggs|first=N. L.|title=कॉम्बिनेटरिक्स की जड़ें| journal=Historia Math.|volume=6|date=1979|issue=2|pages=109–136|doi=10.1016/0315-0860(79)90074-0|doi-access=free}}</ref> और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।<ref name="Biggs" />
बिना प्रतिस्थापन के {{mvar|n}} में {{mvar|k}} वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।<ref name=Chinese>{{cite book|title=चीनी गणित का इतिहास|author1=Jean-Claude Martzloff|author2=S.S. Wilson|author3=J. Gernet|author4=J. Dhombres|publisher=Springer| year=1987}}</ref>{{rp|230}} 10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।<ref name=Chinese /> छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ अनुमानतः यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए <math display="inline">\frac{n!}{(n-k)!k!}</math>,<ref name="Biggs">{{cite journal|last=Biggs|first=N. L.|title=कॉम्बिनेटरिक्स की जड़ें| journal=Historia Math.|volume=6|date=1979|issue=2|pages=109–136|doi=10.1016/0315-0860(79)90074-0|doi-access=free}}</ref> और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।<ref name="Biggs" />


हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।<ref>{{Cite web|url=https://core.ac.uk/download/pdf/82000184.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://core.ac.uk/download/pdf/82000184.pdf |archive-date=2022-10-09 |url-status=live|website=core.ac.uk|access-date=2019-01-08|title=द्विपद प्रमेय: मध्यकालीन इस्लामी गणित में एक व्यापक अवधारणा|page=401}}</ref><ref>{{Cite journal|title=अज्ञात को वश में करना। पुरातनता से बीसवीं सदी की शुरुआत तक बीजगणित का इतिहास|url=https://www.ams.org/journals/bull/2015-52-04/S0273-0979-2015-01491-6/S0273-0979-2015-01491-6.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.ams.org/journals/bull/2015-52-04/S0273-0979-2015-01491-6/S0273-0979-2015-01491-6.pdf |archive-date=2022-10-09 |url-status=live|journal=Bulletin of the American Mathematical Society|page=727|quote=हालांकि, बीजगणित अन्य मामलों में उन्नत हुआ। लगभग 1000, अल-काराजी ने द्विपद प्रमेय को बताया}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=vSkClSvU_9AC&pg=PA62|title=अरबी गणित का विकास: अंकगणित और बीजगणित के बीच|last=Rashed|first=R.|date=1994-06-30|publisher=Springer Science & Business Media|isbn=9780792325659|language=en|page=63}}</ref> अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया<ref name=Karaji>{{MacTutor|id=Al-Karaji|title=Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji}}</ref> और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।<ref name=Karaji /> फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।<ref name="Coolidge" /> 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे<ref>{{cite web | last = Landau | first = James A. | title =हिस्टोरिया मैटमैटिका मेलिंग लिस्ट आर्काइव: पुन: [एचएम] पास्कल का त्रिभुज| work = Archives of Historia Matematica | format = mailing list email | access-date = 2007-04-13 | date = 1999-05-08 | url = http://archives.math.utk.edu/hypermail/historia/may99/0073.html }}</ref> और चू शिह-चीह भी।<ref name="Coolidge" /> यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।<ref name=Chinese />{{rp|142}}
हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।<ref>{{Cite web|url=https://core.ac.uk/download/pdf/82000184.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://core.ac.uk/download/pdf/82000184.pdf |archive-date=2022-10-09 |url-status=live|website=core.ac.uk|access-date=2019-01-08|title=द्विपद प्रमेय: मध्यकालीन इस्लामी गणित में एक व्यापक अवधारणा|page=401}}</ref><ref>{{Cite journal|title=अज्ञात को वश में करना। पुरातनता से बीसवीं सदी की शुरुआत तक बीजगणित का इतिहास|url=https://www.ams.org/journals/bull/2015-52-04/S0273-0979-2015-01491-6/S0273-0979-2015-01491-6.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.ams.org/journals/bull/2015-52-04/S0273-0979-2015-01491-6/S0273-0979-2015-01491-6.pdf |archive-date=2022-10-09 |url-status=live|journal=Bulletin of the American Mathematical Society|page=727|quote=हालांकि, बीजगणित अन्य मामलों में उन्नत हुआ। लगभग 1000, अल-काराजी ने द्विपद प्रमेय को बताया}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=vSkClSvU_9AC&pg=PA62|title=अरबी गणित का विकास: अंकगणित और बीजगणित के बीच|last=Rashed|first=R.|date=1994-06-30|publisher=Springer Science & Business Media|isbn=9780792325659|language=en|page=63}}</ref> अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया<ref name=Karaji>{{MacTutor|id=Al-Karaji|title=Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji}}</ref> और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।<ref name=Karaji /> फारसी कवि और गणितज्ञ उमर खय्याम अनुमानतः उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।<ref name="Coolidge" /> 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे<ref>{{cite web | last = Landau | first = James A. | title =हिस्टोरिया मैटमैटिका मेलिंग लिस्ट आर्काइव: पुन: [एचएम] पास्कल का त्रिभुज| work = Archives of Historia Matematica | format = mailing list email | access-date = 2007-04-13 | date = 1999-05-08 | url = http://archives.math.utk.edu/hypermail/historia/may99/0073.html }}</ref> और चू शिह-चीह भी।<ref name="Coolidge" /> यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।<ref name=Chinese />{{rp|142}}


1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए <math>(1+a)^n</math> के अनुसार <math>(1+a)^{n-1}</math>पास्कल के त्रिकोण के माध्यम से।<ref name="Kline">{{cite book|title=गणितीय सोच का इतिहास|first=Morris| last=Kline| author-link=Morris Kline|page=273|publisher=Oxford University Press|year=1972}}</ref> ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।<ref>{{Cite book|last=Katz|first=Victor|title=गणित का इतिहास: एक परिचय|publisher=Addison-Wesley|year=2009|isbn=978-0-321-38700-4|pages=491|chapter=14.3: Elementary Probability}}</ref> चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।<ref name="Kline" />
1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए <math>(1+a)^n</math> के अनुसार <math>(1+a)^{n-1}</math>पास्कल के त्रिकोण के माध्यम से।<ref name="Kline">{{cite book|title=गणितीय सोच का इतिहास|first=Morris| last=Kline| author-link=Morris Kline|page=273|publisher=Oxford University Press|year=1972}}</ref> ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।<ref>{{Cite book|last=Katz|first=Victor|title=गणित का इतिहास: एक परिचय|publisher=Addison-Wesley|year=2009|isbn=978-0-321-38700-4|pages=491|chapter=14.3: Elementary Probability}}</ref> चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।<ref name="Kline" />
Line 30: Line 30:
आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।<ref name="Kline" /><ref>{{cite book| title=गणित पेपरबैक के इतिहास के तत्व|date=18 November 1998|first=N.|last=Bourbaki|others=J. Meldrum (Translator)|isbn=978-3-540-64767-6|url-access=registration|url=https://archive.org/details/elementsofhistor0000bour}}</ref>
आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।<ref name="Kline" /><ref>{{cite book| title=गणित पेपरबैक के इतिहास के तत्व|date=18 November 1998|first=N.|last=Bourbaki|others=J. Meldrum (Translator)|isbn=978-3-540-64767-6|url-access=registration|url=https://archive.org/details/elementsofhistor0000bour}}</ref>


[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Articles with short description]]
 
[[Category:Collapse templates]]
 
[[Category:Created On 29/11/2022]]
 
[[Category:Machine Translated Page]]
 
[[Category:Navigational boxes| ]]
 
[[Category:Navigational boxes without horizontal lists]]
 
[[Category:Pages with empty portal template]]
 
[[Category:Pages with reference errors]]
 
[[Category:Pages with script errors]]
 


== कथन ==
== कथन ==
Line 47: Line 47:




अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब {{mvar|x}} तथा {{mvar|y}} की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है {{math|1}} के लिये {{mvar|y}}, ताकि इसमें केवल एक चर (गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है  
अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब {{mvar|x}} तथा {{mvar|y}} की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन(बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है {{math|1}} के लिये {{mvar|y}}, ताकि इसमें केवल एक चर(गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है  


द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है  
द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है  
Line 98: Line 98:


=== ज्यामितीय व्याख्या ===
=== ज्यामितीय व्याख्या ===
[[File:binomial_theorem_visualisation.svg|thumb|300px|चौथी शक्ति तक द्विपद विस्तार का दृश्य]]{{mvar|a}} तथा {{mvar|b}} के सकारात्मक मूल्यों के लिए द्विपद प्रमेय के साथ {{math|1=''n'' = 2}} ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा {{math|''a'' + ''b''}} वाले वर्ग को भुजा {{mvar|a}} वाले वर्ग, भुजा {{mvar|b}},वाले वर्ग और भुजाओं {{mvar|a}} तथा {{mvar|b}}.वाले दो आयतों में काटा जा सकता है। {{math|1=''n'' = 3}} के साथ, प्रमेय कहता है कि भुजा {{math|''a'' + ''b''}} के घन को भुजा {{mvar|a}} के घन, भुजा {{mvar|b}} के घन, तीन  {{math|''a'' × ''a'' × ''b''}}  आयताकार बक्से, और तीन {{math|''a'' × ''b'' × ''b''}} आयताकार बक्से में काटा जा सकता है।
[[File:binomial_theorem_visualisation.svg|thumb|300px|चौथी शक्ति तक द्विपद विस्तार का दृश्य]]{{mvar|a}} तथा {{mvar|b}} के सकारात्मक मूल्यों के लिए द्विपद प्रमेय के साथ {{math|1=''n'' = 2}} ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा {{math|''a'' + ''b''}} वाले वर्ग को भुजा {{mvar|a}} वाले वर्ग, भुजा {{mvar|b}},वाले वर्ग और भुजाओं {{mvar|a}} तथा {{mvar|b}}.वाले दो आयतों में बाँटा जा सकता है। {{math|1=''n'' = 3}} के साथ, प्रमेय कहता है कि भुजा {{math|''a'' + ''b''}} के घन को भुजा {{mvar|a}} के घन, भुजा {{mvar|b}} के घन, तीन  {{math|''a'' × ''a'' × ''b''}}  आयताकार बक्से, और तीन {{math|''a'' × ''b'' × ''b''}} आयताकार बक्से में बाँटा जा सकता है।


कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है <math>(x^n)'=nx^{n-1}:</math><ref name="barth2004">{{cite journal | last = Barth | first = Nils R.| title = ''एन''-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना| doi = 10.2307/4145193 | jstor = 4145193 | journal = The American Mathematical Monthly| issn = 0002-9890| volume = 111| issue = 9| pages = 811–813 | date=2004}}</ref> अगर कोई सम्मुचय करता है <math>a=x</math> तथा <math>b=\Delta x,</math> {{mvar|b}} को {{mvar|a}} में एक अतिसूक्ष्म परिवर्तन के रूप में व्याख्या करना, यह चित्र एक {{mvar|n}}-आयामी अतिविम के आयतन में अतिसूक्ष्म परिवर्तन को दर्शाता है,<math>(x+\Delta x)^n,</math> जहां रैखिक शब्द का गुणांक (में <math>\Delta x</math>) है <math>nx^{n-1},</math>  {{mvar|n}} फलकों का क्षेत्र, प्रत्येक का आयाम {{math|''n'' &minus; 1}} है<math display="block">(x+\Delta x)^n = x^n + nx^{n-1}\Delta x + \binom{n}{2}x^{n-2}(\Delta x)^2 + \cdots.</math>एक अंतर भागफल और सीमा लेने के माध्यम से व्युत्पन्न की परिभाषा में इसे प्रतिस्थापित करने का अर्थ है कि उच्च क्रम की शर्तें, <math>(\Delta x)^2</math> और उच्चतर, नगण्य हो जाते हैं, और सूत्र प्राप्त करते हैं <math>(x^n)'=nx^{n-1},</math> के रूप में व्याख्या की है, किसी {{mvar|n}}-घन के आयतन में परिवर्तन की अतिसूक्ष्म दर, भुजा की लंबाई के रूप में भिन्न होती है, इसके {{math|(''n'' &minus; 1)}} विमीय फलकों के n का क्षेत्रफ है।
कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है <math>(x^n)'=nx^{n-1}:</math><ref name="barth2004">{{cite journal | last = Barth | first = Nils R.| title = ''एन''-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना| doi = 10.2307/4145193 | jstor = 4145193 | journal = The American Mathematical Monthly| issn = 0002-9890| volume = 111| issue = 9| pages = 811–813 | date=2004}}</ref> अगर कोई सम्मुचय करता है <math>a=x</math> तथा <math>b=\Delta x,</math> {{mvar|b}} को {{mvar|a}} में एक अतिसूक्ष्म परिवर्तन के रूप में व्याख्या करना, यह चित्र एक{{mvar|n}}-आयामी अतिविम के आयतन में अतिसूक्ष्म परिवर्तन को दर्शाता है,<math>(x+\Delta x)^n,</math> जहां रैखिक शब्द का गुणांक (में <math>\Delta x</math>) है <math>nx^{n-1},</math>  {{mvar|n}} फलकों का क्षेत्र, प्रत्येक का आयाम {{math|''n'' &minus; 1}} है<math display="block">(x+\Delta x)^n = x^n + nx^{n-1}\Delta x + \binom{n}{2}x^{n-2}(\Delta x)^2 + \cdots.</math>एक अंतर भागफल और सीमा लेने के माध्यम से व्युत्पन्न की परिभाषा में इसे प्रतिस्थापित करने का अर्थ है कि उच्च क्रम की शर्तें, <math>(\Delta x)^2</math> और उच्चतर, नगण्य हो जाते हैं, और सूत्र प्राप्त करते हैं <math>(x^n)'=nx^{n-1},</math> के रूप में व्याख्या की है, किसी {{mvar|n}}-घन के आयतन में परिवर्तन की अतिसूक्ष्म दर, भुजा की लंबाई के रूप में भिन्न होती है, इसके {{math|(''n'' &minus; 1)}} विमीय फलकों के n का क्षेत्रफ है।


यदि कोई इस चित्र को समाकलित करता है, जो कलन के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उससे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है <math>\textstyle{\int x^{n-1}\,dx = \tfrac{1}{n} x^n}</math> - विवरण के लिए कैवलियरी के चतुर्भुज सूत्र का प्रमाण देखें।<ref name="barth2004" />
यदि कोई इस चित्र को समाकलित करता है, जो कलन के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उससे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है <math>\textstyle{\int x^{n-1}\,dx = \tfrac{1}{n} x^n}</math> - विवरण के लिए कैवलियरी के चतुर्भुज सूत्र का प्रमाण देखें।<ref name="barth2004" />
Line 131: Line 131:
   &= x^3 + 3x^2y + \underline{3xy^2} + y^3
   &= x^3 + 3x^2y + \underline{3xy^2} + y^3
\end{align}</math>
\end{align}</math>
बराबर <math>\tbinom{3}{2}=3</math> क्योंकि वहाँ तीन {{math|''x'',''y''}} लंबाई 3 के तार बिल्कुल दो वाईएस के साथ हैं, अर्थात्।
बराबर <math>\tbinom{3}{2}=3</math> क्योंकि वहाँ तीन {{math|''x'',''y''}} लंबाई 3 के तार बिल्कुल साथ हैं, अर्थात्।
<math display="block">xyy, \; yxy, \; yyx,</math>
<math display="block">xyy, \; yxy, \; yyx,</math>
अर्थात्{{math|{{mset|1, 2, 3}}}},के तीन-तत्वों के 2-उपसमूहों के अनुरूप,
अर्थात्{{math|{{mset|1, 2, 3}}}},के तीन-तत्वों के 2-उपसमूहों के अनुरूप,
Line 179: Line 179:
तो, उदाहरण के लिए, जब {{math|1=''s'' = 1/2}} है,
तो, उदाहरण के लिए, जब {{math|1=''s'' = 1/2}} है,
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
<math display="block">\frac{1}{\sqrt{1+x}} = 1 -\frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots</math>
=== आगे सामान्यीकरण ===
=== सामान्यीकरण ===
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्ण सममितिक शाखा का उपयोग करके {{math|1=''x'' + ''y''}} और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है
सामान्यीकृत द्विपद प्रमेय को इस स्थिति तक बढ़ाया जा सकता है जहां {{mvar|x}} तथा {{mvar|y}} जटिल संख्याएँ हैं। इस संस्करण में, एक को फिर से {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name="convergence" group="Note" />मान लेना चाहिए और {{mvar|x}} पर केंद्रित त्रिज्या {{math|{{abs|''x''}}}} की एक खुली डिस्क पर परिभाषित लॉग की पूर्ण सममितिक शाखा का उपयोग करके {{math|1=''x'' + ''y''}} और {{mvar|x}} की घातो को परिभाषित करता है। सामान्यीकृत द्विपद प्रमेय बानाख बीजगणित के तत्वों {{mvar|x}} तथा {{mvar|y}} के लिए मान्य है जब तक कि {{math|1=''xy'' = ''yx''}}, और {{mvar|x}} व्युत्क्रमणीय है, और {{math|{{!}}{{!}}y/x{{!}}{{!}} < 1}}.है


Line 224: Line 224:
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math>
जटिल संख्याओं के लिए द्विपद प्रमेय को ज्या और कोसाइन के लिए बहु-कोण सूत्र प्राप्त करने के लिए डी मोइवर के सूत्र के साथ जोड़ा जा सकता है। डी मोइवर के सूत्र के अनुसार,<math display="block">\cos\left(nx\right)+i\sin\left(nx\right) = \left(\cos x+i\sin x\right)^n.</math>


द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक (गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या (एनएक्स) और ज्या ( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि
द्विपद प्रमेय का उपयोग करते हुए, दाहिनी ओर के व्यंजक(गणित) का विस्तार किया जा सकता है, और फिर वास्तविक और काल्पनिक भाग, कोज्या(एनएक्स) और ज्या( एनएक्स) के सूत्र प्रस्तुत करने के लिए लिया जा सकता है।.उदाहरण के लिए, क्योंकि
<math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math>
<math display="block">\left(\cos x + i\sin x\right)^2 = \cos^2 x + 2i \cos x \sin x - \sin^2 x,</math>
डी मोइवर का सूत्र हमें यह बताता है
डी मोइवर का सूत्र हमें यह बताता है
Line 238: Line 238:


=== ई के लिए श्रृंखला ===
=== ई के लिए श्रृंखला ===
संख्या {{mvar|e}} (गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है।
संख्या {{mvar|e}}(गणितीय स्थिरांक) को अधिकांशता सूत्र द्वारा परिभाषित किया जाता है।
<math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math>
<math display="block">e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n.</math>
द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से,
द्विपद प्रमेय को इस अभिव्यक्ति पर लागू करने से {{mvar|e}} के लिए सामान्य अनंत श्रृंखला प्राप्त होती है। विशेष रूप से,
Line 250: Line 250:
<math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है।
<math display="block">e=\sum_{k=0}^\infty\frac{1}{k!}=\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots.</math>वास्तव में, चूंकि द्विपद विस्तार का प्रत्येक पद {{mvar|n}} का वर्धमान फलन है, यह श्रृंखला के लिए एकदिष्ट अभिसरण प्रमेय से अनुसरण करता है कि इस अनंत श्रृंखला का योग {{mvar|e}} के बराबर होता है।
=== संभावना ===
=== संभावना ===
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक (गणनीय) संग्रह की प्रायिकता <math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ ठीक नहीं है  
द्विपद प्रमेय का निकटता से संबंधित द्विपद बंटन की प्रायिकता द्रव्यमान फलन से है। स्वतंत्र बर्नोली परीक्षणों के एक(गणनीय) संग्रह की प्रायिकता <math>\{X_t\}_{t\in S}</math> सफलता की संभावना के साथ <math>p\in [0,1]</math> सब कुछ ठीक नहीं है  


:<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math>
:<math> P\left(\bigcap_{t\in S} X_t^C\right) = (1-p)^{|S|} = \sum_{n=0}^{|S|} {|S| \choose n} (-p)^n.</math>
Line 289: Line 289:
* {{cite journal|last=Bag|first=Amulya Kumar|year=1966|title=Binomial theorem in ancient India|journal=Indian J. History Sci|volume=1|issue=1|pages=68–74}}
* {{cite journal|last=Bag|first=Amulya Kumar|year=1966|title=Binomial theorem in ancient India|journal=Indian J. History Sci|volume=1|issue=1|pages=68–74}}
* {{cite book|last1=Graham|first1=Ronald|first2=Donald |last2=Knuth|first3= Oren|last3= Patashnik|title=Concrete Mathematics|url=https://archive.org/details/concretemathemat00grah_444|url-access=limited|publisher=Addison Wesley|year=1994|edition=2nd|pages=[https://archive.org/details/concretemathemat00grah_444/page/n165 153]–256|chapter=(5) Binomial Coefficients|isbn=978-0-201-55802-9|oclc=17649857}}
* {{cite book|last1=Graham|first1=Ronald|first2=Donald |last2=Knuth|first3= Oren|last3= Patashnik|title=Concrete Mathematics|url=https://archive.org/details/concretemathemat00grah_444|url-access=limited|publisher=Addison Wesley|year=1994|edition=2nd|pages=[https://archive.org/details/concretemathemat00grah_444/page/n165 153]–256|chapter=(5) Binomial Coefficients|isbn=978-0-201-55802-9|oclc=17649857}}
==इस पेज में लापता आंतरिक लिंक की सूची==


== बाहरी संबंध ==
== बाहरी संबंध ==
Line 303: Line 299:
{{Calculus topics}}
{{Calculus topics}}
{{Authority control}}
{{Authority control}}
[[Category: क्रमगुणित और द्विपद विषय]]
[[Category: बहुपदों के बारे में प्रमेय]]
[[Category:साक्ष्य युक्त लेख]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Articles with short description]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 29/11/2022]]
[[Category:Created On 29/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia articles incorporating text from PlanetMath|द्विपद प्रमेय]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:क्रमगुणित और द्विपद विषय]]
[[Category:बहुपदों के बारे में प्रमेय]]
[[Category:साक्ष्य युक्त लेख]]

Latest revision as of 10:03, 14 December 2022

द्विपद गुणांक(एनके) पास्कल के त्रिभुज की nवीं पंक्ति में प्रविष्टि के रूप में प्रतीत होता है, गिनती 0 से शुरू होती है। प्रत्येक प्रविष्टि इसके ऊपर दो का योग होता है।

प्रारंभिक बीजगणित में, द्विपद प्रमेय(या द्विपद विस्तार) द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद (x + y)n को axbyc के रूप में पद वाले योग से विस्तारित करना संभव होता है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक b + c = n हैं और गुणांक a के प्रत्येक पद का एक विशिष्ट धनात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,

axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जाता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अधिकांशता n और b के रूप में उच्चारित किया जाता है।

इतिहास

द्विपद प्रमेय में विशेष स्थितियां कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थी, जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष स्थितियो का उल्लेख किया था।[1][2] इस बात के प्रमाण हैं कि घन के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]

बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस संयोजी समस्या का सबसे पहला ज्ञात संदर्भ, भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र है। 200 ईसा पूर्व, जिसमें इसके समाधान की विधि निहित है।[3]: 230  10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ अनुमानतः यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जाता है।[4]

हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5][6][7] अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय डिज़ाइन का वर्णन किया[8] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[8] फारसी कवि और गणितज्ञ उमर खय्याम अनुमानतः उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य गुम हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[9] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के पाठ को दिया है, चूँकि, अब वे लेख भी खो गए हैं।[3]: 142 

1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द को पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[10] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[11] चूँकि, संख्याओं का डिज़ाइन पहले ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[10]

आईएएएसी न्यूटन को सामान्यता सामान्यीकृत द्विपद प्रमेय के साथ श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[10][12]







कथन

प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव होता है।

जहाँ पे एक पूर्णांक है और प्रत्येक एक धनात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अधिकांशता शब्द से हटा दिया जाता है। इसलिए अधिकांशता दाहिने हाथ की ओर लिखा हुआ दिखाई देता है .) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। योग संकेतन का उपयोग करके, इसे इस रूप में लिखा जा सकता है।


अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार के सूत्र में द्विपद गुणकों का क्रम सममित करता है। तो प्रतिस्थापन(बीजगणित) द्वारा द्विपद सूत्र का सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर(गणित) सम्मिलित हो। इस रूप में, सूत्र दिखता है

द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, चूँकि इसमें केवल एक चर सम्मिलित हो। सूत्र को इस रूप में पढ़ा जा सकता है

या समकक्ष
या अधिक स्पष्ट रूप से[13]


उदाहरण

यहाँ द्विपद प्रमेय के पहले कुछ कारक हैं