द्विपद प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
</math>
</math>
|caption=The [[binomial coefficient]] <math>\tbinom{n}{k}</math> appears as the {{mvar|k}}th entry in the {{mvar|n}}th row of [[Pascal's triangle]] (counting starts at {{math|0}}). Each entry is the sum of the two above it.}}
|caption=The [[binomial coefficient]] <math>\tbinom{n}{k}</math> appears as the {{mvar|k}}th entry in the {{mvar|n}}th row of [[Pascal's triangle]] (counting starts at {{math|0}}). Each entry is the sum of the two above it.}}
प्रारंभिक बीजगणित में, द्विपद प्रमेय या द्विपद विस्तार एक द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद का विस्तार करना संभव है {{math|(''x'' + ''y'')<sup>''n''</sup>}} फॉर्म की शर्तों को शामिल करने वाले योग में {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}}, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ अऋणात्मक पूर्णांक हैं {{math|1=''b'' + ''c'' = ''n''}}, और गुणांक {{mvar|a}} प्रत्येक शब्द का एक विशिष्ट सकारात्मक पूर्णांक निर्भर करता है {{mvar|n}} तथा {{mvar|b}}. उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},
प्रारंभिक बीजगणित में, द्विपद प्रमेय या द्विपद विस्तार एक द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद का विस्तार करना संभव है {{math|(''x'' + ''y'')<sup>''n''</sup>}} '''फॉर्म के योग में शर्तों को शामिल करने वाले''' {{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} है, जहां घातांक {{mvar|b}} तथा {{mvar|c}} के साथ गैर-ऋणात्मक पूर्णांक हैं {{math|1=''b'' + ''c'' = ''n''}}, और गुणांक {{mvar|a}} प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो {{mvar|n}} और {{mvar|b}} पर निर्भर करता है।  तथा  उदाहरण के लिए, के लिए {{math|1=''n'' = 4}},<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>
<math display="block">(x+y)^4 = x^4 + 4 x^3y + 6 x^2 y^2 + 4 x y^3 + y^4. </math>
 
 
{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जा सकता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math>उन  तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अक्सर {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।
{{math|''ax''<sup>''b''</sup>''y''<sup>''c''</sup>}} के पद में गुणांक a को द्विपद गुणांक <math>\tbinom{n}{b}</math> या <math>\tbinom{n}{c}</math> के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक {{mvar|n}} तथा {{mvar|b}} पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जा सकता है। ये नंबर साहचर्य में भी होते हैं, जहां <math>\tbinom{n}{b}</math>उन  तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए <math>\tbinom{n}{b}</math> को अक्सर {{mvar|n}} और {{mvar|b}} के रूप में उच्चारित किया जाता है।


Line 30: Line 31:
आइजैक न्यूटन को आम तौर पर सामान्यीकृत द्विपद प्रमेय का श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।<ref name="Kline" /><ref>{{cite book| title=गणित पेपरबैक के इतिहास के तत्व|date=18 November 1998|first=N.|last=Bourbaki|others=J. Meldrum (Translator)|isbn=978-3-540-64767-6|url-access=registration|url=https://archive.org/details/elementsofhistor0000bour}}</ref>
आइजैक न्यूटन को आम तौर पर सामान्यीकृत द्विपद प्रमेय का श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।<ref name="Kline" /><ref>{{cite book| title=गणित पेपरबैक के इतिहास के तत्व|date=18 November 1998|first=N.|last=Bourbaki|others=J. Meldrum (Translator)|isbn=978-3-540-64767-6|url-access=registration|url=https://archive.org/details/elementsofhistor0000bour}}</ref>
== कथन ==
== कथन ==
प्रमेय के अनुसार, की किसी भी गैर-ऋणात्मक पूर्णांक शक्ति का विस्तार करना संभव है {{math|''x'' + ''y''}} फॉर्म के योग में
प्रमेय के अनुसार, {{math|''x'' + ''y''}} फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव है
<math display="block">(x+y)^n = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1} y^1 + {n \choose 2}x^{n-2} y^2 + \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,</math>
<math display="block">(x+y)^n = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1} y^1 + {n \choose 2}x^{n-2} y^2 + \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,</math>
कहाँ पे <math>n \geq 0</math> एक पूर्णांक है और प्रत्येक <math> \tbinom nk </math> एक सकारात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। (जब एक घातांक शून्य होता है, तो संबंधित शक्ति अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अक्सर शब्द से हटा दिया जाता है। इसलिए अक्सर दाहिने हाथ की ओर लिखा हुआ दिखाई देता है <math display="inline">\binom{n}{0} x^n + \cdots</math>.) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। कैपिटल-सिग्मा नोटेशन का उपयोग करके इसे इस रूप में लिखा जा सकता है
जहाँ पे <math>n \geq 0</math> एक पूर्णांक है और प्रत्येक <math> \tbinom nk </math> एक सकारात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब एक घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अक्सर शब्द से हटा दिया जाता है। इसलिए अक्सर दाहिने हाथ की ओर लिखा हुआ दिखाई देता है <math display="inline">\binom{n}{0} x^n + \cdots</math>.) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। संकलन अंकन पद्धति का उपयोग कर के इसे इस रूप में लिखा जाता है।
<math display="block">(x+y)^n = \sum_{k=0}^n {n \choose k}x^{n-k}y^k = \sum_{k=0}^n {n \choose k}x^{k}y^{n-k}.</math>
<math display="block">(x+y)^n = \sum_{k=0}^n {n \choose k}x^{n-k}y^k = \sum_{k=0}^n {n \choose k}x^{k}y^{n-k}.</math>
अंतिम अभिव्यक्ति पिछले एक की समरूपता से होती है {{mvar|x}} तथा {{mvar|y}} पहली अभिव्यक्ति में, और तुलना करके यह इस प्रकार है कि सूत्र में द्विपद गुणांक का क्रम सममित है। प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का एक सरल संस्करण प्राप्त किया जाता है {{math|1}} के लिये {{mvar|y}}, ताकि इसमें केवल एक चर (गणित) शामिल हो। इस रूप में, सूत्र पढ़ता है
अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब {{mvar|x}} तथा {{mvar|y}} की समरूपता होती है और तुलना करके यह इस प्रकार है कि सूत्र में द्विपद गुणकों का क्रम सममित होता है। प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का एक सरल संस्करण प्राप्त किया जाता है {{math|1}} के लिये {{mvar|y}}, ताकि इसमें केवल एक चर (गणित) शामिल हो। इस रूप में, सूत्र पढ़ता है
 
द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, ताकि इसमें केवल एक चर सम्मिलित कर के, इसे सूत्र के रूप में सूत्र पढ़ा जा सके
<math display="block">(1+x)^n = {n \choose 0}x^0 + {n \choose 1}x^1 + {n \choose 2}x^2 + \cdots + {n \choose {n-1}}x^{n-1} + {n \choose n}x^n,</math>
<math display="block">(1+x)^n = {n \choose 0}x^0 + {n \choose 1}x^1 + {n \choose 2}x^2 + \cdots + {n \choose {n-1}}x^{n-1} + {n \choose n}x^n,</math>
या समकक्ष
या समकक्ष
Line 44: Line 47:
== उदाहरण ==
== उदाहरण ==


यहाँ द्विपद प्रमेय के पहले कुछ मामले हैं:
यहाँ द्विपद प्रमेय के पहले कुछ मामले हैं
<math display="block">\begin{align}
<math display="block">\begin{align}
(x+y)^0 & = 1, \\[8pt]
(x+y)^0 & = 1, \\[8pt]
Line 56: Line 59:
(x+y)^8 & = x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8.
(x+y)^8 & = x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8.
\end{align}</math>
\end{align}</math>
सामान्य तौर पर, के विस्तार के लिए {{math|(''x'' + ''y'')<sup>''n''</sup>}} दाहिनी ओर में {{mvar|n}}वीं पंक्ति (क्रमांकित ताकि शीर्ष पंक्ति 0 वीं पंक्ति हो):
सामान्य तौर पर, {{math|(''x'' + ''y'')<sup>''n''</sup>}} के विस्तार के लिए {{mvar|n}}वीं पंक्ति में दाहिनी ओर क्रमांकित ताकि शीर्ष पंक्ति 0 वीं पंक्ति हो,
* के प्रतिपादक {{mvar|x}} शर्तों में हैं {{math|''n'', ''n'' − 1, ..., 2, 1, 0}} (अंतिम शब्द में निहित रूप से शामिल है {{math|1=''x''<sup>0</sup> = 1}});
* पदों में {{mvar|x}} के घातांक {{math|''n'', ''n'' − 1, ..., 2, 1, 0}} हैं, अंतिम पद में अंतर्निहित रूप से {{math|1=''x''<sup>0</sup> = 1}},
* के प्रतिपादक {{mvar|y}} शर्तों में हैं {{math|0, 1, 2, ..., ''n'' − 1, ''n''}} (पहले शब्द में निहित रूप से शामिल है {{math|1=''y''<sup>0</sup> = 1}});
* शब्दों में {{mvar|y}} के घातांक {{math|0, 1, 2, ..., ''n'' − 1, ''n''}} हैं, पहले पद में स्पष्ट रूप से {{math|1=''y''<sup>0</sup> = 1}}) सम्मिलित है,
* गुणांक बनाते हैं {{mvar|n}}पास्कल के त्रिकोण की वीं पंक्ति;
* गुणांक पास्कल के त्रिभुज की {{mvar|n}}वीं पंक्ति बनाते हैं
* समान पदों के संयोजन से पहले, हैं {{math|2<sup>''n''</sup>}} शर्तें {{math|''x''<sup>''i''</sup>''y''<sup>''j''</sup>}} विस्तार में (नहीं दिखाया गया);
* समान पदों के संयोजन से पहले, विस्तार में {{math|2<sup>''n''</sup>}} वाँ पद {{math|''x''<sup>''i''</sup>''y''<sup>''j''</sup>}} नहीं दिखाया गया
*समान पदों के संयोजन के बाद, होते हैं {{math|''n'' + 1}} शर्तें, और उनके गुणांकों का योग {{math|2<sup>''n''</sup>}}.
*समान पदों के संयोजन के बाद, {{math|''n'' + 1}} पद होते हैं, और उनके गुणांकों का योग {{math|2<sup>''n''</sup>}}.होता है।
अंतिम दो बिंदुओं को दर्शाने वाला एक उदाहरण: <math display="block">\begin{align}
अंतिम दो बिंदुओं को दर्शाने वाला एक उदाहरण  
 
<math display="block">\begin{align}
(x+y)^3 & = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy & (2^3 \text{ terms}) \\
(x+y)^3 & = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy & (2^3 \text{ terms}) \\
         & = x^3 + 3x^2y + 3xy^2 + y^3 & (3 + 1 \text{ terms})
         & = x^3 + 3x^2y + 3xy^2 + y^3 & (3 + 1 \text{ terms})
\end{align}</math> साथ <math>1 + 3 + 3 + 1 = 2^3</math>.
\end{align}</math>  


एक विशिष्ट सकारात्मक मूल्य के साथ एक सरल उदाहरण {{math|''y''}}:
 
साथ <math>1 + 3 + 3 + 1 = 2^3</math>.
 
{{math|''y''}} के विशिष्ट धनात्मक मान के साथ एक सरल उदाहरण
<math display="block">\begin{align}
<math display="block">\begin{align}
(x+2)^3 &= x^3 + 3x^2(2) + 3x(2)^2 + 2^3 \\
(x+2)^3 &= x^3 + 3x^2(2) + 3x(2)^2 + 2^3 \\
&= x^3 + 6x^2 + 12x + 8.
&= x^3 + 6x^2 + 12x + 8.
\end{align}</math>
\end{align}</math>{{math|''y''}} के विशिष्ट ऋणात्मक मान के साथ एक सरल उदाहरण
एक विशिष्ट ऋणात्मक मान के साथ एक सरल उदाहरण {{math|''y''}}:
<math display="block">\begin{align}
<math display="block">\begin{align}
(x-2)^3 &= x^3 - 3x^2(2) + 3x(2)^2 - 2^3 \\
(x-2)^3 &= x^3 - 3x^2(2) + 3x(2)^2 - 2^3 \\
&= x^3 - 6x^2 + 12x - 8.
&= x^3 - 6x^2 + 12x - 8.
\end{align}</math>
\end{align}</math>
=== ज्यामितीय व्याख्या ===
[[File:binomial_theorem_visualisation.svg|thumb|300px|चौथी शक्ति तक द्विपद विस्तार का दृश्य]]{{mvar|a}} तथा {{mvar|b}} के सकारात्मक मूल्यों के लिए द्विपद प्रमेय के साथ {{math|1=''n'' = 2}} ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा {{math|''a'' + ''b''}} वाले वर्ग को भुजा {{mvar|a}} वाले वर्ग, भुजा {{mvar|b}},वाले वर्ग और भुजाओं {{mvar|a}} तथा {{mvar|b}}.वाले दो आयतों में काटा जा सकता है। {{math|1=''n'' = 3}} के साथ, प्रमेय कहता है कि भुजा {{math|''a'' + ''b''}} के घन को भुजा {{mvar|a}} के घन, भुजा {{mvar|b}} के घन, तीन  {{math|''a'' × ''a'' × ''b''}}  आयताकार बक्से, और तीन {{math|''a'' × ''b'' × ''b''}} आयताकार बक्से में काटा जा सकता है।
कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है <math>(x^n)'=nx^{n-1}:</math><ref name="barth2004">{{cite journal | last = Barth | first = Nils R.| title = ''एन''-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना| doi = 10.2307/4145193 | jstor = 4145193 | journal = The American Mathematical Monthly| issn = 0002-9890| volume = 111| issue = 9| pages = 811–813 | date=2004}}</ref> अगर कोई सम्मुचय करता है <math>a=x</math> तथा <math>b=\Delta x,</math> {{mvar|b}} को {{mvar|a}} में एक अतिसूक्ष्म परिवर्तन के रूप में व्याख्या करना,  यह चित्र एक {{mvar|n}}-आयामी अतिविम के आयतन में अतिसूक्ष्म परिवर्तन को दर्शाता है,<math>(x+\Delta x)^n,</math> जहां रैखिक शब्द का गुणांक (में <math>\Delta x</math>) है <math>nx^{n-1},</math>  {{mvar|n}} फेसेस का क्षेत्र, प्रत्येक का आयाम {{math|''n'' &minus; 1}} है<math display="block">(x+\Delta x)^n = x^n + nx^{n-1}\Delta x + \binom{n}{2}x^{n-2}(\Delta x)^2 + \cdots.</math>




=== ज्यामितीय व्याख्या ===
एक अंतर भागफल और सीमा लेने के माध्यम से व्युत्पन्न की परिभाषा में इसे प्रतिस्थापित करने का अर्थ है कि उच्च क्रम की शर्तें, <math>(\Delta x)^2</math> और उच्चतर, नगण्य हो जाते हैं, और सूत्र प्राप्त करते हैं <math>(x^n)'=nx^{n-1},</math> के रूप में व्याख्या की है
[[File:binomial_theorem_visualisation.svg|thumb|300px|चौथी शक्ति तक द्विपद विस्तार का दृश्य]]के सकारात्मक मूल्यों के लिए {{mvar|a}} तथा {{mvar|b}}, द्विपद प्रमेय के साथ {{math|1=''n'' = 2}} ज्यामितीय रूप से स्पष्ट तथ्य यह है कि भुजा का एक वर्ग {{math|''a'' + ''b''}} पक्ष के एक वर्ग में काटा जा सकता है {{mvar|a}}, पक्ष का एक वर्ग {{mvar|b}}, और भुजाओं के साथ दो आयतें {{mvar|a}} तथा {{mvar|b}}. साथ {{math|1=''n'' = 3}}, प्रमेय कहता है कि पक्ष का एक घन {{math|''a'' + ''b''}} पक्ष के घन में काटा जा सकता है {{mvar|a}}, पक्ष का एक घन {{mvar|b}}, तीन {{math|''a'' × ''a'' × ''b''}} आयताकार बक्से, और तीन {{math|''a'' × ''b'' × ''b''}} आयताकार बक्से।
किसी {{mvar|n}}-घन के आयतन में परिवर्तन की अतिसूक्ष्म दर, भुजा की लंबाई के रूप में भिन्न होती है, इसके {{math|(''n'' &minus; 1)}} विमीय फलकों के n का क्षेत्रफ है।


कलन में, यह चित्र अवकलज का ज्यामितीय प्रमाण भी देता है <math>(x^n)'=nx^{n-1}:</math><ref name="barth2004">{{cite journal | last = Barth | first = Nils R.| title = ''एन''-क्यूब की समरूपता द्वारा कैवलियरी के चतुर्भुज सूत्र की गणना| doi = 10.2307/4145193 | jstor = 4145193 | journal = The American Mathematical Monthly| issn = 0002-9890| volume = 111| issue = 9| pages = 811–813 | date=2004}}</ref> अगर कोई सेट करता है <math>a=x</math> तथा <math>b=\Delta x,</math> व्याख्या {{mvar|b}} में एक अतिसूक्ष्म परिवर्तन के रूप में {{mvar|a}}, तब यह चित्र a के आयतन में अतिसूक्ष्म परिवर्तन दिखाता है {{mvar|n}}-आयामी हाइपरक्यूब, <math>(x+\Delta x)^n,</math> जहां रैखिक शब्द का गुणांक (में <math>\Delta x</math>) है <math>nx^{n-1},</math> का क्षेत्र {{mvar|n}} चेहरे, प्रत्येक आयाम के {{math|''n'' &minus; 1}}:
यदि कोई इस चित्र को एकीकृत करता है, जो कलन के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उससे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है <math>\textstyle{\int x^{n-1}\,dx = \tfrac{1}{n} x^n}</math> - विवरण के लिए कैवलियरी के चतुर्भुज सूत्र का प्रमाण देखें।<ref name="barth2004" />
<math display="block">(x+\Delta x)^n = x^n + nx^{n-1}\Delta x + \binom{n}{2}x^{n-2}(\Delta x)^2 + \cdots.</math>
एक अंतर भागफल और सीमा लेने के माध्यम से व्युत्पन्न की परिभाषा में इसे प्रतिस्थापित करने का अर्थ है कि उच्च क्रम की शर्तें, <math>(\Delta x)^2</math> और उच्चतर, नगण्य हो जाते हैं, और सूत्र प्राप्त करते हैं <math>(x^n)'=nx^{n-1},</math> के रूप में व्याख्या की
: a के आयतन में परिवर्तन की अतिसूक्ष्म दर {{mvar|n}}-घन के रूप में भुजा की लंबाई भिन्न-भिन्न होती है {{mvar|n}} उसके जैसा {{math|(''n'' &minus; 1)}}-आयामी चेहरे।
यदि कोई इस चित्र को एकीकृत करता है, जो कैलकुलस के मौलिक प्रमेय को लागू करने के अनुरूप है, तो उसे कैवलियरी का चतुर्भुज सूत्र, समाकलन प्राप्त होता है <math>\textstyle{\int x^{n-1}\,dx = \tfrac{1}{n} x^n}</math> - विवरण के लिए कैवलियरी का चतुर्भुज सूत्र#प्रमाण देखें। कैवलियरी के चतुर्भुज सूत्र का प्रमाण।<ref name="barth2004" />


{{clear}}
{{clear}}


== द्विपद गुणांक ==
== द्विपद गुणांक ==

Revision as of 00:49, 9 December 2022

The binomial coefficient appears as the kth entry in the nth row of Pascal's triangle (counting starts at 0). Each entry is the sum of the two above it.

प्रारंभिक बीजगणित में, द्विपद प्रमेय या द्विपद विस्तार एक द्विपद बहुपद के घातांक के बीजगणितीय प्रसार का वर्णन करता है। प्रमेय के अनुसार, बहुपद का विस्तार करना संभव है (x + y)n फॉर्म के योग में शर्तों को शामिल करने वाले axbyc है, जहां घातांक b तथा c के साथ गैर-ऋणात्मक पूर्णांक हैं b + c = n, और गुणांक a प्रत्येक पद का एक विशिष्ट सकारात्मक पूर्णांक है जो n और b पर निर्भर करता है। तथा उदाहरण के लिए, के लिए n = 4,


axbyc के पद में गुणांक a को द्विपद गुणांक या के रूप में जाना जाता है, दोनों का मूल्य समान होता है। अलग-अलग के लिए ये गुणांक n तथा b पास्कल का त्रिभुज बनाने के लिए व्यवस्थित किया जा सकता है। ये नंबर साहचर्य में भी होते हैं, जहां उन तत्वों के विभिन्न संयोजनों की संख्या देता है जिन्हें n-तत्व के समुच्चय से चुना जाता है। इसलिए को अक्सर n और b के रूप में उच्चारित किया जाता है।

इतिहास

द्विपद प्रमेय के विशेष मामले कम से कम चौथी शताब्दी ईसा पूर्व से ज्ञात थे जब यूनानी गणितज्ञ यूक्लिड ने घातांक 2 के लिए द्विपद प्रमेय के विशेष मामले का उल्लेख किया था।.[1][2] इस बात के सबूत हैं कि घनफल के लिए द्विपद प्रमेय भारत में छठी शताब्दी ईस्वी तक जाना जाता था।[1][2]

बिना प्रतिस्थापन के n में k वस्तुओं के चयन तरीकों की संख्या को व्यक्त करने वाले संयोजी मात्राओं के रूप में द्विपद गुणांक, प्राचीन भारतीय गणितज्ञों के लिए रुचिकर थे। इस मिश्रित समस्या का सबसे पहला ज्ञात संदर्भ भारतीय गीतकार पिंगला द्वारा रचित चंदशास्त्र (सी. 200 ई.पू.) है, जिसमें इसके समाधान के लिए एक विधि सम्मिलित है।[3]: 230  10वीं शताब्दी ईस्वी के टिप्पणीकार हलायुध ने इस विधि की व्याख्या की है जिसे अब पास्कल के त्रिकोण के रूप में जाना जाता है।[3] छठी शताब्दी ईस्वी तक, भारतीय गणितज्ञ शायद यह जानते थे कि इसे भागफल के रूप में कैसे व्यक्त किया जाए ,[4] और इस नियम का स्पष्ट विवरण भास्कर द्वितीय द्वारा लिखित 12वीं शताब्दी के ग्रंथ लीलावती में पाया जा सकता है।[4]

हमारे ज्ञान के लिए द्विपद प्रमेय और द्विपद गुणांक की तालिका का पहला सूत्रीकरण, अल-काराजी के एक काम में पाया जा सकता है, जिसे अल-समावली ने अपने अल-बहिर में उद्धृत किया है।[5]Cite error: Closing </ref> missing for <ref> tag अल-काराजी ने द्विपद गुणांकों के त्रिकोणीय पैटर्न का वर्णन किया[6] और गणितीय प्रेरण के प्रारंभिक रूप का उपयोग करते हुए द्विपद प्रमेय और पास्कल त्रिकोण दोनों का गणितीय प्रमाण भी प्रदान किया।[6] फारसी कवि और गणितज्ञ उमर खय्याम शायद उच्च क्रम के सूत्र से परिचित थे, चूँकि, उनके कई गणितीय कार्य बर्बाद हो गए थे।[2] 13वीं शताब्दी के यांग हुई के गणितीय कार्यों में छोटी घात के द्विपद विस्तार ज्ञात थे[7] और चू शिह-चीह भी।[2] यांग हुई ने इस पद्धति का श्रेय जिया जियान के 11वीं शताब्दी के बहुत पहले के पाठ को दिया है, हालांकि अब वे लेख भी खो गए हैं।[3]: 142 

1544 में, माइकल स्टिफ़ेल ने द्विपद गुणांक शब्द पेश किया और दिखाया कि उन्हें कैसे व्यक्त किया जाए के अनुसार पास्कल के त्रिकोण के माध्यम से।[8] ब्लेज़ पास्कल ने अपने ट्रैटे डू त्रिकोण अंकगणित में व्यापक रूप से नामांकित त्रिभुज का अध्ययन किया।[9] हालांकि, संख्याओं का पैटर्न पहले से ही देर से पुनर्जागरण के यूरोपीय गणितज्ञों के लिए जाना जाता था, जिसमें स्टिफ़ेल, निकोलो फोंटाना टारटाग्लिया और साइमन स्टीविन सम्मिलित थे।[8]

आइजैक न्यूटन को आम तौर पर सामान्यीकृत द्विपद प्रमेय का श्रेय दिया जाता है, जो किसी भी तर्कसंगत घातांक के लिए मान्य होता है।[8][10]

कथन

प्रमेय के अनुसार, x + y फॉर्म के योग में किसी भी गैर-ऋणात्मक पूर्णांक घात का विस्तार करना संभव है

जहाँ पे एक पूर्णांक है और प्रत्येक एक सकारात्मक पूर्णांक है जिसे द्विपद गुणांक के रूप में जाना जाता है। जब एक घातांक शून्य होता है, तो संबंधित घात अभिव्यक्ति को 1 माना जाता है और इस गुणन कारक को अक्सर शब्द से हटा दिया जाता है। इसलिए अक्सर दाहिने हाथ की ओर लिखा हुआ दिखाई देता है .) इस सूत्र को द्विपद सूत्र या द्विपद सर्वसमिका भी कहा जाता है। संकलन अंकन पद्धति का उपयोग कर के इसे इस रूप में लिखा जाता है।
अंतिम अभिव्यक्ति प्रथम अभिव्यक्ति में जब x तथा y की समरूपता होती है और तुलना करके यह इस प्रकार है कि सूत्र में द्विपद गुणकों का क्रम सममित होता है। प्रतिस्थापन (बीजगणित) द्वारा द्विपद सूत्र का एक सरल संस्करण प्राप्त किया जाता है 1 के लिये y, ताकि इसमें केवल एक चर (गणित) शामिल हो। इस रूप में, सूत्र पढ़ता है

द्विपद सूत्र का एक सरल संस्करण y के लिए 1 को प्रतिस्थापित करके प्राप्त किया जाता है, ताकि इसमें केवल एक चर सम्मिलित कर के, इसे सूत्र के रूप में सूत्र पढ़ा जा सके

या समकक्ष
या अधिक स्पष्ट रूप से[11]


उदाहरण

यहाँ द्विपद प्रमेय के पहले कुछ मामले हैं