लघुगणकीय अवकलन: Difference between revisions

From Vigyanwiki
(Undo revision 256790 by Admin (talk))
Tag: Undo
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Method of mathematical differentiation}}
{{Short description|Method of mathematical differentiation}}[[ गणना ]]में, लघुगणकीय अवकलन एक ऐसी विधि है जिसका उपयोग किसी फलन के [[लघुगणकीय व्युत्पन्न]] को नियोजित करके व्युत्पन्न फलन (गणित) {{math|''f''}} के लिए किया जाता है। ,<ref>{{cite book| title=कैलकुलस का रहस्योद्घाटन| pages=170| first=Steven G.|last=Krantz | publisher=McGraw-Hill Professional| year=2003 | isbn=0-07-139308-0}}</ref>
{{For|व्युत्पादित|लघुगणकीय व्युत्पन्न}}
{{Calculus}}
 
[[ गणना ]]में, लघुगणकीय विभेदन या लघुगणक लेकर विभेदन एक ऐसी विधि है जिसका उपयोग किसी फलन के [[लघुगणकीय व्युत्पन्न]] को नियोजित करके व्युत्पन्न [[फ़ंक्शन (गणित)|फलन (गणित)]] {{math|''f''}} के लिए किया जाता है। ,<ref>{{cite book| title=कैलकुलस का रहस्योद्घाटन| pages=170| first=Steven G.|last=Krantz | publisher=McGraw-Hill Professional| year=2003 | isbn=0-07-139308-0}}</ref>
<math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad  f' = f \cdot (\ln f)'.</math>
<math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad  f' = f \cdot (\ln f)'.</math>
तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के [[लघुगणक]] को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक विभेदन उत्पादों को योगों में और विभाजनों को घटावों में बदलने के लिए [[श्रृंखला नियम]] के साथ-साथ लघुगणक के गुणों (विशेष रूप से, [[प्राकृतिक]] लघुगणक, या आधार [[ई (गणित)]] के लघुगणक) पर निर्भर करता है। <ref>{{cite book| title=गोल्डन डिफरेंशियल कैलकुलस| pages=282|author=N.P. Bali| publisher=Firewall Media | year=2005 | isbn=81-7008-152-1}}</ref><ref name="Bird">{{cite book|title=उच्च इंजीनियरिंग गणित| first=John|last=Bird|pages=324 | publisher=Newnes |year=2006 | isbn=0-7506-8152-7}}</ref> सिद्धांत को, कम से कम आंशिक रूप से, लगभग सभी भिन्न-भिन्न कार्यों के विभेदन में लागू किया जा सकता है, बशर्ते कि ये कार्य गैर-शून्य हों।
तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के [[लघुगणक]] को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक अवकलन उत्पादों को योगों में और विभाजनों को घटावों में बदलने के लिए [[श्रृंखला नियम]] के साथ-साथ लघुगणक के गुणों (विशेष रूप से, [[प्राकृतिक]] लघुगणक, या आधार [[ई (गणित)]] के लघुगणक) पर निर्भर करता है। <ref>{{cite book| title=गोल्डन डिफरेंशियल कैलकुलस| pages=282|author=N.P. Bali| publisher=Firewall Media | year=2005 | isbn=81-7008-152-1}}</ref><ref name="Bird">{{cite book|title=उच्च इंजीनियरिंग गणित| first=John|last=Bird|pages=324 | publisher=Newnes |year=2006 | isbn=0-7506-8152-7}}</ref> सिद्धांत को, कम से कम आंशिक रूप से, लगभग सभी भिन्न-भिन्न फलनों के अवकलन में लागू किया जा सकता है, बशर्ते कि ये कार्य गैर-शून्य हों।


==अवलोकन==
==अवलोकन==


विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले जटिल कार्यों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। <ref>{{cite book| title=कैलकुलस, एकल चर| first=Brian E.|last=Blank | pages=457| publisher=Springer| year=2006| isbn=1-931914-59-1}}</ref> दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं <ref name="Bird" />
विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले सम्मिश्र फलनों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। <ref>{{cite book| title=कैलकुलस, एकल चर| first=Brian E.|last=Blank | pages=457| publisher=Springer| year=2006| isbn=1-931914-59-1}}</ref> दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं <ref name="Bird" />
<math display="block">\ln(ab) = \ln(a) + \ln(b), \qquad
<math display="block">\ln(ab) = \ln(a) + \ln(b), \qquad
\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad
\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad
Line 19: Line 15:
\frac{(-1)^{m_1+\cdots+m_n-1} (m_1 +\cdots + m_n-1)!}{f(x)^{m_1+\cdots+m_n}} \cdot
\frac{(-1)^{m_1+\cdots+m_n-1} (m_1 +\cdots + m_n-1)!}{f(x)^{m_1+\cdots+m_n}} \cdot
\prod_{j=1}^n \left(\frac{f^{(j)}(x)}{j!}\right)^{m_j}.</math>
\prod_{j=1}^n \left(\frac{f^{(j)}(x)}{j!}\right)^{m_j}.</math>
इसका उपयोग करते हुए, पहले चार व्युत्पन्न हैं,
<math display="block">\begin{align}
\frac{d^2}{dx^2} \ln f(x) &= \frac{f''(x)}{f(x)} - \left(\frac{f'(x)}{f(x)} \right)^2 \\[1ex]
\frac{d^3}{dx^3} \ln f(x) &= \frac{f^{(3)}(x)}{f(x)} - 3 \frac{f'(x) f''(x)}{f(x)^2} + 2 \left(\frac{f'(x)}{f(x)} \right)^3 \\[1ex]
\frac{d^4}{dx^4} \ln f(x) &= \frac{f^{(4)}(x)}{f(x)} - 4 \frac{f'(x) f^{(3)}(x)}{f(x)^2} - 3 \left(\frac{f''(x)}{f(x)}\right)^2 + 12 \frac{f'(x)^2 f''(x)}{f(x)^3} - 6 \left(\frac{f'(x)}{f(x)} \right)^4
\end{align}</math>




Line 35: Line 21:
===उत्पाद===
===उत्पाद===
{{Main|उत्पाद नियम}}
{{Main|उत्पाद नियम}}
एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है
 
एक प्राकृतिक लघुगणक दो फलनों के उत्पाद पर लागू किया जाता है
<math display="block">f(x) = g(x) h(x)</math>
<math display="block">f(x) = g(x) h(x)</math>
उत्पाद को योग में बदलने के लिए
उत्पाद को योग में बदलने के लिए
<math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math>
<math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math>
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math>
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math>
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है <ref>{{cite book | title=डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ| first=Benjamin|last=Williamson | publisher=BiblioBazaar, LLC | year=2008 | pages=25–26 | isbn=978-0-559-47577-1}}</ref>
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है <ref>{{cite book | title=डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ| first=Benjamin|last=Williamson | publisher=BiblioBazaar, LLC | year=2008 | pages=25–26 | isbn=978-0-559-47577-1}}</ref>
Line 48: Line 35:
===उद्धरण===
===उद्धरण===
{{Main|भागफल नियम}}
{{Main|भागफल नियम}}
एक प्राकृतिक लघुगणक दो कार्यों के भागफल पर लागू किया जाता है
एक प्राकृतिक लघुगणक दो फलनों के भागफल पर लागू किया जाता है
<math display="block">f(x) = \frac{g(x)}{h(x)}</math>
<math display="block">f(x) = \frac{g(x)}{h(x)}</math>
भाग को घटाव में बदलना
भाग को घटाव में बदलना
<math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math>
<math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math>
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math>
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math>
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है
Line 64: Line 51:
प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है
प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है
<math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math>
<math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math>
विभेदन नियमों में श्रृंखला नियम और योग नियम को लागू करके विभेदन करने से परिणाम प्राप्त होते हैं
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
<math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math>
<math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math>
और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है
और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है
Line 74: Line 61:
गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए
गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए
<math display="block">f(x) = \prod_i (f_i(x))^{\alpha_i(x)}</math>
<math display="block">f(x) = \prod_i (f_i(x))^{\alpha_i(x)}</math>
कार्यात्मक घातांक वाले कार्यों का एक सीमित उत्पाद बनें।
कार्यात्मक घातांक वाले फलनों का एक सीमित उत्पाद बनें।


प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है
प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है
Line 95: Line 82:


{{Calculus topics}}
{{Calculus topics}}
  [Category:Logarith]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Collapse templates]]

Latest revision as of 11:53, 12 September 2023

गणना में, लघुगणकीय अवकलन एक ऐसी विधि है जिसका उपयोग किसी फलन के लघुगणकीय व्युत्पन्न को नियोजित करके व्युत्पन्न फलन (गणित) f के लिए किया जाता है। ,[1]

तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के लघुगणक को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक अवकलन उत्पादों को योगों में और विभाजनों को घटावों में बदलने के लिए श्रृंखला नियम के साथ-साथ लघुगणक के गुणों (विशेष रूप से, प्राकृतिक लघुगणक, या आधार ई (गणित) के लघुगणक) पर निर्भर करता है। [2][3] सिद्धांत को, कम से कम आंशिक रूप से, लगभग सभी भिन्न-भिन्न फलनों के अवकलन में लागू किया जा सकता है, बशर्ते कि ये कार्य गैर-शून्य हों।

अवलोकन

विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले सम्मिश्र फलनों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। [4] दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं [3]

उच्च क्रम व्युत्पन्न

फा डि ब्रूनो के सूत्र का उपयोग करते हुए, n-वें क्रम का लघुगणकीय व्युत्पन्न निम्न है,


अनुप्रयोग

उत्पाद

एक प्राकृतिक लघुगणक दो फलनों के उत्पाद पर लागू किया जाता है

उत्पाद को योग में बदलने के लिए
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है [5]
जो व्युत्पन्न के लिए उत्पाद नियम है।

उद्धरण

एक प्राकृतिक लघुगणक दो फलनों के भागफल पर लागू किया जाता है

भाग को घटाव में बदलना
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है
जो व्युत्पन्नों के लिए भागफल नियम है।

क्रियात्मक घातांक

प्रपत्र के एक फलन के लिए

प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं
और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है
घातांकीय फलन के संदर्भ में f को फिर से लिखकर और श्रृंखला नियम लागू करके वही परिणाम प्राप्त किया जा सकता है।

सामान्य स्तिथि

गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए

कार्यात्मक घातांक वाले फलनों का एक सीमित उत्पाद बनें।

प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है

और भेदभाव के बाद,
मूल फलन का व्युत्पन्न प्राप्त करने के लिए पुनर्व्यवस्थित करें,

यह भी देखें

टिप्पणियाँ

  1. Krantz, Steven G. (2003). कैलकुलस का रहस्योद्घाटन. McGraw-Hill Professional. p. 170. ISBN 0-07-139308-0.
  2. N.P. Bali (2005). गोल्डन डिफरेंशियल कैलकुलस. Firewall Media. p. 282. ISBN 81-7008-152-1.
  3. 3.0 3.1 Bird, John (2006). उच्च इंजीनियरिंग गणित. Newnes. p. 324. ISBN 0-7506-8152-7.
  4. Blank, Brian E. (2006). कैलकुलस, एकल चर. Springer. p. 457. ISBN 1-931914-59-1.
  5. Williamson, Benjamin (2008). डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ. BiblioBazaar, LLC. pp. 25–26. ISBN 978-0-559-47577-1.