सहानुभूतिपूर्ण समूह

From Vigyanwiki

सभी विशिष्ट एबेलियन उपसमूह चक्रीय के साथ परिमित समूहों के लिए, सममिती प्ररूप का समूह देखें।

गणित में, नाम सममिती समूह दो अलग-अलग, लेकिन निकटता से संबंधित, गणितीय समूहों के संग्रह को संदर्भित कर सकता है, जो धनात्मक पूर्णांक n और क्षेत्र F (सामान्य रूप से C या R) के लिए Sp(2n, F) और Sp(n) को दर्शाता है। बाद वाले को सुसंहति सममिती समूह कहा जाता है और इसे द्वारा भी निरूपित किया जाता है। कई लेखक आंशिक भिन्न संकेतन चयन करते हैं, जो सामान्य रूप से 2 के कारकों से भिन्न होते हैं। यहां उपयोग किए जाने वाले संकेतन सबसे सामान्य आव्यूह के आकार के अनुरूप होता हैं जो समूहों का प्रतिनिधित्व करते हैं। कार्टन के साधारण लाई बीजगणित के वर्गीकरण में, जटिल समूह Sp(2n, C) के लाई बीजगणित को Cn निरूपित किया जाता है, और Sp(n), Sp(2n, C) का सुसंहति वास्तविक समघात है। ध्यान दें कि जब हम (सुसंहति) सममिती समूह का उल्लेख करते हैं तो यह निहित होता है कि हम (सुसंहति) सममिती समूहों के संग्रह के बारे में अन्तः क्रिया कर रहे हैं, जो उनके आयाम n द्वारा अनुक्रमित हैं।

"सममिती समूह" नाम पिछले अस्पष्ट नामों (रेखा) जटिल समूह और एबेलियन रैखिक समूह के प्रतिस्थापन के रूप में हरमन वेइल के कारण है, और "जटिल" का ग्रीक एनालॉग है।

मेटाप्लेक्टिक समूह R पर सममिती समूह का दोहरा आवरण है; इसमें अन्य स्थानीय क्षेत्रों, परिमित क्षेत्रों और एडेल वलय के अनुरूप हैं।

Sp(2n, F)

सममिती समूह एक उत्कृष्ट समूह है जिसे क्षेत्र F पर 2n-आयामी सदिश समष्टि के रैखिक परिवर्तनों के समुच्चय के रूप में परिभाषित किया गया है जो एक गैर-पतित विषम सममित द्विरेखीय समघात को संरक्षित करता है। इस तरह के एक सदिश समष्टि को एक सममिती सदिश समष्टि कहा जाता है, और एक अमूर्त सममित सदिश समष्टि V के सममित समूह को Sp(V) द्वारा दर्शाया जाता है। V के लिए एक आधार निर्धारित करने पर, सममिति समूह आव्यूह गुणा के संचालन के अंतर्गत F में प्रविष्टियों के साथ 2n × 2n सममिति आव्यूह का समूह बन जाता है। इस समूह को Sp(2n, F) या Sp(n, F) द्वारा निरूपित किया जाता है यदि द्विरेखीय समघात को व्युत्क्रमणीय आव्यूह विषम सममित आव्यूह Ω द्वारा दर्शाया जाता है, तो

जहां MT, M का स्थानान्तरण है। प्रायः Ω को परिभाषित किया जाता है

जहां In सर्वसम आव्यूह है। इस स्थिति में, Sp(2n, F) उन ब्लॉक आव्यूह के रूप में व्यक्त किया जा सकता है, जहाँ तीन समीकरणों को संतुष्ट करना:

चूंकि सभी सममित आव्यूह में निर्धारक 1 है, सममिती समूह विशेष रैखिक समूह SL(2n, F) का एक उपसमूह होता है। जब n = 1, एक आव्यूह पर सममिती की स्थिति संतुष्ट होती है यदि और केवल यदि निर्धारक एक है, ताकि Sp(2, F) = SL(2, F) हो। और n > 1 के लिए, अतिरिक्त शर्तें हैं, अर्थात Sp(2n, F) तब SL(2n, F) का एक उपयुक्त उपसमूह होता है।

विशिष्ट रूप से, क्षेत्र F वास्तविक संख्या R या सम्मिश्र संख्या C का क्षेत्र है। इन स्थितियो में Sp(2n, F) वास्तविक/जटिल आयाम n(2n + 1) का एक वास्तविक/जटिल लाई समूह होते है। ये समूह जुड़े हुए हैं, लेकिन गैर-संहत होते हैं।

Sp(2n, F) के केंद्र (समूह सिद्धांत) मे आव्यूह I2n और I2n के होते हैं। जब तक कि क्षेत्र की विशेषता 2 नहीं है।[1] चूँकि Sp(2n, F) का केंद्र असतत है और इसका भागफल मापांक केंद्र एक साधारण समूह है, और Sp(2n, F) को एक साधारण लाई समूह माना जाता है।

इसी लाई बीजगणित की वास्तविक कोटि, और इसलिए लाई समूह Sp(2n, F) की कोटि n है।

Sp(2n, F) का लाई बीजगणित समुच्चय है

क्रमविनिमेयक को इसके लाई वर्ग के रूप में सुसज्जित किया गया है।[2] मानक विषम-सममित द्विरेखीय समघात के लिए, यह लाई बीजगणित सभी ब्लॉक आव्यूह का समुच्चय होता है। स्थितियों के अधीन होता है


Sp(2n, C)

सम्मिश्र संख्याओं के क्षेत्र में सममिती समूह एक सुसंहति समूह गैर-सुसंहति सरलता से जुड़ा हुआ सरल लाई समूह है।

Sp(2n, R)

Sp(n, C) वास्तविक समूह Sp(2n, R) का जटिलीकरण (लाई समूह) है। Sp(2n, R) एक वास्तविक, गैर-सुसंहति जुड़ा हुआ, सरल लाई समूह है।[3] इसके अतिरिक्त के अंतर्गत पूर्णांकों के समूह के लिए एक मौलिक समूह समरूपता है। साधारण लाई समूह के वास्तविक समघात के रूप में इसका लाई बीजगणित एक विखंडित लाई बीजगणित है।

Sp(2n, R) के कुछ अधिक गुण:

  • लाई बीजगणित Sp(2n, R) से समूह sp(2n, R) तक का घातीय मानचित्र विशेषण नहीं है। हालांकि, समूह के किसी भी तत्व को दो घातांकों के गुणनफल के रूप में दर्शाया जा सकता है।[4] दूसरे शब्दों में,

  • Sp(2n, R) में सभी S के लिए:
आव्यूह D धनात्मक-निश्चित और विकर्ण है I ऐसे Zs का समुच्चय Sp(2n, R) का एक गैर-संहत उपसमूह बनाता है जबकि U(n) एक सुसंहत उपसमूह बनाता है। इस वियोजन को 'यूलर' या 'ब्लोच-मसीहा' वियोजन के रूप में जाना जाता है।[5] उस विकिपीडिया पृष्ठ पर और अधिक सममिती आव्यूह गुण पाए जा सकते हैं।
  • लाई समूह के रूप में, Sp(2n, R) की प्रसमष्टि संरचना है। Sp(2n, R) के लिए प्रसमष्टि आयाम n(n+1) के सदिश समष्टि के साथ एकात्मक समूह U(n) के कार्टेशियन गुणनफल के लिए भिन्न है।[6]


अत्यंत सूक्ष्म जनित्र

सममिती लाई बीजगणित की इकाई sp(2n, F) हैमिल्टनियन आव्यूह होती हैं।

ये आव्यूह हैं, जैसे कि

जहाँ B और C सममिती आव्यूह हैं। व्युत्पत्ति के लिए उत्कृष्ट समूह देखें।

सममिती आव्यूह का उदाहरण

Sp(2, R) के लिए, निर्धारक 1 के साथ 2 × 2 मैट्रिसेस का समूह, तीन सममिती (0, 1)-आव्यूह हैं:[7]

Sp(2n, R)

यह पता चला है कि जनित्र का उपयोग करके अधिकतम स्पष्ट विवरण हो सकता है। यदि हम को सममित को निरूपित करते हैं तो आव्यूह, तब से उत्पन्न होता है जहां

के उपसमूह हैं। [8]पेज 173[9]पीजी 2

सममिती ज्यामिति के साथ संबंध

सममिती ज्यामिति, सममिती प्रसमष्टि का अध्ययन है। सममिती प्रसमष्टि पर किसी भी बिंदु पर स्पर्शी समष्‍टि एक सममिती सदिश समष्टि है।[10] जैसा कि पहले उल्लेख किया गया है, एक सममिती सदिश समष्टि के परिवर्तनों को संरक्षित करने वाली संरचना एक समूह बनाती है और यह समूह Sp(2n, F) है, जो समष्टि के आयाम और उस क्षेत्र पर निर्भर करता है जिस पर इसे परिभाषित किया गया है।

सममिती सदिश समष्टि अपने आप में सममिती प्रसमष्टि है। सममिती समूह के एक समूह संक्रिया (गणित) के अंतर्गत एक परिवर्तन के अर्थ में, एक सममिती-समरूपता का एक रैखिक संस्करण है जो एक अधिक सामान्य संरचना है जो एक सममिती प्रसमष्टि पर परिवर्तन को संरक्षित करता है।

Sp(n)

सुसंहति सममिती समूह[11] Sp(n), Sp(2n, C) का एकात्मक समूह के साथ प्रतिच्छेदन है:

इसे कभी-कभी USp(2n) के रूप में लिखा जाता है। वैकल्पिक रूप से, Sp(n) को GL(n, H) ( व्युत्क्रमणीय चतुष्कोणीय आव्यूह) के उपसमूह के रूप में वर्णित किया जा सकता है जो Hn पर मानक हर्मिटियन समघात को संरक्षित करता है:

अर्थात्, Sp(n) केवल चतुष्कोणीय एकात्मक समूह, U(n, H) है।[12] वास्तव में, इसे कभी-कभी अतिसक्रिय समूह कहा जाता है। साथ ही Sp(1) मानक 1 के चतुष्कोणों का समूह है, जो SU(2) के समतुल्य है और स्थैतिक रूप से एक 3-क्षेत्र S3 है

ध्यान दें कि Sp(n) पूर्व खंड के अर्थ में एक सममिती समूह नहीं है - यह एक गैर-पतित विषम-सममित को संरक्षित नहीं करता है H- द्विरेखीय समघात पर Hn शून्य को छोड़कर ऐसा कोई रूप नहीं है। बल्कि, यह Sp(2n, C) के एक उपसमूह के लिए समतुल्य है, और इसलिए दो बार आयाम के सदिश समष्टि में एक जटिल सममिति रूप को संरक्षित करता है। जैसा कि नीचे समझाया गया है, Sp(n) का लाइ बीजगणित जटिल सममिति लाइ बीजगणित sp(2n, C) का सुसंहत वास्तविक समघात है।

Sp(n) (वास्तविक) आयाम वाला एक वास्तविक लाई समूह n(2n + 1) है। यह सुसंहति समष्टि है और सरलता से जुड़ा हुआ है।[13] Sp(n) का लाई बीजगणित चतुष्कोणीय विषम-हर्मिटियन आव्यूह द्वारा दिया गया है, और n-द्वारा-n चतुष्कोणीय आव्यूह का समुच्चय जो संतुष्ट करता है।

जहाँ A का संयुग्मी स्थानांतरण A है। यहाँ एक चतुष्कोणीय संयुग्म लेता है। लाइ वर्ग क्रमविनिमेयक द्वारा दिया जाता है।

महत्वपूर्ण उपसमूह

कुछ मुख्य उपसमूह हैं:

इसके विपरीत यह स्वयं कुछ अन्य समूहों का एक उपसमूह है:

लाई बीजगणित sp(2) = so(5) और sp(1) = so(3) = su(2) की समरूपताएं भी हैं।

सममिती समूहों के बीच संबंध

प्रत्येक जटिल, अर्ध-सरल लाइ बीजगणित में एक विभाजित वास्तविक समघात और एक सुसंहत वास्तविक समघात को बाद के दो की एक सम्मिश्र समघात कहा जाता है।

Sp(2n, C) का लाई बीजगणित अर्धसरल है और इसे Sp(2n, C) के रूप में दर्शाया गया है। इसका विभाजित वास्तविक समघात Sp(2n, R) है और इसका सुसंहत वास्तविक समघात sp(n) है। ये क्रमशः लाइ समूहों Sp(2n, R) और Sp(n) के अनुरूप हैं।

बीजगणित sp(p, n − p), जो Sp(p, n − p) के लाइ बीजगणित हैं, सुसंहत समघात के समतुल्य अनिश्चित संकेत हैं।

भौतिक महत्व

उत्कृष्ट यांत्रिकी

सुसंहति सममिती समूह Sp(n) उत्कृष्ट भौतिकी में पोइसन वर्ग को संरक्षित करने वाले विहित निर्देशांक की समरूपता के रूप में सामने आता है।

n कणों की एक प्रणाली पर विचार करें, जो हैमिल्टन के समीकरणों के अंतर्गत विकसित हो रही है, जिसकी स्थिति एक निश्चित समय पर प्रावस्था-समष्टि में विहित निर्देशांक के वेक्टर द्वारा निरूपित की जाती है,

समूह Sp(2n, R) के तत्व, एक निश्चित अर्थ में, इस सदिश पर विहित रूपांतरण हैं, अर्थात वे हैमिल्टन के समीकरणों के रूप को संरक्षित करते हैं।[14][15] यदि

नए विहित निर्देशांक हैं, फिर, एक बिंदु के साथ समय व्युत्पन्न को दर्शाता है,

जहाँ

सभी T और प्रावस्था समष्टि में सभी Z के लिए होता है।[16]

रिमेंनियन प्रसमष्टि के विशेष स्थिति के लिए, हैमिल्टन के समीकरण उस प्रसमष्टि पर अल्पांतरी का वर्णन करते हैं। निर्देशांक अंतर्निहित प्रसमष्टि पर रहते हैं, और संवेग कोटिस्पर्शी बंडल में रहते हैं। यही कारण है कि इन्हें परंपरागत रूप से ऊपरी और निचले सूचकांकों के साथ लिखा जाता है; यह उनके स्थानों को अलग करना है। इसी हैमिल्टनियन में विशुद्ध रूप से गतिज ऊर्जा होती है। जहाँ आव्यूह प्रदिश का व्युत्क्रम रीमैनियन प्रसमष्टि पर है।[17][15] वास्तव में, किसी भी सरल प्रसमष्टि के कोटिस्पर्शी बंडल को एक प्रमाणिक तरीके से एक सममिती प्रसमष्टि दिया जा सकता है, जिसमें सममिती समघात को पुनरावृत्‍ति एक प्ररूप के बाहरी अवकल के रूप में परिभाषित किया जाता है।[18]


क्वांटम यांत्रिकी

n कणों की एक प्रणाली पर विचार करें जिसका क्वांटम अवस्था इसकी स्थिति और गति को कूटबद्ध करता है। ये निर्देशांक सतत चर हैं और इसलिए हिल्बर्ट समष्टि, जिसमें अवस्था रहती है, और अनंत-आयामी है। यह प्रायः इस स्थिति के विश्लेषण को कठिन बना देता है। प्रावस्था-समष्‍टि में हाइजेनबर्ग समीकरण के अंतर्गत स्थिति और गति संक्रिया के विकास पर विचार करने के लिए एक वैकल्पिक दृष्टिकोण है।

प्रामाणिक निर्देशांक के सदिश का निर्माण करें,

प्रामाणिक रूपान्तरण संबंध के रूप में व्यक्त किया जा सकता है

जहाँ

In और n × n सर्वसम आव्यूह है।

कई भौतिक स्थितियों के लिए केवल समघात हैमिल्टनियन (क्वांटम यांत्रिकी) की आवश्यकता होती है, जो कि समघात का हैमिल्टनियन है

जहाँ K एक 2n × 2n वास्तविक सममित आव्यूह है। यह एक उपयोगी प्रतिबंध प्रमाणित होता है और हमें हाइजेनबर्ग समीकरण को पुनः लिखने की स्वीकृति देता है

इस समीकरण के समाधान को प्रामाणिक रूपान्तरण संबंध को बनाए रखना चाहिए। यह दिखाया जा सकता है कि इस प्रणाली का समय विकास सममिती समूह Sp(2n, R) की संक्रिया (गणित) के बराबर है।

यह भी देखें

टिप्पणियाँ

  1. "Symplectic group", Encyclopedia of Mathematics Retrieved on 13 December 2014.
  2. Hall 2015 Prop. 3.25
  3. "Is the symplectic group Sp(2n, R) simple?", Stack Exchange Retrieved on 14 December 2014.
  4. "Is the exponential map for Sp(2n, R) surjective?", Stack Exchange Retrieved on 5 December 2014.
  5. "Standard forms and entanglement engineering of multimode Gaussian states under local operations – Serafini and Adesso", Retrieved on 30 January 2015.
  6. "Symplectic Geometry – Arnol'd and Givental", Retrieved on 30 January 2015.
  7. Symplectic Group, (source: Wolfram MathWorld), downloaded February 14, 2012
  8. Gerald B. Folland. (2016). चरण अंतरिक्ष में हार्मोनिक विश्लेषण. Princeton: Princeton Univ Press. p. 173. ISBN 978-1-4008-8242-7. OCLC 945482850.
  9. Habermann, Katharina, 1966- (2006). सहानुभूतिपूर्ण डायराक ऑपरेटरों का परिचय. Springer. ISBN 978-3-540-33421-7. OCLC 262692314.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. "Lecture Notes – Lecture 2: Symplectic reduction", Retrieved on 30 January 2015.
  11. Hall 2015 Section 1.2.8
  12. Hall 2015 p. 14
  13. Hall 2015 Prop. 13.12
  14. Arnold 1989 gives an extensive mathematical overview of classical mechanics. See chapter 8 for symplectic manifolds.
  15. 15.0 15.1 Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X
  16. Goldstein 1980, Section 9.3
  17. Jurgen Jost, (1992) Riemannian Geometry and Geometric Analysis, Springer.
  18. da Silva, Ana Cannas (2008). सिम्प्लेक्टिक ज्यामिति पर व्याख्यान. Lecture Notes in Mathematics. Vol. 1764. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 9. doi:10.1007/978-3-540-45330-7. ISBN 978-3-540-42195-5.


संदर्भ