चार ग्रेडिएंट

From Vigyanwiki

विभेदक ज्यामिति में, चार-ग्रेडिएंट (या 4-ग्रेडिएंट) सदिश कलन से चार- सदिश रेखीय ग्रेडिएंट है।

विशेष सापेक्षता और क्वांटम यांत्रिकी में, चार-ग्रेडिएंट का उपयोग विभिन्न भौतिक चार-सदिश और टेंसर के बीच गुणों और संबंधों को परिभाषित करने के लिए किया जाता है।

संकेतन

यह लेख (+ − − −) मीट्रिक हस्ताक्षर उपयोग करता है।

SR और GR क्रमशः विशेष सापेक्षता और सामान्य सापेक्षता के संक्षिप्त रूप हैं।

निर्वात में प्रकाश की गति को दर्शाता है।

SR का फ्लैट समष्टिटाइम मीट्रिक टेंसर है।

भौतिकी में चार-सदिश व्यंजकों को लिखने के वैकल्पिक तरीके हैं:

  • चार-सदिश शैली का उपयोग किया जा सकता है: , जो सामान्यतः अधिक सघन (कॉम्पैक्ट) होता है और सदिश अंकन का उपयोग कर सकता है, (जैसे कि आंतरिक उत्पाद डॉट), हमेशा चार-सदिश का प्रतिनिधित्व करने के लिए बोल्ड अपरकेस का उपयोग करता है, और बोल्ड लोअरकेस का उपयोग 3-समष्टि सदिश का प्रतिनिधित्व करने के लिए करता है, उदा। . अधिकांश 3-समष्टि सदिश नियमों में चार-सदिश गणित में अनुरूप हैं।
  • रिक्की कैलकुलस शैली का उपयोग किया जा सकता है: , जो टेन्सर सूचकांक अंकन का उपयोग करता है और अधिक सम्मिश्र एक्सप्रेशन के लिए उपयोगी है, विशेष रूप से वे जिसमें एक से अधिक इंडेक्स वाले टेंसर सम्मिलित हैं, जैसे .

लैटिन टेंसर इंडेक्स रेंज में है {1, 2, 3}, और एक 3-समष्टि सदिश का प्रतिनिधित्व करता है, उदा। .

ग्रीक टेंसर इंडेक्स की सीमा होती है {0, 1, 2, 3}, और 4-सदिश का प्रतिनिधित्व करता है, उदा। .

SR भौतिकी में, सामान्यतः संक्षिप्त मिश्रण का उपयोग किया जाता है, उदा। , जहाँ लौकिक घटक का और स्थानिक 3-घटक का प्रतिनिधित्व करता है।

SR में टेंसर सामान्यतः 4D होते हैं -टेंसर, के साथ ऊपरी सूचकांक और निम्न सूचकांक, 4D के साथ 4 आयाम दर्शाता है = प्रत्येक सूचकांक द्वारा लिए जा सकने वाले मानों की संख्या।

मिन्कोवस्की मीट्रिक में उपयोग किया जाने वाला टेन्सर संकुचन दोनों तरफ जा सकता है (आइंस्टीन संकेतन देखें):[1]: 56, 151–152, 158–161 


परिभाषा

चार-सदिश और रिक्की कैलकुलस अंकन पद्धति में सघन रूप से लिखे गए 4-ग्रेडिएंट सहसंयोजक घटक हैं:[2][3]: 16 

ऊपर पिछले भाग में अल्पविराम 4-स्थिति के संबंध में आंशिक विभेदन का तात्पर्य है।

प्रतिपरिवर्ती घटक हैं:[2][3]: 16 

वैकल्पिक प्रतीक हैं और D (यद्यपि भी संकेत कर सकता है d'अलेम्बर्ट संचालक के रूप में)।

GR में, किसी को अधिक सामान्य मीट्रिक टेन्सर (सामान्य सापेक्षता) का उपयोग करना चाहिए और टेन्सर सहपरिवर्ती व्युत्पन्न ( सदिश 3-ग्रेडिएंट के साथ भ्रमित न हों)।

सहपरिवर्ती व्युत्पन्न 4-ग्रेडिएंट साथ ही क्रिस्टोफेल प्रतीकों के माध्यम से समष्टिटाइम वक्रता प्रभाव सम्मिलित है।

मजबूत तुल्यता सिद्धांत के रूप में कहा जा सकता है:[4]: 184 

कोई भी भौतिक नियम जिसे SR में टेन्सर नोटेशन में व्यक्त किया जा सकता है, एक घुमावदार समष्टिटाइम के स्थानीय रूप से जड़त्वीय फ्रेम में ठीक उसी रूप में होता है।SR में 4-ग्रेडिएंट कॉमा (,) को क्रिस्टोफेल प्रतीकों का उपयोग करके दोनों के बीच संबंध के साथ, GR में सहसंयोजक व्युत्पन्न अर्ध-कॉलन (;) में बदल दिया जाता है। इसे सापेक्षता भौतिकी में अर्धविराम नियम के अल्पविराम के रूप में जाना जाता है।

तो, उदाहरण के लिए, अगर SR में, फिर GR में है।

(1,0)-टेंसर या 4-सदिश पर यह होगा:[4]: 136–139 

एक (2,0)-टेंसर पर यह होगा:


उपयोग

विशेष आपेक्षिकता (SR) में 4-ग्रेडिएंट का उपयोग कई अलग-अलग तरीकों से किया जाता है:

इस पूरे लेख में SR के फ्लैट समष्टिटाइम मिन्कोवस्की अंतरिक्ष के लिए सूत्र सभी सही हैं, लेकिन सामान्य सापेक्षता (GR) के अधिक सामान्य वक्र समष्टि निर्देशांक के लिए संशोधित किया जाना है।

4-डायवर्जेंस और संरक्षण नियमो के स्रोत के रूप में

डायवर्जेंस एक सदिश संचालक है जो प्रत्येक बिंदु पर वेक्टर फ़ील्ड के स्रोत की मात्रा देते हुए एक हस्ताक्षरित स्केलर फ़ील्ड उत्पन्न करता है। ध्यान दें कि इस मीट्रिक हस्ताक्षर [+,−,−,−] में 4-ग्रेडिएंट में एक ऋणात्मक स्थानिक घटक है। 4डी डॉट उत्पाद लेते समय यह रद्द हो जाता है क्योंकि मिंकोव्स्की मेट्रिक विकर्ण [+1,−1,−1,−1] है।

4-स्थिति का 4-डायवर्जेंस समष्टिटाइम का आयाम देता है:

4-धारा घनत्व का 4-डायवर्जेंस
एक कान्सर्वैशन नियम देता है - आवेश संरक्षण:[1]: 103–107 
इसका मतलब है कि चार्ज घनत्व के परिवर्तन की समय दर धारा घनत्व के ऋणात्मक स्थानिक डायवर्जेंस के बराबर होनी चाहिए .

दूसरे शब्दों में, एक बॉक्स के अंदर का चार्ज केवल अक्रमतः से नहीं बदल सकता है, इसे प्रवेश करना चाहिए और एक धारा के माध्यम से बॉक्स छोड़ देना चाहिए। यह एक निरंतरता समीकरण है।

4-नंबर फ्लक्स (4-डस्ट) की 4-डायवर्जेंस पार्टिकल्स कंजर्वेशन में प्रयुक्त होता है:[4]: 90–110 

यह कण संख्या घनत्व के लिए एक कंजर्वेशन नियम है, सामान्यतः बेरोन संख्या घनत्व जैसा कुछ।

विद्युत चुम्बकीय 4-पोटेंशियल की 4-डायवर्जेंस लॉरेंज गेज स्थिति में प्रयोग किया जाता है:[1]: 105–107 

यह EM 4-क्षमता के लिए एक कंजर्वेशन नियम के बराबर है।

ट्रांसवर्स ट्रेसलेस 4d (2,0)-टेंसर का 4-डायवर्जेंस कमजोर क्षेत्र की सीमा में गुरुत्वाकर्षण विकिरण का प्रतिनिधित्व करना (यानी स्रोत से दूर स्वतंत्र रूप से प्रचार करना)।

अनुप्रस्थ अवस्था

मुक्त रूप से गुरुत्वाकर्षण तरंगों के प्रसार के लिए संरक्षण समीकरण के बराबर है।

स्ट्रेस-ऊर्जा टेंसर का 4-डायवर्जेंस समष्टिटाइम अनुवाद (भौतिकी) से जुड़े संरक्षित नोएदर के प्रमेय के रूप में, SR में चार संरक्षण नियम देता है:[4]: 101–106 

ऊर्जा का संरक्षण (अस्थायी दिशा) और रैखिक गति का संरक्षण (3 अलग-अलग स्थानिक दिशाएँ)।

इसे प्रायः इस प्रकार लिखा जाता है:
जहाँ यह समझा जाता है कि एकल शून्य वास्तव में 4-सदिश शून्य है।

जब स्ट्रेस-ऊर्जा टेंसर का संरक्षण () एक आदर्श द्रव के लिए कण संख्या घनत्व के संरक्षण के साथ संयुक्त है (), दोनों 4-ग्रेडिएंट का उपयोग करते हुए, आपेक्षिकीय यूलर समीकरण प्राप्त कर सकते हैं, जो द्रव यांत्रिकी और खगोल भौतिकी में यूलर समीकरणों (द्रव गतिकी) का एक सामान्यीकरण है जो विशेष सापेक्षता के प्रभावों के लिए खाता है। ये समीकरण चिरसम्मत यूलर समीकरणों को कम करते हैं यदि द्रव 3-अंतरिक्ष वेग चिरसम्मत यांत्रिकी है, प्रकाश की गति की तुलना में विशेष सापेक्षता के न्यूटनियन सन्निकटन, दबाव ऊर्जा घनत्व की तुलना में बहुत कम है, और बाद में शेष द्रव्यमान घनत्व का प्रभुत्व होता है।

फ्लैट समष्टिटाइम में और कार्टेशियन निर्देशांक का उपयोग करते हुए, यदि कोई इसे स्ट्रेस-ऊर्जा टेंसर की समरूपता के साथ जोड़ता है, तो कोई यह दिखा सकता है कि कोणीय गति (सापेक्ष कोणीय गति) भी संरक्षित है:

जहां यह शून्य वास्तव में एक (2,0)-टेंसर शून्य है।

SR मिन्कोव्स्की मीट्रिक टेंसर के लिए जैकोबियन मैट्रिक्स के रूप में

जेकोबियन मैट्रिक्स सदिश-मूल्यवान फलन के सभी प्रथम-क्रम आंशिक डेरिवेटिव का मैट्रिक्स (गणित) है।

4-ग्रेडिएंट 4-स्थिति पर अभिनय SR मिन्कोव्स्की अंतरिक्ष मीट्रिक देता है:[3]: 16 

मिन्कोव्स्की मीट्रिक के लिए, घटक ( योग नहीं किया गया), गैर-विकर्ण घटकों के साथ सभी शून्य है।

कार्तीय मिन्कोवस्की मीट्रिक के लिए, यह देता है।

सामान्यतः , जहॉं 4D क्रोनकर डेल्टा है।

लोरेंत्ज़ परिवर्तनों को परिभाषित करने के तरीके के रूप में

लोरेंत्ज़ परिवर्तन को टेंसर रूप में लिखा गया है[4]: 69 

और तबसे बस स्थिरांक हैं, फिर
इस प्रकार, 4-ग्रेडिएंट की परिभाषा के अनुसार
यह पहचान मौलिक है। 4-ग्रेडिएंट के घटक 4-वेक्टर के घटकों के व्युत्क्रम के अनुसार परिवर्तन करते हैं। तो 4-ग्रेडिएंट एक प्रारूपिक एक-रूप है।

कुल उचित समय व्युत्पन्न के भाग के रूप में

4-वेग का अदिश गुणनफल 4-ग्रेडिएंट के साथ उचित समय के संबंध में कुल व्युत्पन्न देता है :[1]: 58–59 

यह तथ्य कि एक लोरेंट्ज़ स्केलर अपरिवर्तनीय दिखाता है कि उचित समय के संबंध में कुल व्युत्पन्न इसी तरह लोरेंत्ज़ स्केलर इनवेरिएंट है।

इसलिए, उदाहरण के लिए, 4-वेग 4-स्थिति का व्युत्पन्न है उचित समय के संबंध में:

या
एक अन्य उदाहरण, 4-त्वरण 4-वेग का उचित समय व्युत्पन्न है:
या

फैराडे विद्युत चुम्बकीय टेंसर को परिभाषित करने और मैक्सवेल समीकरण प्राप्त करने के तरीके के रूप में

फैराडे विद्युत चुम्बकीय टेंसर गणितीय वस्तु है जो एक भौतिक प्रणाली के समष्टिटाइम में विद्युत चुम्बकीय क्षेत्र का वर्णन करती है।[1]: 101–128 [5]: 314[3]: 17–18 [6]: 29–30 [7]: 4 

एक एंटीसिमेट्रिक टेन्सर बनाने के लिए 4-ग्रेडिएंट को लागू करने पर, यह प्राप्त होता है:

जहॉं:

  • विद्युत चुम्बकीय 4-पोटेंशियल , 4-त्वरण से अस्पष्ट न हों।
  • विद्युत अदिश विभव है।
  • चुंबकीय 3-समष्टि सदिश क्षमता है।

4-ग्रेडिएंट को फिर से लागू करके, और 4-करंट डेंसिटी को इस रूप में परिभाषित करना कोई मैक्सवेल समीकरणो के टेन्सर रूप को प्राप्त कर सकता है:

जहां दूसरी पंक्ति बियांची पहचान (जैकोबी पहचान) का एक संस्करण है।

4-सदिशतरंग को परिभाषित करने के एक तरीके के रूप में

सदिशतरंग एक सदिश (ज्यामितीय) है जो एक तरंग का वर्णन करने में मदद करता है। किसी भी सदिश की तरह, इसका एक यूक्लिडियन सदिश है, जो दोनों महत्वपूर्ण हैं: इसका परिमाण या तो तरंग की तरंग संख्या या कोणीय तरंग संख्या है (तरंग दैर्ध्य के व्युत्क्रमानुपाती), और इसकी दिशा सामान्य रूप से तरंग प्रसार की दिशा है

4-वेवसदिश ऋणात्मक चरण का 4-ग्रेडिएंट है मिन्कोवस्की अंतरिक्ष में तरंग की (या चरण की ऋणात्मक 4-ग्रेडिएंट):[6]: 387 

यह गणितीय रूप से एक तरंग (या अधिक विशेष रूप से एक समतल तरंग) के चरण (तरंगों) की परिभाषा के बराबर है:
जहां 4-स्थिति , लौकिक कोणीय आवृत्ति है, स्थानिक 3-समष्टि सदिशतरंग है, और लोरेंट्ज़ स्केलर अपरिवर्तनीय चरण है।

इस धारणा के साथ कि समतल तरंग और के स्पष्ट कार्य नहीं हैं या .

SR समतल तरंग का स्पष्ट रूप के रूप में लिखा जा सकता है:[7]: 9 

जहॉं एक (संभवतः सम्मिश्र संख्या) आयाम है।

एक सामान्य तरंग एकाधिक समतल तरंगों का सुपरपोज़िशन सिद्धांत होगा:

फिर से 4-ग्रेडिएंट का उपयोग करके,
या
जो सम्मिश्र-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है।

डी'अलेम्बर्टियन संचालक के रूप में

विशेष सापेक्षता, विद्युत चुंबकत्व और तरंग सिद्धांत में, डी'अलेम्बर्ट संचालक, जिसे डी'अलेम्बर्टियन या तरंग संचालक भी कहा जाता है, मिंकोव्स्की अंतरिक्ष का लाप्लास संचालक है। संचालक का नाम फ्रांसीसी गणितज्ञ और भौतिक विज्ञानी जीन ले रोंड डी एलेम्बर्ट के नाम पर रखा गया है।

4-लाप्लासियन का वर्ग है, जिसे डी'अलेम्बर्ट संचालक कहा जाता है:[5]: 300[3]: 17‒18 [6]: 41 [7]: 4 

जैसा कि यह दो 4-सदिशों का डॉट उत्पाद है, डी'अलेम्बर्टियन एक लोरेंत्ज़ अपरिवर्तनीय स्केलर है।

कभी-कभी, 3-आयामी संकेतन के अनुरूप, प्रतीक और क्रमशः 4-ग्रेडिएंट और डी'अलेम्बर्टियन के लिए उपयोग किया जाता है। अधिक सामान्यतः यद्यपि, प्रतीक डी'अलेम्बर्टियन के लिए आरक्षित है।

4-ग्रेडिएंट के कुछ उदाहरण जैसा कि डी'अलेम्बर्टियन में उपयोग किया गया है:

क्लेन-गार्डन में स्पिन-0 कणों के लिए क्वांटम तरंग समीकरण (उदाहरण: हिग्स बोसॉन)

विद्युत चुम्बकीय क्षेत्र के लिए तरंग समीकरण में (लॉरेंज गेज का उपयोग करके ):

  • निर्वात में:
  • 4-धारा स्रोत के साथ, स्पिन के प्रभाव सम्मिलित नहीं हैं:
  • स्पिन के प्रभाव सहित क्वांटम इलेक्ट्रोडायनामिक्स स्रोत के साथ:

जहॉं:

  • विद्युत चुम्बकीय 4-पोटेंशियल एक विद्युत चुम्बकीय सदिश विभव है।
  • 4-धारा घनत्व एक विद्युत चुम्बकीय धारा घनत्व है।
  • डिराक गामा मैट्रिसेस स्पिन के प्रभाव प्रदान करें।

गुरुत्वाकर्षण तरंग के तरंग समीकरण में (समान लॉरेंज गेज का उपयोग करके )[6]: 274–322 

जहॉं कमजोर क्षेत्र की सीमा में गुरुत्वाकर्षण विकिरण का प्रतिनिधित्व करने वाला अनुप्रस्थ ट्रेसलेस 2-टेंसर है (अर्थात स्रोत से दूर तक स्वतंत्र रूप से प्रचार करना)।

आगे की शर्तें हैं:

  • विशुद्ध रूप से स्थानिक:
  • ट्रेसलेस:
  • अनुप्रस्थ:

ग्रीन के कार्य के 4-आयामी संस्करण में:

जहां 4D डेल्टा फलन है:


4डी गॉस प्रमेय / स्टोक्स प्रमेय / डायवर्जेंस प्रमेय के एक घटक के रूप में

सदिश कलन में, डायवर्जेंस प्रमेय, जिसे गॉस के प्रमेय या ओस्ट्रोग्रैडस्की के प्रमेय के रूप में भी जाना जाता है, एक परिणाम है जो सतह (गणित) के माध्यम से सदिश क्षेत्र के प्रवाह (अर्थात् प्रवाह) को सतह के अंदर सदिश क्षेत्र के व्यवहार से संबंधित करता है। अधिक सटीक रूप से, डायवर्जेंस प्रमेय बताता है कि एक बंद सतह के माध्यम से एक सदिश क्षेत्र का बाहरी प्रवाह सतह के अंदर के क्षेत्र में डायवर्जेंस के आयतन अभिन्न के बराबर है। सहज रूप से, यह बताता है कि सभी स्रोतों का योग घटाकर सभी सिंकों का योग एक क्षेत्र से शुद्ध प्रवाह देता है। सदिश कलन में, और अधिक सामान्यतः अंतर ज्यामिति, स्टोक्स प्रमेय (सामान्यीकृत स्टोक्स प्रमेय भी कहा जाता है) कई गुना पर अंतर रूपों के एकीकरण के बारे में एक बयान है, जो सदिश कैलकुस से कई प्रमेयों को सरल और सामान्यीकृत करता है।

या
जहॉं

  • में परिभाषित एक 4-सदिश क्षेत्र है।
  • का 4-डायवर्जेंस है।
  • का घटक दिशा के साथ है।
  • Minkowski समष्टिटाइम का एक 4D सरलता से जुड़ा क्षेत्र है।
  • अपने स्वयं के 3D आयतन तत्व के साथ इसकी 3D सीमा है।
  • बाहर की ओर इशारा करने वाला सामान्य है।
  • 4D अंतर आयतन तत्व है।

सापेक्षतावादी विश्लेषणात्मक यांत्रिकी में SR हैमिल्टन-जैकोबी समीकरण के एक घटक के रूप में

हैमिल्टन-जैकोबी समीकरण (एचजेई) चिरसम्मत यांत्रिकी का सूत्रीकरण है, जो न्यूटन के गति के नियमों, लैग्रैंगियन यांत्रिकी और हैमिल्टनियन यांत्रिकी जैसे अन्य योगों के बराबर है। हैमिल्टन-जैकोबी समीकरण यांत्रिक प्रणालियों के लिए संरक्षित मात्राओं की पहचान करने में विशेष रूप से उपयोगी है, जो तब भी संभव हो सकता है जब यांत्रिक समस्या को पूरी तरह से हल नहीं किया जा सकता है। एचजेई भी यांत्रिकी का एकमात्र सूत्रीकरण है जिसमें एक कण की गति को तरंग के रूप में दर्शाया जा सकता है। इस अर्थ में, एचजेई ने प्रकाश के प्रसार और एक कण की गति के बीच एक सादृश्य खोजने के लिए सैद्धांतिक भौतिकी (कम से कम 18 वीं शताब्दी में जोहान बर्नौली से डेटिंग) के लंबे समय से चले आ रहे लक्ष्य को पूरा किया।

सामान्यीकृत सापेक्षतावादी गति एक कण के रूप में लिखा जा सकता है[1]: 93–96 

जहॉं और

यह अनिवार्य रूप से 4-कुल गति है प्रणाली में; न्यूनतम युग्मन नियम का उपयोग करके एक क्षेत्र (भौतिकी) में एक परीक्षण कण है। कण का अंतर्निहित संवेग है , वेक्टर क्षमता के साथ अंतःक्रिया के कारण प्लस गति कण आवेश के माध्यम से है।

सापेक्षवादी हैमिल्टन-जैकोबी समीकरण क्रिया (भौतिकी) के ऋणात्मक 4-ग्रेडिएंट के बराबर कुल गति को निर्धारित करके प्राप्त किया जाता है।

अस्थायी घटक देता है:

स्थानिक घटक देते हैं:

जहॉं हैमिल्टनियन है।

यह वास्तव में 4-वेवसदिश से संबंधित है जो ऊपर से चरण के ऋणात्मक 4-ग्रेडिएंट के बराबर है। एचजेई प्राप्त करने के लिए, पहले 4-मोमेंटम पर लोरेंत्ज़ स्केलर इनवेरिएंट नियम का उपयोग करता है:

लेकिन न्यूनतम युग्मन नियम से:
इसलिए:
अस्थायी और स्थानिक घटकों में तोड़ना:
जहां अंतिम सापेक्षवादी हैमिल्टन-जैकोबी समीकरण है।

क्वांटम यांत्रिकी में श्रोडिंगर संबंधों के एक घटक के रूप में

4-ग्रेडिएंट क्वांटम यांत्रिकी से जुड़ा है।

श्रोडिंगर क्यूएम संबंध 4-गति के बीच संबंध और 4-ग्रेडिएंट श्रोडिंगर समीकरण देता है।[7]: 3–5 

अस्थायी घटक देता है:

स्थानिक घटक देते हैं:

यह वास्तव में दो अलग-अलग चरणों से बना हो सकता है।

पहला:[1]: 82–84 

जो का पूर्ण 4-सदिश संस्करण है:

(अस्थायी घटक) प्लैंक-आइंस्टीन संबंध

(स्थानिक घटक) डी ब्रोग्ली मैटर वेव संबंध

दूसरा:[5]: 300

जो सम्मिश्र-मूल्यवान समतल तरंगों के लिए तरंग समीकरण का सिर्फ 4-ग्रेडिएंट संस्करण है।

अस्थायी घटक देता है:

स्थानिक घटक देते हैं:

क्वांटम रूपान्तरण संबंध के सहसंयोजक रूप के एक घटक के रूप में

क्वांटम यांत्रिकी (भौतिकी) में, में, कैननिकल कम्यूटेशन संबंध, कैननिकल संयुग्म मात्राओं ( जो परिभाषा के अनुसार संबंधित हैं) के बीच मौलिक संबंध है, जैसे कि एक दूसरे का फोरियर ट्रांसफ़ॉर्म है।

  • के अनुसार:[7]: 4 
  • स्थानिक घटकों को लेना,
  • तब से ,
  • तब से ,
  • और, पुन: लेबलिंग सूचकांक सामान्य क्वांटम कम्यूटेशन नियम देता है:


आपेक्षिक क्वांटम यांत्रिकी में तरंग समीकरणों और प्रायिकता धाराओं के एक घटक के रूप में

4-ग्रेडिएंट सापेक्षतावादी तरंग समीकरणों में से कई में एक घटक है:[5]: 300–309[3]: 25, 30–31, 55–69 

क्लेन-गॉर्डन समीकरण में। स्पिन-0 कणों के लिए क्लेन-गॉर्डन सापेक्षतावादी क्वांटम तरंग समीकरण (उदा। हिग्स बोसोन):[7]: 5 

स्पिन-1/2 कणों (पूर्व इलेक्ट्रॉनों) के लिए डायराक समीकरण में:[7]: 130 
जहॉं डिराक मेट्रिसेस हैं और सापेक्षतावादी तरंग फलन है।

क्लेन-गॉर्डन समीकरण के लिए लोरेंत्ज़ अदिश है, और डायराक समीकरण के लिए एक डिराक स्पिनर है।

यह अच्छा है कि गामा मैट्रिसेस स्वयं SR के मूलभूत पहलू, मिंकोव्स्की मीट्रिक को संदर्भित करते हैं:[7]: 130 

4-प्रायिकता धारा घनत्व का संरक्षण निरंतरता समीकरण से होता है:[7]: 6 
प्रायिकता धारा|4-प्रायिकता धारा घनत्व में सापेक्षिक रूप से सहपरिवर्ती व्यंजक होता है:[7]: 6 
4-प्रभारी धारा घनत्व सिर्फ चार्ज है (q) 4-प्रायिकता धारा घनत्व का गुना:[7]: 8 


विशेष आपेक्षिकता से क्वांटम यांत्रिकी और आपेक्षिकीय क्वांटम तरंग समीकरण प्राप्त करने में एक प्रमुख घटक के रूप में

सहसंयोजक होने के लिए सापेक्ष तरंग समीकरण 4-सदिश का उपयोग करते हैं।[3][7]

मानक SR 4-सदिश से प्रारंभ करें:[1]*4-स्थिति

  • 4- वेग
  • 4-गति
  • 4-वेवसदिश
  • 4-ग्रेडिएंट

पिछले अनुभागों से निम्नलिखित सरल संबंधों पर ध्यान दें, जहां प्रत्येक 4-सदिश लोरेंत्ज़ स्केलर द्वारा दूसरे से संबंधित है:

  • 4- वेग , जहॉं उचित समय है
  • 4-गति , जहॉं शेष द्रव्यमान है
  • 4-वेवसदिश , जो प्लैंक-आइंस्टीन संबंध और डी ब्रोगली मैटर वेव संबंध का 4-सदिश संस्करण है
  • 4-ग्रेडिएंट , जो सम्मिश्र-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है

अब, मानक लोरेन्ट्ज़ स्केलर उत्पाद नियम को हर एक पर लागू करें:

अंतिम समीकरण (4-ग्रेडिएंट स्केलर उत्पाद के साथ) मौलिक क्वांटम संबंध है।

जब लोरेंत्ज़ स्केलर फ़ील्ड पर लागू किया जाता है , क्लेन-गॉर्डन समीकरण प्राप्त करता है, जो क्वांटम सापेक्षतावादी तरंग समीकरणों का सबसे बुनियादी है:[7]: 5–8 

श्रोडिंगर समीकरण कम-वेग सीमित स्थिति (गणित) है (|v| ≪ c) क्लेन-गॉर्डन समीकरण का।[7]: 7–8 

यदि क्वांटम संबंध को 4-सदिश क्षेत्र पर लागू किया जाता है लोरेंत्ज़ स्केलर फ़ील्ड के अतिरिक्त , तो किसी को प्रोका समीकरण मिलता है:[7]: 361 

यदि बाकी द्रव्यमान शब्द शून्य (प्रकाश जैसे कण) पर सेट है, तो यह मुक्त मैक्सवेल समीकरण देता है:
न्यूनतम युग्मन नियम का उपयोग करके अधिक सम्मिश्र रूपों और अंतःक्रियाओं को प्राप्त किया जा सकता है:

RQM सहसंयोजक व्युत्पन्न (आंतरिक कण रिक्त स्थान) के एक घटक के रूप में

आधुनिक प्राथमिक कण कण भौतिकी में, गेज सहसंयोजक व्युत्पन्न को परिभाषित किया जा सकता है जो अतिरिक्त RQM फ़ील्ड्स (आंतरिक कण रिक्त स्थान) का उपयोग करता है जो अब अस्तित्व में है।

चिरसम्मत EM (नैसर्गिक इकाइयों में) से ज्ञात संस्करण है:[3]: 39 

मानक मॉडल की मौलिक बातचीत के लिए पूर्ण सहसंयोजक व्युत्पन्न जिसके बारे में हम धारा में ( नैसर्गिक इकाइयों में) जानते हैं:[3]: 35–53 

या
जहां अदिश गुणन योग () यहां आंतरिक रिक्त स्थान देखें, टेंसर इंडेक्स नहीं:

युग्मन स्थिरांक यादृच्छिक संख्याएँ हैं जिन्हें प्रयोग से खोजा जाना चाहिए। यह जोर देने योग्य है कि गैर-अबेलियन गेज सिद्धांत के लिए परिवर्तन एक बार एक निरूपण के लिए नियत हैं, वे सभी निरूपणों के लिए जाने जाते हैं।

इन आंतरिक कण स्थानों को आनुभविक रूप से खोजा गया है।[3]: 47 

व्युत्पत्ति

तीन आयामों में, ग्रेडिएंट संचालक स्केलर फ़ील्ड को सदिश फ़ील्ड में मैप करता है जैसे कि सदिश फ़ील्ड में किसी भी दो बिंदुओं के बीच की रेखा इन दो बिंदुओं पर स्केलर फ़ील्ड के बीच के अंतर के बराबर होती है। इसके आधार पर, यह गलत लग सकता है कि ग्रेडिएंट का 4 आयामों तक प्राकृतिक विस्तार होना चाहिए:

जो गलत है।

यद्यपि, एक लाइन इंटीग्रल में सदिश डॉट उत्पाद का अनुप्रयोग सम्मिलित होता है, और जब इसे 4-आयामी समष्टिटाइम तक बढ़ाया जाता है, तो उपयोग किए गए सम्मेलन के आधार पर या तो स्थानिक समन्वय या समय समन्वय के लिए संकेत का परिवर्तन शुरू किया जाता है। यह समष्टिटाइम की गैर-यूक्लिडियन प्रकृति के कारण है। इस लेख में, हम स्थानिक निर्देशांक (समय-सकारात्मक मीट्रिक सम्मेलन) पर एक ऋणात्मक चिह्न लगाते हैं ). (1/सी) का कारक सही आयामी विश्लेषण रखना है, [लंबाई]−1, 4-सदिश और (-1) के सभी घटकों के लिए 4-ग्रेडिएंट लोरेंत्ज़ सहप्रसरण रखना है। उपरोक्त अभिव्यक्ति में इन दो सुधारों को जोड़ने से 4-ग्रेडिएंट की सही परिभाषा मिलती है:[1]: 55–56 [3]: 16 


यह भी देखें

संदर्भ

सन्दर्भों के बारे में नोट

भौतिकी में स्केलर, 4-सदिश और टेन्सर के उपयोग के संबंध में, विभिन्न लेखक समान समीकरणों के लिए थोड़े भिन्न संकेतन का उपयोग करते हैं। उदाहरण के लिए, कुछ उपयोग अपरिवर्तनीय विश्राम द्रव्यमान के लिए, अन्य उपयोग करते हैं अपरिवर्तनीय विश्राम द्रव्यमान और उपयोग के लिए सापेक्ष द्रव्यमान के लिए। कई लेखक के कारक निर्धारित करते हैं और और आयामहीन एकता के लिए। अन्य कुछ या सभी स्थिरांक दिखाते हैं। कुछ लेखक उपयोग करते हैं वेग के लिए, अन्य उपयोग करते हैं . कुछ प्रयोग करते हैं 4-वेवसदिश के रूप में (एक मनमाना उदाहरण चुनने के लिए)। दूसरे उपयोग करते हैं या या या या या , आदि कुछ 4-वेवसदिश लिखते हैं , कुछ के रूप में या या या या या . कुछ यह सुनिश्चित करेंगे कि आयामी इकाइयां 4-सदिश से मेल खाती हैं, अन्य नहीं। कुछ 4-सदिश नाम में अस्थायी घटक को संदर्भित करते हैं, अन्य 4-सदिश नाम में स्थानिक घटक को संदर्भित करते हैं। कुछ इसे पूरी किताब में मिलाते हैं, कभी एक का उपयोग करते हैं तो बाद में दूसरे का। कुछ मीट्रिक का उपयोग करते हैं (+ − − −), अन्य मीट्रिक का उपयोग करते हैं (− + + +). कुछ 4-सदिश का उपयोग नहीं करते हैं, लेकिन सब कुछ पुरानी शैली ई और 3-समष्टि सदिश 'पी' के रूप में करते हैं। बात यह है कि, ये सभी केवल सांकेतिक शैली हैं, जिनमें कुछ दूसरों की तुलना में अधिक स्पष्ट और संक्षिप्त हैं। जब तक कोई संपूर्ण व्युत्पत्ति में एक सुसंगत शैली का उपयोग करता है, तब तक भौतिकी समान है।[7]: 2–4 

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Rindler, Wolfgang (1991). विशेष सापेक्षता का परिचय (2nd ed.). Oxford Science Publications. ISBN 0-19-853952-5.
  2. 2.0 2.1 The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces (Updated ed.). Addison-Wesley Publishing Co. ISBN 0-201-62460-5.
  4. 4.0 4.1 4.2 4.3 4.4 Shultz, Bernard F. (1985). सामान्य सापेक्षता में पहला कोर्स (1st ed.). Cambridge University Press. ISBN 0-521-27703-5.
  5. 5.0 5.1 5.2 5.3 Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians (1st ed.). Cambridge University Press. ISBN 0-521-27765-5.
  6. 6.0 6.1 6.2 6.3 Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry (1st ed.). Addison-Wesley Publishing Co. ISBN 0-8053-8732-3.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 Greiner, Walter (2000). Relativistic Quantum Mechanics: Wave Equations (3rd ed.). Springer. ISBN 3-540-67457-8.

अग्रिम पठन

  • S. Hildebrandt, "Analysis II" (Calculus II), ISBN 3-540-43970-6, 2003
  • L.C. Evans, "Partial differential equations", A.M.Society, Grad.Studies Vol.19, 1988
  • J.D. Jackson, "Classical Electrodynamics" Chapter 11, Wiley ISBN 0-471-30932-X