क्रिया (भौतिकी)

From Vigyanwiki
क्रिया
Si   इकाईजूल-सेकंड
अन्य इकाइयां
जूल-हेर्त्ज़

भौतिक विज्ञान में, क्रिया एक संख्यात्मक मान है जो किसी भौतिक प्रणाली में समय के साथ होने वाले बदलाव को दर्शाती है। चूंकि प्रणाली के गतिय समीकरण स्थिर क्रिया के सिद्धांत से प्राप्त किये जा सकते हैं इसलिए क्रिया उल्लेखनीय होती है।

किसी कण के निर्दिष्ट वेग के साथ चलने की सामान्य परिस्थिति में क्रिया का आंकलन करने के लिए, कण द्वारा तय की गयी दूरी एवं उसके संवेग के गुणज तथा कण की गतिज ऊर्जा के दुगना एवं उसके द्वारा इस ऊर्जा को धारण करने की समय अवधि के गुणज को, जबकि इस ऊर्जा को विचाराधीन समय की अवधि में जोड़ा गया हो, इसके पथ के साथ या समकक्ष रूप से जोड़ा जाता है। अधिक जटिल प्रणालियों के लिए, ऐसी सभी भौतिक राशियों को एक साथ जोड़ा जाता है।

औपचारिक रूप से, क्रिया एक गणितीय फलन है जो प्रणाली के प्रक्षेप पथ, जिसे पथ या इतिहास भी कहा जाता है, को इसके तर्क के रूप में लेता है और इसका परिणाम एक वास्तविक संख्या के रूप में होता है। सामान्यतः, क्रिया का मान भिन्न-भिन्न

पथों के लिए अलग-अलग होता है। [1] ऊर्जा × समय या संवेग × लंबाई क्रिया के विमाएँ हैं, और इसकी SI (सिस्टम इंटरनेशनल डी यूनिट्स /अंतर्राष्ट्रीय इकाइयों की प्रणाली) मात्रक जूल-सेकंड (प्लांक स्थिरांक h की तरह) है। [2]

परिचय

हैमिल्टन का सिद्धांत कहता है कि किसी भी भौतिकी प्रणाली के गति के अवकल समीकरणों को उसके समकक्ष समाकलन समीकरण के रूप में पुनः सूत्रित किया जा सकता है। अतः गतिकीय नमूनों को सूत्रित करने के लिए दो भिन्न पद्धतियाँ उपलब्ध हैं।

यह सिद्धांत केवल एक कण के चिरसम्मत यांत्रिकी पर ही नहीं अपितु चिरसम्मत क्षेत्रों जैसे विद्युतचुम्बकीय तथा गुरुत्वीय क्षेत्रों पर भी लागू होता है। हैमिल्टन के सिद्धांत को प्रमात्रा यांत्रिकी तथा प्रमात्रा क्षेत्र सिद्धांत तक भी विस्तारित किया गया है - विशेष रूप से प्रमात्रा यांत्रिकी का पथ समाकलन सूत्रीकरण इस अवधारणा का उपयोग करता है - जहाँ एक भौतिकी प्रणाली, अक्रमतः पूर्वक, संभव पथों में से किसी एक का अनुसरण करती है जबकि प्रत्येक पथ के लिए प्रायिकता आयाम की प्रावस्था (फ़ेज़) उस पथ की क्रिया द्वारा निर्धारित होती है।

अवकल समीकरण का हल

आनुभविक नियमों को प्रायः अवकल समीकरणों के रूप में व्यक्त किया जाता है जो कि स्थिति तथा वेग जैसी भौतिक राशियों में समय, स्थान अथवा सामान्यीकरण के साथ होने वाले निरंतर परिवर्तन का विवरण देते हैं। स्थिति के लिए दिए गए आरंभिक एवं सीमान्त उपबंधों के साथ, इन आनुभविक समीकरणों का "हल" एक या एक से अधिक फलन होता है जो कि प्रणाली के व्यवहार का वर्णन करते हैं और उन्हें गति के समीकरणों के नाम से जाना जाता है।

क्रिया समाकल का निम्‍नीकरण

क्रिया एक वैकल्पिक पद्धति का एक भाग है जिसके द्वारा ऐसे गति के समीकरणों को खोजै जाता है। चिरसम्मत यांत्रिकी यह अभिधारित करती है कि किसी भौतिकी प्रणाली द्वारा वास्तव में अनुसरित पथ वह होता है जिसमें क्रिया न्यूनतमीकृत होती है, या अधिक सामान्यतः से कहा जाये तो, स्थिर होती है। दुसरे शब्दों में, क्रिया एक विचरण सिद्धांत को संतुष्ट करती है: स्थिर क्रिया का सिद्धांत (नीचे भी देखें)। क्रिया एक समाकल द्वारा परिभाषित होती है, तथा किसी प्रणाली की गति के चिरसम्मत समीकरणों को समाकल के मान को न्यूनतमीकृत कर के प्राप्त किया जा सकता है।

यह सरल सिद्धांत भौतिकी में गहरी अंतर्दृष्टि प्रदान करता है, और आधुनिक सैद्धांतिक भौतिकी में एक महत्वपूर्ण अवधारणा है।

इतिहास

क्रिया की अवधारणा के विकास के दौरान इसे कई अप्रचलित तरीकों से परिभाषित किया गया था।[3]

  • गॉटफ्रीड लाइबनिज़, जोहान बर्नौली और पियरे लुई मोपेर्टुइस ने प्रकाश के लिए क्रिया को इसकी गति के समाकल या पथ की दिशा में इसकी प्रतिलोमी गति के रूप में परिभाषित किया।
  • लियोनहार्ड यूलर (और, संभवतः, लाइबनिज़) ने एक भौतिक कण के लिए क्रिया को अंतरिक्ष में इसके पथ की दिशा में कण की गति के समाकल के रूप में परिभाषित किया।
  • पियरे लुई माउपर्टुइस ने एक ही लेख में कई तदर्थ एवं विरोधाभासी परिभाषाएँ प्रस्तुत कीं जिनमें क्रिया को स्थितिज ऊर्जा के रूप में, आभासी गतिज ऊर्जा के रूप में तथा संघटन की स्थिति में संवेग संरक्षण को सुनिश्चित करने वाले एक संकर के रूप में परिभाषित किया। [4]

गणितीय परिभाषा

विचरण कलन  का उपयोग करके गणितीय भाषा में व्यक्त किया जाये तो, किसी भौतिकी प्रणाली का विकास (अर्थात वास्तव में प्रणाली किस प्रकार एक स्थिति से दूसरी स्थिति में विकसित होती है) क्रिया के एक स्थिर बिंदु (सामान्यतः न्यूनतम) से मेल खाता है।

भौतिक विज्ञान में "क्रिया" की कई विभिन्न परिभाषाएँ साधारण उपयोग में हैं। [5] [6] सामान्यतः क्रिया समय पर प्रसारित एक समाकल है। तथापि, जब क्रिया क्षेत्रों से संबंधित होती है तो इसे स्थानिक चरों पर भी समाकलित किया जा सकता है। कुछ मामलों में, क्रिया को भौतिक प्रणाली द्वारा अनुसरण किए गए पथ के साथ समाकलित किया जाता है।

क्रिया को सामान्यतः समय पर आधारित समाकल के रूप में दर्शाया जाता है जिसको प्रणाली के पथ के साथ उसके विस्तार के आरंभिक समय तथा अंतिम समय के मध्य लिया गया हो: [7]

जहां समाकलन L को लैग्रेंजियन कहा जाता है। क्रिया समाकल को अच्छी तरह से परिभाषित करने के लिए, प्रक्षेपवक्र को समय और स्थान में परिबद्ध किया जाना चाहिए।

क्रिया के परिमाप [ऊर्जा] × [समय] हैं, और इसकी एस. आई. (SI) इकाई जूल -सेकंड है, जो कोणीय संवेग की इकाई के समान है।

चिरसम्मत भौतिकी विज्ञान में क्रिया

चिरसम्मत भौतिकी विज्ञान में "क्रिया" शब्द के कई अर्थ हैं।

क्रिया (फलनात्मक)

सामान्यतः "क्रिया" शब्द का प्रयोग एक फलनात्मक के लिए प्रयोग किया जाता है जो कि समय के फलन को एवं स्थान को (क्षेत्रों के लिए) आगत के रूप में लेता है तथा परिणाम एक अदिश के रूप में देता है। चिरसम्मत यांत्रिकी में, आगत फलन दो समय t 1 और t 2 के बीच प्रणाली का विकास q(t) होता है जहाँ q सामान्यीकृत निर्देशांक को दर्शाता है। क्रिया को दो समयों के बीच आगत विकास के लिए लैग्रैन्जियन L के समाकल के रूप में परिभाषित किया जाता है:

जहाँ विकास के अंतबिंदु स्थाई होते हैं और तथा के रूप में परिभाषित होते हैं। हैमिल्टन के सिद्धांत के अनुसार, वास्तविक विकास qtrue(t) एक ऐसा विकास है जिसके लिए क्रिया स्थिर है (एक न्यूनतम, अधिकतम, या एक पल्याण बिन्दु)। इस सिद्धांत का परिणाम लैग्रैंगियन यांत्रिकी में गति के समीकरणों के रूप में होता है।

संक्षिप्त क्रिया (कार्यात्मक)

यह भी एक फलनात्मक होता है तथा सामान्यतः द्वारा दर्शाया जाता है के रूप में निरूपित किया जाता है। इसमें भौतिकी प्रणाली द्वारा अनुसरित पथ, जिसका समय के अनुसार इसका मानकीकरण नहीं किया जाता, आगत फलन होता है। उदाहरण के लिए, ग्रह की कक्षा का पथ एक दीर्घवृत्त होता है, तथा एक समान गुरुत्वाकर्षण क्षेत्र में एक कण का पथ एक परवलय तथा है; दोनों ही स्थितियों में, पथ इस बात पर निर्भर नहीं करता है कि कण कितनी तेजी से पथ को पार करता है। संक्षिप्त क्रिया सामान्यीकृत निर्देशांकों में पथ के साथ सामान्यीकृत संवेग बलों के समाकल के रूप में परिभाषित होता है:

माउपर्टुइस के सिद्धांत के अनुसार, वास्तविक पथ वह पथ है होता जिसके लिए संक्षिप्त क्रिया स्थिर होती है।

हैमिल्टन का प्रमुख फलन

हैमिल्टन का प्रमुख फलन , प्रारंभिक समय तथा प्रारंभिक समापन बिंदु को निर्धारित करके एवं ऊपरी समय सीमा तथा दुसरे समापन बिंदु में परिवर्तन की अनुमति देते हुए, फलनात्मक क्रिया से प्राप्त होता है। हैमिल्टन का प्रमुख फलन हैमिल्टन-जैकोबी समीकरण को संतुष्ट करता है, जो चिरसम्मत यांत्रिकी का एक सूत्रीकरण है। श्रोडिंगर समीकरण के साथ समानता के कारण हैमिल्टन-जैकोबी समीकरण प्रमात्रा यांत्रिकी के साथ सबसे सीधी कड़ी प्रदान करता है।

हैमिल्टन का अभिलक्षणिक फलन

जब कुल ऊर्जा E संरक्षित हो जाती है, तो हैमिल्टन-जैकोबी समीकरण को चरों के योगात्मक पृथक्करण द्वारा हल किया जा सकता है:

जहाँ काल-निरपेक्ष फलन W ( q 1, q 2, ..., q N ) को हैमिल्टन का अभिलक्षणिक फलन कहा जाता है। इस फलन के भौतिक महत्व को इसके कुल समय व्युत्पन्न लेने से समझा जाता है

इसे समाकलित करके निम्न समीकरण प्राप्त किया जा सकता है

जो कि संक्षिप्त क्रिया को दर्शाता है।

हैमिल्टन -जैकोबी समीकरणों के अन्य समाधान

हैमिल्टन-जैकोबी समीकरण प्रायः योगात्मक पृथक्करण द्वारा हल किए जाते हैं; कुछ परिस्थितियों में, समाधान के अलग-अलग पद, जैसे, Sk(qk), को भी "क्रिया" कहा जाता है। [8]

एक सामान्यीकृत समन्वय की क्रिया

यह क्रिया-कोण निर्देशांक में एक एकल चर Jk है, जिसे चरण स्थान में एक बंद पथ के चारों ओर एकल सामान्यीकृत संवेग को समाकलित करके परिभाषित किया गया है, जो घूर्णन या दोलन गति के अनुरूप होता है:

चर Jk को सामान्यीकृत निर्देशांक qk की "क्रिया" कहा जाता है; क्रिया-कोण निर्देशांकों के अधीन अधिक पूर्ण रूप से वर्णित कारणों के लिए, Jk से संबंधित विहित चर संयुग्म wk इसका "कोण" है। समाकलन केवल एक चर qk पर किया जाता है इसलिए उपरोक्त संक्षिप्त क्रिया में एकीकृत अदिश गुणनफल के विपरीत है। चर Jk,Sk(qk) में किये गए परिवर्तन के बराबर होता है क्योंकि qk बंद पथ के चारों ओर भिन्न-भिन्न होता है। कई रोचक भौतिक प्रणालियों के लिए, Jk या तो स्थिर होता है या अत्यधिक धीरे-धीरे बदलता है; इसलिए, चर Jk प्रायः क्षोभ गणना में और रुद्धोष्म निश्चर को निर्धारित करने में उपयोग किया जाता है।

यह भी देखें

सन्दर्भ

  1. {{cite encyclopedia}}: Empty citation (help)
  2. {{cite encyclopedia}}: Empty citation (help)
  3. Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  4. Œuvres de Mr de Maupertuis (pre-1801 Imprint Collection at the Library of Congress).
  5. Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  6. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN 3-527-26954-1 (Verlagsgesellschaft), ISBN 0-89573-752-3 (VHC Inc.)
  7. Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  8. Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0

स्रोत और आगे पढ़ना

एक एनोटेट ग्रंथ सूची के लिए, एडविन एफ। टेलर देखें जो सूची, अन्य बातों के अलावा, निम्नलिखित पुस्तकें

बाहरी लिंक्स


]