बहुरेखीय बीजगणित: Difference between revisions
No edit summary |
|||
| Line 6: | Line 6: | ||
{{original research|date=January 2022}} | {{original research|date=January 2022}} | ||
}} | }} | ||
बहुरेखीय बीजगणित गणित का एक उपक्षेत्र है जो रैखिक बीजगणित के तरीकों का विस्तार करता है। जैसे रेखीय बीजगणित एक | बहुरेखीय बीजगणित गणित का एक उपक्षेत्र है जो रैखिक बीजगणित के तरीकों का विस्तार करता है। जैसे रेखीय बीजगणित एक सदिश अंतरिक्ष की अवधारणा पर बनाया गया है और सदिश रिक्त स्थान के सिद्धांत को विकसित करता है, बहुरेखीय बीजगणित बहुसदिश की अवधारणाओं पर बनाता है। | ||
== उत्पत्ति == | == उत्पत्ति == | ||
आयाम ( | आयाम (सदिश समष्टि) n के सदिश समष्टि में, सामान्यतः केवल सदिश का उपयोग किया जाता है। हालांकि, [[ हरमन ग्रासमैन |हरमन ग्रासमैन]] और अन्य के अनुसार, यह अनुमान जोड़े, त्रिक और सामान्य बहु-सदिश की संरचनाओं पर विचार करने की जटिलता को पाने में असफल होता है। कई संयोजी संभावनाओं के साथ, बहु-सदिशों के स्थान में 2<sup>n</sup> आयाम है। निर्धारक का सार सूत्रीकरण सबसे तात्कालिक अनुप्रयोग है। बहुरेखीय बीजगणित में लोच के विभिन्न अनुखंड के साथ तनाव और तनाव के लिए भौतिक प्रतिक्रिया के यांत्रिक अध्ययन में भी अनुप्रयोग हैं। इस व्यावहारिक संदर्भ ने बहुरैखिक दिक् के तत्वों का वर्णन करने के लिए प्रदिश शब्द का उपयोग किया। एक बहुरेखीय अंतरिक्ष में अतिरिक्त संरचना ने इसे उच्च गणित में विभिन्न अध्ययनों में महत्वपूर्ण भूमिका निभाने के लिए प्रेरित किया है। हालांकि ग्रासमैन ने 1844 में अपने ऑस्देहनुंगस्लेह्रे के साथ विषय प्रारम्भ किया, जिसे 1862 में पुनर्प्रकाशित भी किया गया था, उनका काम स्वीकृति प्राप्त करना था, क्योंकि सामान्य रैखिक बीजगणित ने समझने के लिए पर्याप्त चुनौतियां प्रदान की थीं। | ||
बहुभिन्नरूपी बीजगणित का विषय [[ बहुभिन्नरूपी कैलकुलस ]] और [[ विविध ]] के कुछ अध्ययनों में लागू किया जाता है जहां [[ जैकबियन मैट्रिक्स ]] चलन में आता है। | बहुभिन्नरूपी बीजगणित का विषय [[ बहुभिन्नरूपी कैलकुलस | बहुभिन्नरूपी कलन]] और[[ विविध | विविध]] के कुछ अध्ययनों में लागू किया जाता है जहां [[ जैकबियन मैट्रिक्स |जैकबियन आव्यूह]] चलन में आता है। एकल चर कलन का अंतरीय (अति सूक्ष्म) बहुचर कलन में [[ विभेदक रूप |विभेदक रूप]] बन जाता है, और उनका प्रकलन [[ बाहरी बीजगणित |बहिर्भाग बीजगणित]] के साथ किया जाता है। | ||
ग्रासमैन के बाद, बहुरेखीय बीजगणित में विकास 1872 में [[ विक्टर श्लेगल ]] द्वारा किया गया था जब उन्होंने | ग्रासमैन के बाद, बहुरेखीय बीजगणित में विकास 1872 में[[ विक्टर श्लेगल ]]द्वारा किया गया था जब उन्होंने अपनी प्रणाली डेर राउमलेह्रे और [[ एल्विन ब्रूनो क्रिस्टोफर |एल्विन ब्रूनो क्रिस्टोफर]] के पहले भाग को प्रकाशित किया था। बहुरेखीय बीजगणित में एक प्रमुख प्रगति [[ ग्रेगोरियो रिक्की-कर्बस्त्रो ]]और [[ टुल्लियो लेवी-सिविता |टुल्लियो लेवी-सिविता]] (संदर्भ देखें) के काम में आई थी। यह बहुरेखीय बीजगणित का निरपेक्ष अवकल कलन रूप था जिसे [[ मार्सेल ग्रॉसमैन |मार्सेल ग्रॉसमैन]] और [[ माइकल बेस्सो |माइकल बेस्सो]] ने [[ अल्बर्ट आइंस्टीन |अल्बर्ट आइंस्टीन]] से परिचित कराया था। आइंस्टीन द्वारा 1915 में प्रकाशित [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] के प्रकाशन ने बुध के उपसौर के पुरस्सरण की व्याख्या करते हुए बहुरेखीय बीजगणित और[[ टेन्सर | प्रदिश]] को भौतिक रूप से महत्वपूर्ण गणित के रूप में स्थापित किया। | ||
== बीजगणितीय | == बीजगणितीय सांस्थिति में प्रयोग करें == | ||
20वीं शताब्दी के मध्य के आस-पास | 20वीं शताब्दी के मध्य के आस-पास प्रदिशों के अध्ययन को और अधिक सारगर्भित रूप से पुनर्निरूपित किया गया था।[[ निकोलस बोरबाकी ]]समूह का ग्रंथ बहुरेखीय बीजगणित विशेष रूप से प्रभावशाली था - वस्तुतः, बहुरेखीय बीजगणित शब्द की उत्पत्ति वहीं हुई होगी।{{Citation needed|date=April 2008}} | ||
उस समय एक कारण अनुप्रयोग का एक नया क्षेत्र समजात बीजगणित था। 1940 के दशक के उपरान्त [[ बीजगणितीय टोपोलॉजी |बीजगणितीय सांस्थिति]] के विकास ने [[ टेंसर उत्पाद |प्रदिश उत्पाद]] के विशुद्ध रूप से बीजगणितीय उपचार के विकास के लिए अतिरिक्त प्रोत्साहन दिया। दो [[ टोपोलॉजिकल स्पेस | सांस्थितिक समष्टि]] के [[ उत्पाद टोपोलॉजी |उत्पाद सांस्थिति]] के सजातीय (गणित) की गणना में प्रदिश उत्पाद सम्मिलित है; लेकिन केवल सबसे सरल स्तिथियों में, जैसे कि एक [[ टोरस्र्स |स्थूलक]], क्या इसकी गणना सीधे उस तरीके से की जाती है (कुनेथ प्रमेय देखें)। सांस्थितिकीय परिघटनाएँ इतनी सूक्ष्म थीं कि उन्हें बेहतर मूलभूत अवधारणाओं की आवश्यकता थी; तकनीकी रूप से बोलते हुए, टोर प्रकार्यक को परिभाषित किया जाना था। | |||
व्यवस्थित करने के लिए सामग्री काफी व्यापक थी, जिसमें हरमन ग्रासमैन के विचार भी सम्मिलित थे, विभेदक रूपों के सिद्धांत से विचार, जो डी राहम सह समरूपता के साथ-साथ अन्योन्य गुणन को सामान्यीकृत करने वाले शंकुलिपि उत्पाद जैसे अधिक प्राथमिक विचार थे। | |||
बोर्बकी द्वारा विषय के परिणामी बल्कि गंभीर लेखन ने सदिश कलन में एक दृष्टिकोण को पूरी तरह से खारिज कर दिया (चतुर्भुज मार्ग, जो सामान्य स्थिति में, लाइ समूहों के साथ संबंध है), और इसके स्थान पर, श्रेणी का उपयोग करके एक उपन्यास दृष्टिकोण लागू किया। सिद्धांत, झूठ समूह दृष्टिकोण के साथ एक अलग स्तिथि के रूप में देखा गया। चूँकि यह एक अधिक स्वच्छ उपचार की ओर ले जाता है, विशुद्ध रूप से गणितीय शब्दों में संभवतः कोई पीछे नहीं हट सकता था। (अनुशासनपूर्वक, [[ सार्वभौमिक संपत्ति |सार्वभौमिक संपत्ति]] दृष्टिकोण लागू किया गया था; यह [[ श्रेणी सिद्धांत |श्रेणी सिद्धांत]] की तुलना में कुछ अधिक सामान्य है, और वैकल्पिक तरीकों के रूप में दोनों के बीच के संबंध को भी एक ही समय में स्पष्ट किया जा रहा था।) | |||
बहुरेखीय बीजगणित के संदर्भ में समस्याओं को फिर से व्यक्त करने से, एक स्पष्ट और अच्छी तरह से परिभाषित | वास्तव में, जो किया गया था वह लगभग सटीक रूप से यह समझाने के लिए है कि प्रदिश रिक्त स्थान बहु-रेखीय समस्याओं को रैखिक समस्याओं को कम करने के लिए आवश्यक निर्माण हैं। इस विशुद्ध रूप से बीजगणितीय दृष्टिकोण में कोई ज्यामितीय अंतर्ज्ञान नहीं है। | ||
बहुरेखीय बीजगणित के संदर्भ में समस्याओं को फिर से व्यक्त करने से, एक स्पष्ट और अच्छी तरह से परिभाषित "सर्वश्रेष्ठ उपाय" होता है: समाधान की बाधाएं वस्तुतः व्यवहार में आवश्यक होती हैं। सामान्यतः समन्वय प्रणालियों के लिए किसी भी तदर्थ निर्माण, ज्यामितीय विचार या आश्रय लेने की कोई आवश्यकता नहीं है। श्रेणी-सैद्धांतिक शब्दजाल में, सब कुछ पूरी तरह से [[ प्राकृतिक परिवर्तन |प्राकृतिक परिवर्तन]] है। | |||
== बहुरेखीय बीजगणित में विषय == | == बहुरेखीय बीजगणित में विषय == | ||
बहुरेखीय बीजगणित की विषय वस्तु पिछले वर्षों में प्रस्तुतीकरण की तुलना में कम विकसित हुई है। इसके लिए केंद्रीय रूप से प्रासंगिक और पृष्ठ यहां दिए गए हैं: | बहुरेखीय बीजगणित की विषय वस्तु पिछले वर्षों में प्रस्तुतीकरण की तुलना में कम विकसित हुई है। इसके लिए केंद्रीय रूप से प्रासंगिक और पृष्ठ यहां दिए गए हैं: | ||
{{div col}} | {{div col}} | ||
* [[ | * [[द्विरैखिक संचालक]] | ||
* | * प्रदिश का घटक-मुक्त उपचार | ||
* क्रेमर का नियम | * क्रेमर का नियम | ||
*[[ | *[[ द्वैतसमष्टि]] | ||
*[[ आइंस्टीन संकेतन ]] | *[[ आइंस्टीन संकेतन ]] | ||
* | * बहिर्भाग बीजगणित | ||
* [[ | * [[ बहिर्भाग व्युत्पन्न ]] | ||
*[[ अंदरूनी प्रोडक्ट ]] | *[[ अंदरूनी प्रोडक्ट ]] | ||
* [[ क्रोनकर डेल्टा ]] | * [[ क्रोनकर डेल्टा ]] | ||
* लेवी-सीविटा प्रतीक | * लेवी-सीविटा प्रतीक | ||
* [[ मीट्रिक | * [[ मीट्रिक प्रदिश ]] | ||
* [[ मिश्रित | * [[ मिश्रित प्रदिश ]] | ||
* [[ बहुरेखीय नक्शा ]] | * [[ बहुरेखीय नक्शा ]] | ||
* [[ बहुरेखीय रूप ]] | * [[ बहुरेखीय रूप ]] | ||
* [[ सममित बीजगणित ]], [[ सममित शक्ति ]] | * [[ सममित बीजगणित ]], [[ सममित शक्ति ]] | ||
* [[ सममित | * [[ सममित प्रदिश ]] | ||
* | * प्रदिश | ||
* [[ | * [[ प्रदिश बीजगणित ]], [[ मुक्त बीजगणित ]] | ||
* [[ | * [[ प्रदिश संकुचन ]] | ||
*[[ ज्यामितीय बीजगणित ]] | *[[ ज्यामितीय बीजगणित ]] | ||
{{div col end}} | {{div col end}} | ||
[[ टेंसर थ्योरी की शब्दावली ]] भी है। | [[ टेंसर थ्योरी की शब्दावली | प्रदिश थ्योरी की शब्दावली]] भी है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
बहुरेखीय बीजगणित अवधारणाओं को लागू करने के कुछ तरीके: | बहुरेखीय बीजगणित अवधारणाओं को लागू करने के कुछ तरीके: | ||
{{div col}} | {{div col}} | ||
* [[ | * [[ प्रदिश का चिरप्रतिष्ठित अभिक्रिया ]] | ||
*[[ | *[[ युग्मकीय प्रदिश ]] | ||
*ब्रा-केट संकेतन | *ब्रा-केट संकेतन | ||
*[[ ज्यामितीय बीजगणित ]] | *[[ ज्यामितीय बीजगणित ]] | ||
* [[ क्लिफर्ड बीजगणित ]] | * [[ क्लिफर्ड बीजगणित ]] | ||
* [[ | * [[ छद्म अदिश (गणित) ]] | ||
* [[ | * [[ छद्म सदिश ]] | ||
*[[ | *[[ स्पाईनोर ]] | ||
* [[ | * [[ बाह्य उत्पाद ]] | ||
*[[ | *[[ अतिमिश्र संख्या ]] | ||
*बहुरेखीय उप-अंतरिक्ष अधिगम | *बहुरेखीय उप-अंतरिक्ष अधिगम | ||
{{div col end}} | {{div col end}} | ||
| Line 75: | Line 76: | ||
* {{cite book |first=Hermann |last=Grassmann |year=2000 |title=Extension Theory |publisher=[[American Mathematical Society]] |translator-first=Lloyd |translator-last=Kannenberg |orig-year=1862 |trans-title=Die Ausdehnungslehre |isbn=978-0-8218-9049-3 |url={{GBurl|yeGPeaPVLKoC|pg=PP1}}}} | * {{cite book |first=Hermann |last=Grassmann |year=2000 |title=Extension Theory |publisher=[[American Mathematical Society]] |translator-first=Lloyd |translator-last=Kannenberg |orig-year=1862 |trans-title=Die Ausdehnungslehre |isbn=978-0-8218-9049-3 |url={{GBurl|yeGPeaPVLKoC|pg=PP1}}}} | ||
* {{cite book | last=Fleming | first=Wendell H. |chapter-url=https://link.springer.com/chapter/10.1007/978-1-4684-9461-7_7 | title=Functions of several variables | chapter=Exterior algebra and differential calculus |pages=275–320 |date=1977 | publisher=Springer | isbn=978-1-4684-9461-7 | edition=2nd | oclc=2401829 |series=Undergraduate Texts in Mathematics| doi=10.1007/978-1-4684-9461-7_7 }} | * {{cite book | last=Fleming | first=Wendell H. |chapter-url=https://link.springer.com/chapter/10.1007/978-1-4684-9461-7_7 | title=Functions of several variables | chapter=Exterior algebra and differential calculus |pages=275–320 |date=1977 | publisher=Springer | isbn=978-1-4684-9461-7 | edition=2nd | oclc=2401829 |series=Undergraduate Texts in Mathematics| doi=10.1007/978-1-4684-9461-7_7 }} | ||
* {{cite journal | first1= | * {{cite journal | first1=ग्रेगोरियो | last1=रिक्की-कर्बस्त्रो | authorlink1=ग्रेगोरियो रिक्की-कर्बस्त्रो | first2=टुल्लियो | last2=लेवी-सिविता | authorlink2=टुल्लियो लेवी-सिविता | title=Méthodes de calcul différentiel absolu et leurs applications|journal=मैथमैटिक्स एनालेन | year=1900 | volume=54 | issue=1 | pages=125–201 |issn=1432-1807 | doi=10.1007/BF01454201 | s2cid=120009332 | url=https://zenodo.org/record/1428270}} | ||
* {{cite book |first= | * {{cite book |first=रोनाल्ड |last=Shaw |date=1983 |title=बहुरेखीय बीजगणित और समूह निरूपण |volume=2 |series=रैखिक बीजगणित और समूह प्रतिनिधित्व | publisher=[[अकादमिक प्रेस]] |isbn=978-0-12-639202-9 |oclc= 59106339}} | ||
{{Areas of mathematics}} | {{Areas of mathematics}} | ||
Revision as of 22:00, 1 May 2023
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
बहुरेखीय बीजगणित गणित का एक उपक्षेत्र है जो रैखिक बीजगणित के तरीकों का विस्तार करता है। जैसे रेखीय बीजगणित एक सदिश अंतरिक्ष की अवधारणा पर बनाया गया है और सदिश रिक्त स्थान के सिद्धांत को विकसित करता है, बहुरेखीय बीजगणित बहुसदिश की अवधारणाओं पर बनाता है।
उत्पत्ति
आयाम (सदिश समष्टि) n के सदिश समष्टि में, सामान्यतः केवल सदिश का उपयोग किया जाता है। हालांकि, हरमन ग्रासमैन और अन्य के अनुसार, यह अनुमान जोड़े, त्रिक और सामान्य बहु-सदिश की संरचनाओं पर विचार करने की जटिलता को पाने में असफल होता है। कई संयोजी संभावनाओं के साथ, बहु-सदिशों के स्थान में 2n आयाम है। निर्धारक का सार सूत्रीकरण सबसे तात्कालिक अनुप्रयोग है। बहुरेखीय बीजगणित में लोच के विभिन्न अनुखंड के साथ तनाव और तनाव के लिए भौतिक प्रतिक्रिया के यांत्रिक अध्ययन में भी अनुप्रयोग हैं। इस व्यावहारिक संदर्भ ने बहुरैखिक दिक् के तत्वों का वर्णन करने के लिए प्रदिश शब्द का उपयोग किया। एक बहुरेखीय अंतरिक्ष में अतिरिक्त संरचना ने इसे उच्च गणित में विभिन्न अध्ययनों में महत्वपूर्ण भूमिका निभाने के लिए प्रेरित किया है। हालांकि ग्रासमैन ने 1844 में अपने ऑस्देहनुंगस्लेह्रे के साथ विषय प्रारम्भ किया, जिसे 1862 में पुनर्प्रकाशित भी किया गया था, उनका काम स्वीकृति प्राप्त करना था, क्योंकि सामान्य रैखिक बीजगणित ने समझने के लिए पर्याप्त चुनौतियां प्रदान की थीं।
बहुभिन्नरूपी बीजगणित का विषय बहुभिन्नरूपी कलन और विविध के कुछ अध्ययनों में लागू किया जाता है जहां जैकबियन आव्यूह चलन में आता है। एकल चर कलन का अंतरीय (अति सूक्ष्म) बहुचर कलन में विभेदक रूप बन जाता है, और उनका प्रकलन बहिर्भाग बीजगणित के साथ किया जाता है।
ग्रासमैन के बाद, बहुरेखीय बीजगणित में विकास 1872 मेंविक्टर श्लेगल द्वारा किया गया था जब उन्होंने अपनी प्रणाली डेर राउमलेह्रे और एल्विन ब्रूनो क्रिस्टोफर के पहले भाग को प्रकाशित किया था। बहुरेखीय बीजगणित में एक प्रमुख प्रगति ग्रेगोरियो रिक्की-कर्बस्त्रो और टुल्लियो लेवी-सिविता (संदर्भ देखें) के काम में आई थी। यह बहुरेखीय बीजगणित का निरपेक्ष अवकल कलन रूप था जिसे मार्सेल ग्रॉसमैन और माइकल बेस्सो ने अल्बर्ट आइंस्टीन से परिचित कराया था। आइंस्टीन द्वारा 1915 में प्रकाशित सामान्य सापेक्षता के प्रकाशन ने बुध के उपसौर के पुरस्सरण की व्याख्या करते हुए बहुरेखीय बीजगणित और प्रदिश को भौतिक रूप से महत्वपूर्ण गणित के रूप में स्थापित किया।
बीजगणितीय सांस्थिति में प्रयोग करें
20वीं शताब्दी के मध्य के आस-पास प्रदिशों के अध्ययन को और अधिक सारगर्भित रूप से पुनर्निरूपित किया गया था।निकोलस बोरबाकी समूह का ग्रंथ बहुरेखीय बीजगणित विशेष रूप से प्रभावशाली था - वस्तुतः, बहुरेखीय बीजगणित शब्द की उत्पत्ति वहीं हुई होगी।[citation needed]
उस समय एक कारण अनुप्रयोग का एक नया क्षेत्र समजात बीजगणित था। 1940 के दशक के उपरान्त बीजगणितीय सांस्थिति के विकास ने प्रदिश उत्पाद के विशुद्ध रूप से बीजगणितीय उपचार के विकास के लिए अतिरिक्त प्रोत्साहन दिया। दो सांस्थितिक समष्टि के उत्पाद सांस्थिति के सजातीय (गणित) की गणना में प्रदिश उत्पाद सम्मिलित है; लेकिन केवल सबसे सरल स्तिथियों में, जैसे कि एक स्थूलक, क्या इसकी गणना सीधे उस तरीके से की जाती है (कुनेथ प्रमेय देखें)। सांस्थितिकीय परिघटनाएँ इतनी सूक्ष्म थीं कि उन्हें बेहतर मूलभूत अवधारणाओं की आवश्यकता थी; तकनीकी रूप से बोलते हुए, टोर प्रकार्यक को परिभाषित किया जाना था।
व्यवस्थित करने के लिए सामग्री काफी व्यापक थी, जिसमें हरमन ग्रासमैन के विचार भी सम्मिलित थे, विभेदक रूपों के सिद्धांत से विचार, जो डी राहम सह समरूपता के साथ-साथ अन्योन्य गुणन को सामान्यीकृत करने वाले शंकुलिपि उत्पाद जैसे अधिक प्राथमिक विचार थे।
बोर्बकी द्वारा विषय के परिणामी बल्कि गंभीर लेखन ने सदिश कलन में एक दृष्टिकोण को पूरी तरह से खारिज कर दिया (चतुर्भुज मार्ग, जो सामान्य स्थिति में, लाइ समूहों के साथ संबंध है), और इसके स्थान पर, श्रेणी का उपयोग करके एक उपन्यास दृष्टिकोण लागू किया। सिद्धांत, झूठ समूह दृष्टिकोण के साथ एक अलग स्तिथि के रूप में देखा गया। चूँकि यह एक अधिक स्वच्छ उपचार की ओर ले जाता है, विशुद्ध रूप से गणितीय शब्दों में संभवतः कोई पीछे नहीं हट सकता था। (अनुशासनपूर्वक, सार्वभौमिक संपत्ति दृष्टिकोण लागू किया गया था; यह श्रेणी सिद्धांत की तुलना में कुछ अधिक सामान्य है, और वैकल्पिक तरीकों के रूप में दोनों के बीच के संबंध को भी एक ही समय में स्पष्ट किया जा रहा था।)
वास्तव में, जो किया गया था वह लगभग सटीक रूप से यह समझाने के लिए है कि प्रदिश रिक्त स्थान बहु-रेखीय समस्याओं को रैखिक समस्याओं को कम करने के लिए आवश्यक निर्माण हैं। इस विशुद्ध रूप से बीजगणितीय दृष्टिकोण में कोई ज्यामितीय अंतर्ज्ञान नहीं है।
बहुरेखीय बीजगणित के संदर्भ में समस्याओं को फिर से व्यक्त करने से, एक स्पष्ट और अच्छी तरह से परिभाषित "सर्वश्रेष्ठ उपाय" होता है: समाधान की बाधाएं वस्तुतः व्यवहार में आवश्यक होती हैं। सामान्यतः समन्वय प्रणालियों के लिए किसी भी तदर्थ निर्माण, ज्यामितीय विचार या आश्रय लेने की कोई आवश्यकता नहीं है। श्रेणी-सैद्धांतिक शब्दजाल में, सब कुछ पूरी तरह से प्राकृतिक परिवर्तन है।
बहुरेखीय बीजगणित में विषय
बहुरेखीय बीजगणित की विषय वस्तु पिछले वर्षों में प्रस्तुतीकरण की तुलना में कम विकसित हुई है। इसके लिए केंद्रीय रूप से प्रासंगिक और पृष्ठ यहां दिए गए हैं:
- द्विरैखिक संचालक
- प्रदिश का घटक-मुक्त उपचार
- क्रेमर का नियम
- द्वैतसमष्टि
- आइंस्टीन संकेतन
- बहिर्भाग बीजगणित
- बहिर्भाग व्युत्पन्न
- अंदरूनी प्रोडक्ट
- क्रोनकर डेल्टा
- लेवी-सीविटा प्रतीक
- मीट्रिक प्रदिश
- मिश्रित प्रदिश
- बहुरेखीय नक्शा
- बहुरेखीय रूप
- सममित बीजगणित , सममित शक्ति
- सममित प्रदिश
- प्रदिश
- प्रदिश बीजगणित , मुक्त बीजगणित
- प्रदिश संकुचन
- ज्यामितीय बीजगणित
प्रदिश थ्योरी की शब्दावली भी है।
अनुप्रयोग
बहुरेखीय बीजगणित अवधारणाओं को लागू करने के कुछ तरीके:
- प्रदिश का चिरप्रतिष्ठित अभिक्रिया
- युग्मकीय प्रदिश
- ब्रा-केट संकेतन
- ज्यामितीय बीजगणित
- क्लिफर्ड बीजगणित
- छद्म अदिश (गणित)
- छद्म सदिश
- स्पाईनोर
- बाह्य उत्पाद
- अतिमिश्र संख्या
- बहुरेखीय उप-अंतरिक्ष अधिगम
संदर्भ
- Grassmann, Hermann (2000) [1862]. Extension Theory [Die Ausdehnungslehre]. Translated by Kannenberg, Lloyd. American Mathematical Society. ISBN 978-0-8218-9049-3.
- Fleming, Wendell H. (1977). "Exterior algebra and differential calculus". Functions of several variables. Undergraduate Texts in Mathematics (2nd ed.). Springer. pp. 275–320. doi:10.1007/978-1-4684-9461-7_7. ISBN 978-1-4684-9461-7. OCLC 2401829.
- रिक्की-कर्बस्त्रो, ग्रेगोरियो; लेवी-सिविता, टुल्लियो (1900). "Méthodes de calcul différentiel absolu et leurs applications". मैथमैटिक्स एनालेन. 54 (1): 125–201. doi:10.1007/BF01454201. ISSN 1432-1807. S2CID 120009332.
- Shaw, रोनाल्ड (1983). बहुरेखीय बीजगणित और समूह निरूपण. रैखिक बीजगणित और समूह प्रतिनिधित्व. Vol. 2. अकादमिक प्रेस. ISBN 978-0-12-639202-9. OCLC 59106339.
{{Navbox
| name =गणित के क्षेत्र
|state = autocollapse
| title =अंक शास्त्र
| bodyclass = hlist
|above =
| group1 = नींव
| list1 =* श्रेणी सिद्धांत
| group2 =बीजगणित | list2 =* सार
| group3 = विश्लेषण | list3 =* पथरी
- वास्तविक विश्लेषण
- जटिल विश्लेषण
- हाइपरकम्प्लेक्स विश्लेषण
- अंतर समीकरण
- कार्यात्मक विश्लेषण
- हार्मोनिक विश्लेषण
- माप सिद्धांत
| group4 = असतत | list4 =* कॉम्बीनेटरिक्स
| group5 =ज्यामिति | list5 =* बीजगणितीय
| group6 =संख्या सिद्धांत | list6 =* अंकगणित
| group7 =टोपोलॉजी | list7 =* सामान्य
| group8 = लागू | list8 =* इंजीनियरिंग गणित
- गणितीय जीव विज्ञान
- गणितीय रसायन विज्ञान
- गणितीय अर्थशास्त्र
- गणितीय वित्त
- गणितीय भौतिकी
- गणितीय मनोविज्ञान
- गणितीय समाजशास्त्र
- गणितीय सांख्यिकी
- संभावना
- सांख्यिकी
- सिस्टम साइंस
| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान
| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित
| below =* '
}}