संख्यात्मक स्थिरता

From Vigyanwiki

संख्यात्मक विश्लेषण के कारण गणित उपक्षेत्र में, संख्यात्मक स्थिरता संख्यात्मक एल्गोरिदम की सामान्य वांछनीय संपत्ति है। स्थिरता की सही परिभाषा इसके संदर्भ पर निर्भर करती है। यह एक संख्यात्मक रैखिक बीजगणित है और दूसरा असतत सन्निकटन द्वारा साधारण और आंशिक अंतर समीकरणों को हल करने के लिए एल्गोरिदम उपयोग की जाती है।

संख्यात्मक रेखीय बीजगणित में, प्रमुख चिंता विभिन्न प्रकार की विलक्षणताओं के निकटता के कारण होने वाली अस्थिरता है, जैसे कि बहुत छोटा या लगभग टकराने वाला आइजन मान दूसरी ओर, विभेदक समीकरणों के लिए संख्यात्मक एल्गोरिदम में चिंताजनक पूर्णांक के मान की त्रुटियों और/या प्रारंभिक डेटा में छोटे उतार-चढ़ाव की वृद्धि है जो सबसे सही समाधानों से अंतिम उत्तर के बड़े विचलन का कारण बन सकती है।[citation needed]

कुछ संख्यात्मक एल्गोरिदम इनपुट डेटा में छोटे उतार-चढ़ाव(त्रुटियों) को कम कर सकते हैं; अन्य ऐसी त्रुटियों को बढ़ा सकते हैं। ऐसी गणनाएँ जो सन्निकटन त्रुटियों को आवर्धित नहीं करने के लिए सिद्ध की जा सकती हैं, संख्यात्मक रूप से स्थिर कहलाती हैं। संख्यात्मक विश्लेषण के सामान्य कार्यों में से एक एल्गोरिदम का चयन करने का प्रयास करना है जो बहुत अच्छा और जटिल हैं - अर्ताथ, इनपुट डेटा में बहुत छोटे परिवर्तन के लिए बहुत अधिक भिन्न परिणाम उत्पन्न न करें।

एक विपरीत(शब्दार्थ) घटना 'अस्थिरता' है। साधारणतयः, एक एल्गोरिथ्म में एक अनुमानित विधि सम्मलित होती है, और कुछ स्थितियों में कोई यह सिद्ध कर सकता है कि एल्गोरिथ्म कुछ सीमा में सही समाधान तक पहुंचेगा(वास्तविक वास्तविक संख्याओं का उपयोग करते समय, फ्लोटिंग पॉइंट नंबर नहीं)। इस स्थिति में भी, इस बात की कोई प्रत्याभूति नहीं है कि यह सही समाधान के लिए अभिसरण करेगा, क्योंकि फ़्लोटिंग-पॉइंट राउंड-ऑफ़ या ट्रंकेशन त्रुटियों को अवमंदित करने के अतिरिक्त बढ़ाया जा सकता है, जिससे सटीक समाधान से विचलन तेजी से बढ़ सकता है।[1]

संख्यात्मक रैखिक बीजगणित में स्थिरता

स्थिरता की अवधारणा को औपचारिक रूप देने की विभिन्न विधियाँ हैं। आगे, पिछड़े और मिश्रित स्थिरता की निम्नलिखित परिभाषाएँ अधिकांशतः संख्यात्मक रैखिक बीजगणित में उपयोग की जाती हैं।

आगे की त्रुटि दिखाने वाला आरेख Δy और पिछड़ी त्रुटि Δx, और सटीक समाधान मानचित्र से उनका संबंध f और संख्यात्मक समाधान f*.

एक फलन(गणित) के रूप में संख्यात्मक एल्गोरिथम द्वारा हल की जाने वाली समस्या पर विचार करें f डेटा मैपिंग x समाधान के लिए y एल्गोरिथ्म का परिणाम, कहते हैं y*, साधारणतयः वास्तविक समाधान से विचलित हो जाएगा y. त्रुटि के मुख्य कारण राउंड-ऑफ़ त्रुटि और कटाव त्रुटि हैं। एल्गोरिथ्म की आगे की त्रुटि परिणाम और समाधान के बीच का अंतर है; इस स्थिति में, Δy = y* − y. पिछड़ी त्रुटि सबसे छोटी है Δx ऐसा है कि f (x + Δx) = y*; दूसरे शब्दों में, पश्चगामी त्रुटि हमें बताती है कि एल्गोरिथ्म वास्तव में किस समस्या को हल करता है। अग्र और पश्च त्रुटि विश्लेषण स्थिति संख्या से संबंधित हैं: अग्रत्रुटि विश्‍लेषण परिमाण में उतना ही बड़ा है जितना कि स्थिति नंबर को पश्च त्रुटि विश्लेषण के परिमाण से गुणा किया जाता है। कई स्थितियों में, सापेक्ष त्रुटि पर विचार करना अधिक स्वाभाविक है


पूर्ण त्रुटि के अतिरिक्त Δx.

एल्गोरिथम को पश्चगामी स्थिर कहा जाता है यदि सभी निविष्टियों के लिए पश्च त्रुटि x बहुत छोटी है, यह एक छोटा सापेक्ष शब्द है और इसकी परिभाषा संदर्भ पर निर्भर करेगी। अधिकांशतः, हम चाहते हैं कि त्रुटि उसी क्रम की हो, या यूनिट राउंड-ऑफ की तुलना में परिमाण के केवल कुछ आदेश बड़े हों।

मिश्रित स्थिरता आगे की त्रुटि और पश्च त्रुटि की अवधारणाओं को जोड़ती है।

संख्यात्मक स्थिरता की सामान्य परिभाषा एक अधिक सामान्य अवधारणा का उपयोग करती है, जिसे मिश्रित स्थिरता कहा जाता है, जो आगे की त्रुटि और पश्च त्रुटि को जोड़ती है। एल्गोरिद्म इस अर्थ में स्थिर है यदि यह लगभग किसी समस्या को हल करता है, अर्थात, यदि कोई सम्मलित है Δx ऐसा कि दोनों Δx छोटा है और f (x + Δx) − y* छोटा है। इसलिए, एक पश्चगामी स्थिर एल्गोरिथम हमेशा स्थिर होता है।

एल्गोरिथम आगे स्थिर है यदि समस्या की स्थिति संख्या से विभाजित इसकी आगे की त्रुटि छोटी है। इसका मतलब यह है कि एल्गोरिथ्म आगे स्थिर है यदि इसमें कुछ पिछड़े स्थिर एल्गोरिदम के समान परिमाण की त्रुटि है।

संख्यात्मक अंतर समीकरणों में स्थिरता

उपरोक्त परिभाषाएँ उन स्थितियों में विशेष रूप से प्रासंगिक हैं जहाँ ट्रंकेशन त्रुटियाँ महत्वपूर्ण नहीं हैं। अन्य संदर्भों में, उदाहरण के लिए, अंतर समीकरणों को हल करते समय, संख्यात्मक स्थिरता की अलग परिभाषा का उपयोग किया जाता है।

साधारण अंतर समीकरणों के लिए संख्यात्मक विधियों में, संख्यात्मक स्थिरता की विभिन्न अवधारणाएँ सम्मलित हैं, उदाहरण के लिए कठोर समीकरण A-स्थिरता। इन गतिशील प्रणालियों के अर्थ में स्थिरता को कुछ अवधारणाओं से संबंधित किया जाता हैं, अधिकांशतः लाइपुनोव स्थिरता के रूप में। एक कठिन समीकरण को हल करते समय स्थिर विधि का उपयोग करना महत्वपूर्ण है।

फिर भी एक अन्य परिभाषा का उपयोग संख्यात्मक आंशिक अंतर समीकरणों में किया जाता है। इस रैखिक विकासवादी आंशिक अंतर समीकरण को हल करने के लिए एक एल्गोरिदम स्थिर है यदि निश्चित समय पर संख्यात्मक समाधान की कुल भिन्नता सीमित रहती है क्योंकि चरण आकार शून्य हो जाता है। लैक्स तुल्यता प्रमेय में कहा गया है कि साधारण अंतर समीकरणों के लिए एक एल्गोरिथ्म संख्यात्मक नियम अभिसरण यदि साधारण अवकलन समीकरण के लिए संख्यात्मक नियम हैं निरंतरता और व्यवस्था और आंशिक विभेदक समीकरण के लिए संख्यात्मक नियम स्थिरता और स्टिफनेस(इस अर्थ में)। संख्यात्मक प्रसार को सम्मलित करके कभी-कभी स्थिरता प्राप्त की जाती है। संख्यात्मक प्रसार एक गणितीय शब्द है जो यह सुनिश्चित करता है कि राउंडऑफ़ और गणना में अन्य त्रुटियां फैल जाएं और गणना को उड़ाने के लिए जोड़ न दें। वॉन न्यूमैन स्थिरता विश्लेषण रैखिक आंशिक अंतर समीकरणों पर लागू परिमित अंतर विधि के स्थिरता विश्लेषण के लिए साधारणतयः उपयोग की जाने वाली प्रक्रिया है। ये परिणाम गैर-रैखिक पीडीई के लिए सही नहीं हैं, जहां रैखिक समीकरणों में अनुपस्थित कई गुणों से स्थिरता की सामान्य सुसंगत परिभाषा को जटिल बनाता है।

यह भी देखें

संदर्भ

  1. Giesela Engeln-Müllges; Frank Uhlig (2 July 1996). सी के साथ संख्यात्मक एल्गोरिदम. M. Schon (Translator), F. Uhlig (Translator) (1 ed.). Springer. p. 10. ISBN 978-3-540-60530-0.