आयतन रूप: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
गणित में, आयतन रूप या शीर्ष-आयामी रूप अवकलन मैनीफोल्ड आयाम के बराबर डिग्री का एक [[विभेदक रूप|अवकलक रूप]] है। इस प्रकार मैनीफोल्ड पर <math>M</math> आयाम का <math>n</math>, वॉल्यूम फॉर्म एक <math>n</math>-प्रपत्र के रूप में होता है। यह [[लाइन बंडल]] के [[ अनुभाग (फाइबर बंडल) ]] के स्थान का एक तत्व के रूप में होता है <math>\textstyle{\bigwedge}^n(T^*M)</math>, इस रूप में घोषित किया गया <math> \Omega^n(M)</math>. मैनिफोल्ड कहीं न लुप्त होने वाले आयतन रूप को स्वीकार करता है यदि और केवल यदि वह ओरियंटेबल है। एक [[ओरिएंटेबल]] मैनिफोल्ड में अनंत रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि वॉल्यूम फॉर्म को एक फलन द्वारा गुणा करने पर दूसरा वॉल्यूम फॉर्म प्राप्त होता है। गैर-ओरियंटेबल मैनिफोल्ड्स पर इसके अतिरिक्त घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है। | गणित में, आयतन रूप या शीर्ष-आयामी रूप अवकलन मैनीफोल्ड आयाम के बराबर डिग्री का एक [[विभेदक रूप|अवकलक रूप]] है। इस प्रकार मैनीफोल्ड पर <math>M</math> आयाम का <math>n</math>, वॉल्यूम फॉर्म एक <math>n</math>-प्रपत्र के रूप में होता है। यह [[लाइन बंडल]] के [[ अनुभाग (फाइबर बंडल) ]] के स्थान का एक तत्व के रूप में होता है <math>\textstyle{\bigwedge}^n(T^*M)</math>, इस रूप में घोषित किया गया <math> \Omega^n(M)</math>. मैनिफोल्ड कहीं न लुप्त होने वाले आयतन रूप को स्वीकार करता है यदि और केवल यदि वह ओरियंटेबल है। एक [[ओरिएंटेबल]] मैनिफोल्ड में अनंत रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि वॉल्यूम फॉर्म को एक फलन द्वारा गुणा करने पर दूसरा वॉल्यूम फॉर्म प्राप्त होता है। गैर-ओरियंटेबल मैनिफोल्ड्स पर इसके अतिरिक्त घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है। | ||
एक वॉल्यूम फॉर्म एक भिन्न मैनिफोल्ड पर एक [[फ़ंक्शन (गणित)|फलन (गणित)]] के [[अभिन्न]] अंग को परिभाषित करने का एक साधन प्रदान करता है। दूसरे शब्दों में, एक वॉल्यूम फॉर्म एक [[माप (गणित)]] को जन्म देता है जिसके संबंध में | एक वॉल्यूम फॉर्म एक भिन्न मैनिफोल्ड पर एक [[फ़ंक्शन (गणित)|फलन (गणित)]] के [[अभिन्न]] अंग को परिभाषित करने का एक साधन प्रदान करता है। दूसरे शब्दों में, एक वॉल्यूम फॉर्म एक [[माप (गणित)]] को जन्म देता है जिसके संबंध में फलनों को उपयुक्त [[लेब्सग इंटीग्रल|लेब्सग समाकलन]] द्वारा एकीकृत किया जा सकता है। वॉल्यूम फॉर्म का निरपेक्ष मान एक वॉल्यूम तत्व के रूप में होता है, जिसे विभिन्न प्रकार से ट्विस्टेड वॉल्यूम फॉर्म या प्सयूडो -वॉल्यूम फॉर्म के रूप में भी जाना जाता है। यह एक माप को भी परिभाषित करता है, लेकिन किसी भी अवकलक चाहे वह ओरियंटेबल हो या नहीं हो पर इसकी विविधता पर सम्मलित होता है। | ||
काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण | काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण स्वाभाविक रूप से ओरियंटेबल होते हैं और इसलिए उनके पास वॉल्यूम फॉर्म होता है। अधिक सामान्यतः, <math>n</math> [[सिंपलेक्टिक मैनिफ़ोल्ड]] पर सिंपलेक्टिक रूप की [[बाहरी शक्ति]] एक आयतन रूप होती है। मैनिफोल्ड्स के कई वर्गों में कैनोनिकल वॉल्यूम फॉर्म होते हैं चूंकि उनके पास अतिरिक्त संरचना होती है जो पसंदीदा वॉल्यूम फॉर्म की चॉइस की अनुमति देती है। ओरिएंटेड [[छद्म-रीमैनियन मैनिफोल्ड|प्सयूडो रीमैनियन मैनिफोल्ड]] में एक संबद्ध कैनोनिकल वॉल्यूम फॉर्म के रूप में होता है। | ||
==अभिविन्यास == | ==अभिविन्यास == | ||
| Line 9: | Line 9: | ||
निम्नलिखित केवल भिन्न-भिन्न मैनिफोल्ड्स की ओरिएंटेबिलिटी के बारे में होगा (यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है)। | निम्नलिखित केवल भिन्न-भिन्न मैनिफोल्ड्स की ओरिएंटेबिलिटी के बारे में होगा (यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है)। | ||
एक मैनिफोल्ड [[ एडजस्टेबल ]] होता है यदि इसमें एक [[समन्वय एटलस]] होता है जिसके सभी संक्रमण | एक मैनिफोल्ड [[ एडजस्टेबल ]] होता है यदि इसमें एक [[समन्वय एटलस]] होता है जिसके सभी संक्रमण फलनों में सकारात्मक [[जैकोबियन निर्धारक]] होते हैं। ऐसे अधिकतम एटलस का चयन एक अभिविन्यास है <math>M.</math> एक वॉल्यूम फॉर्म <math>\omega</math> पर <math>M</math> समन्वय चार्ट के एटलस के रूप में प्राकृतिक तरीके से एक अभिविन्यास को जन्म देता है <math>M</math> वह भेजें <math>\omega</math> यूक्लिडियन वॉल्यूम फॉर्म के सकारात्मक गुणक के लिए <math>dx^1 \wedge \cdots \wedge dx^n.</math> | ||
वॉल्यूम फॉर्म चलती फ्रेम के पसंदीदा वर्ग के विनिर्देशन की भी अनुमति देता है <math>M.</math> स्पर्शरेखा सदिशों का आधार बताइए <math>(X_1, \ldots, X_n)</math> दाएँ हाथ से काम करने वाला अगर | वॉल्यूम फॉर्म चलती फ्रेम के पसंदीदा वर्ग के विनिर्देशन की भी अनुमति देता है <math>M.</math> स्पर्शरेखा सदिशों का आधार बताइए <math>(X_1, \ldots, X_n)</math> दाएँ हाथ से काम करने वाला अगर | ||
<math display=block>\omega\left(X_1, X_2, \ldots, X_n\right) > 0.</math> | <math display=block>\omega\left(X_1, X_2, \ldots, X_n\right) > 0.</math> | ||
| Line 23: | Line 23: | ||
{{See also|Density on a manifold}} | {{See also|Density on a manifold}} | ||
वॉल्यूम फॉर्म दिया गया है <math>\omega</math> एक ओरियंटेबल मैनिफोल्ड पर, घनत्व एक मैनिफोल्ड पर <math>|\omega|</math> ओरिएंटेशन को भूलकर प्राप्त नॉनओरिएंटेड मैनिफोल्ड पर एक वॉल्यूम [[स्यूडोटेंसर]]| | वॉल्यूम फॉर्म दिया गया है <math>\omega</math> एक ओरियंटेबल मैनिफोल्ड पर, घनत्व एक मैनिफोल्ड पर <math>|\omega|</math> ओरिएंटेशन को भूलकर प्राप्त नॉनओरिएंटेड मैनिफोल्ड पर एक वॉल्यूम [[स्यूडोटेंसर]]|प्सयूडो -रूप है। घनत्व को सामान्यतः गैर-अभिमुख मैनिफोल्ड्स पर भी परिभाषित किया जा सकता है। | ||
कोई भी आयतन | कोई भी आयतन प्सयूडो रूप <math>\omega</math> (और इसलिए कोई भी आयतन रूप) [[बोरेल सेट]] पर एक माप को परिभाषित करता है | ||
<math display=block>\mu_\omega(U) = \int_U\omega .</math> | <math display=block>\mu_\omega(U) = \int_U\omega .</math> | ||
अंतर यह है कि जहां एक माप को (बोरेल) उपसमुच्चय पर एकीकृत किया जा सकता है, वहीं एक वॉल्यूम फॉर्म को केवल एक ओरियंटेबल सेल पर एकीकृत किया जा सकता है। एकल चर कलन में, लेखन <math display=inline>\int_b^a f\,dx = -\int_a^b f\,dx</math> पर विचार <math>dx</math> एक आयतन रूप के रूप में, न कि केवल एक माप के रूप में, और <math display=inline>\int_b^a</math> सेल पर एकीकृत होने का संकेत देता है <math>[a,b]</math> विपरीत दिशा के साथ, कभी-कभी निरूपित किया जाता है <math>\overline{[a, b]}</math>. | अंतर यह है कि जहां एक माप को (बोरेल) उपसमुच्चय पर एकीकृत किया जा सकता है, वहीं एक वॉल्यूम फॉर्म को केवल एक ओरियंटेबल सेल पर एकीकृत किया जा सकता है। एकल चर कलन में, लेखन <math display=inline>\int_b^a f\,dx = -\int_a^b f\,dx</math> पर विचार <math>dx</math> एक आयतन रूप के रूप में, न कि केवल एक माप के रूप में, और <math display=inline>\int_b^a</math> सेल पर एकीकृत होने का संकेत देता है <math>[a,b]</math> विपरीत दिशा के साथ, कभी-कभी निरूपित किया जाता है <math>\overline{[a, b]}</math>. | ||
| Line 64: | Line 64: | ||
==आयतन रूप के अपरिवर्तनीय== | ==आयतन रूप के अपरिवर्तनीय== | ||
वॉल्यूम फॉर्म अद्वितीय नहीं हैं; वे निम्नानुसार मैनिफोल्ड पर गैर-लुप्त होने वाले | वॉल्यूम फॉर्म अद्वितीय नहीं हैं; वे निम्नानुसार मैनिफोल्ड पर गैर-लुप्त होने वाले फलनों पर एक [[ मरोड़ ]] बनाते हैं। एक गैर-लुप्त होने वाला कार्य दिया गया <math>f</math> पर <math>M,</math> और एक वॉल्यूम फॉर्म <math>\omega,</math> <math>f\omega</math> पर एक वॉल्यूम फॉर्म है <math>M.</math> इसके विपरीत, दो खंड रूप दिए गए हैं <math>\omega, \omega',</math> उनका अनुपात एक गैर-लुप्त होने वाला कार्य है (यदि वे समान अभिविन्यास को परिभाषित करते हैं तो सकारात्मक, यदि वे विपरीत अभिविन्यास को परिभाषित करते हैं तो नकारात्मक)। | ||
निर्देशांक में, वे दोनों केवल एक गैर-शून्य फलन समय [[लेब्सेग माप]] हैं, और उनका अनुपात फलन का अनुपात है, जो निर्देशांक की पसंद से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम प्रमेय#रेडॉन.E2.80.93निकोडिम व्युत्पन्न है|रेडॉन-निकोडिम व्युत्पन्न <math>\omega'</math> इसके संबंध में <math>\omega.</math> एक ओरिएंटेड मैनिफोल्ड पर, किन्हीं दो वॉल्यूम रूपों की आनुपातिकता को रेडॉन-निकोडिम प्रमेय के ज्यामितीय रूप के रूप में माना जा सकता है। | निर्देशांक में, वे दोनों केवल एक गैर-शून्य फलन समय [[लेब्सेग माप]] हैं, और उनका अनुपात फलन का अनुपात है, जो निर्देशांक की पसंद से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम प्रमेय#रेडॉन.E2.80.93निकोडिम व्युत्पन्न है|रेडॉन-निकोडिम व्युत्पन्न <math>\omega'</math> इसके संबंध में <math>\omega.</math> एक ओरिएंटेड मैनिफोल्ड पर, किन्हीं दो वॉल्यूम रूपों की आनुपातिकता को रेडॉन-निकोडिम प्रमेय के ज्यामितीय रूप के रूप में माना जा सकता है। | ||
Revision as of 17:02, 9 July 2023
गणित में, आयतन रूप या शीर्ष-आयामी रूप अवकलन मैनीफोल्ड आयाम के बराबर डिग्री का एक अवकलक रूप है। इस प्रकार मैनीफोल्ड पर आयाम का , वॉल्यूम फॉर्म एक -प्रपत्र के रूप में होता है। यह लाइन बंडल के अनुभाग (फाइबर बंडल) के स्थान का एक तत्व के रूप में होता है , इस रूप में घोषित किया गया . मैनिफोल्ड कहीं न लुप्त होने वाले आयतन रूप को स्वीकार करता है यदि और केवल यदि वह ओरियंटेबल है। एक ओरिएंटेबल मैनिफोल्ड में अनंत रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि वॉल्यूम फॉर्म को एक फलन द्वारा गुणा करने पर दूसरा वॉल्यूम फॉर्म प्राप्त होता है। गैर-ओरियंटेबल मैनिफोल्ड्स पर इसके अतिरिक्त घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है।
एक वॉल्यूम फॉर्म एक भिन्न मैनिफोल्ड पर एक फलन (गणित) के अभिन्न अंग को परिभाषित करने का एक साधन प्रदान करता है। दूसरे शब्दों में, एक वॉल्यूम फॉर्म एक माप (गणित) को जन्म देता है जिसके संबंध में फलनों को उपयुक्त लेब्सग समाकलन द्वारा एकीकृत किया जा सकता है। वॉल्यूम फॉर्म का निरपेक्ष मान एक वॉल्यूम तत्व के रूप में होता है, जिसे विभिन्न प्रकार से ट्विस्टेड वॉल्यूम फॉर्म या प्सयूडो -वॉल्यूम फॉर्म के रूप में भी जाना जाता है। यह एक माप को भी परिभाषित करता है, लेकिन किसी भी अवकलक चाहे वह ओरियंटेबल हो या नहीं हो पर इसकी विविधता पर सम्मलित होता है।
काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण स्वाभाविक रूप से ओरियंटेबल होते हैं और इसलिए उनके पास वॉल्यूम फॉर्म होता है। अधिक सामान्यतः, सिंपलेक्टिक मैनिफ़ोल्ड पर सिंपलेक्टिक रूप की बाहरी शक्ति एक आयतन रूप होती है। मैनिफोल्ड्स के कई वर्गों में कैनोनिकल वॉल्यूम फॉर्म होते हैं चूंकि उनके पास अतिरिक्त संरचना होती है जो पसंदीदा वॉल्यूम फॉर्म की चॉइस की अनुमति देती है। ओरिएंटेड प्सयूडो रीमैनियन मैनिफोल्ड में एक संबद्ध कैनोनिकल वॉल्यूम फॉर्म के रूप में होता है।
अभिविन्यास
निम्नलिखित केवल भिन्न-भिन्न मैनिफोल्ड्स की ओरिएंटेबिलिटी के बारे में होगा (यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है)।
एक मैनिफोल्ड एडजस्टेबल होता है यदि इसमें एक समन्वय एटलस होता है जिसके सभी संक्रमण फलनों में सकारात्मक जैकोबियन निर्धारक होते हैं। ऐसे अधिकतम एटलस का चयन एक अभिविन्यास है एक वॉल्यूम फॉर्म पर समन्वय चार्ट के एटलस के रूप में प्राकृतिक तरीके से एक अभिविन्यास को जन्म देता है वह भेजें यूक्लिडियन वॉल्यूम फॉर्म के सकारात्मक गुणक के लिए वॉल्यूम फॉर्म चलती फ्रेम के पसंदीदा वर्ग के विनिर्देशन की भी अनुमति देता है स्पर्शरेखा सदिशों का आधार बताइए दाएँ हाथ से काम करने वाला अगर
-
(1)
इस प्रकार एक आयतन रूप एक को जन्म देता है -संरचना भी. इसके विपरीत, एक दिया गया -संरचना, कोई भी लगाकर वॉल्यूम फॉर्म को पुनर्प्राप्त कर सकता है (1) विशेष रैखिक फ़्रेमों के लिए और फिर आवश्यक के लिए हल करना -प्रपत्र अपने तर्कों में एकरूपता की आवश्यकता के द्वारा।
एक मैनिफोल्ड ओरिएंटेबल है यदि और केवल तभी जब इसमें कहीं भी गायब होने वाला वॉल्यूम फॉर्म न हो। वास्तव में, तब से एक विरूपण प्रत्यावर्तन है जहां सकारात्मक वास्तविकताएं अदिश मैट्रिक्स के रूप में अंतर्निहित हैं। इस प्रकार प्रत्येक -संरचना को कम किया जा सकता है -संरचना, और -संरचनाएँ अभिविन्यास के साथ मेल खाती हैं अधिक ठोस रूप से, निर्धारक बंडल की तुच्छता ओरिएंटेबिलिटी के बराबर है, और एक लाइन बंडल तुच्छ है यदि और केवल तभी इसमें कहीं भी गायब होने वाला अनुभाग न हो। इस प्रकार, वॉल्यूम फॉर्म का अस्तित्व ओरिएंटेबिलिटी के बराबर है।
उपायों से संबंध
वॉल्यूम फॉर्म दिया गया है एक ओरियंटेबल मैनिफोल्ड पर, घनत्व एक मैनिफोल्ड पर ओरिएंटेशन को भूलकर प्राप्त नॉनओरिएंटेड मैनिफोल्ड पर एक वॉल्यूम स्यूडोटेंसर|प्सयूडो -रूप है। घनत्व को सामान्यतः गैर-अभिमुख मैनिफोल्ड्स पर भी परिभाषित किया जा सकता है।
कोई भी आयतन प्सयूडो रूप (और इसलिए कोई भी आयतन रूप) बोरेल सेट पर एक माप को परिभाषित करता है
इसके अलावा, सामान्य उपायों को निरंतर या सुचारू होने की आवश्यकता नहीं है: उन्हें वॉल्यूम फॉर्म द्वारा परिभाषित करने की आवश्यकता नहीं है, या अधिक औपचारिक रूप से, किसी दिए गए वॉल्यूम फॉर्म के संबंध में उनके रेडॉन-निकोडिम व्युत्पन्न को बिल्कुल निरंतर होने की आवश्यकता नहीं है।
विचलन
वॉल्यूम फॉर्म दिया गया है पर कोई सदिश क्षेत्र के विचलन को परिभाषित कर सकता है अद्वितीय अदिश-मान फलन के रूप में, द्वारा दर्शाया गया संतुष्टि देने वाला
सोलेनॉइडल वेक्टर फ़ील्ड वे हैं जिनके साथ ली व्युत्पन्न की परिभाषा से यह पता चलता है कि वॉल्यूम फॉर्म को सोलेनोइडल वेक्टर क्षेत्र के वेक्टर प्रवाह के तहत संरक्षित किया जाता है। इस प्रकार सोलनॉइडल वेक्टर फ़ील्ड सटीक रूप से वे होते हैं जिनमें वॉल्यूम-संरक्षण प्रवाह होता है। यह तथ्य सर्वविदित है, उदाहरण के लिए, द्रव यांत्रिकी में जहां एक वेग क्षेत्र का विचलन एक तरल पदार्थ की संपीड़न क्षमता को मापता है, जो बदले में तरल पदार्थ के प्रवाह के साथ मात्रा को संरक्षित करने की सीमा को दर्शाता है।
विशेष मामले
झूठ समूह
किसी भी झूठ समूह के लिए, एक प्राकृतिक वॉल्यूम फॉर्म को अनुवाद द्वारा परिभाषित किया जा सकता है। अर्थात यदि का एक तत्व है तब एक वाम-अपरिवर्तनीय रूप को परिभाषित किया जा सकता है कहाँ वाम-अनुवाद है. परिणामस्वरूप, प्रत्येक झूठ समूह ओरियंटेबल होता है। यह आयतन रूप एक अदिश राशि तक अद्वितीय होता है, और संबंधित माप को हार माप के रूप में जाना जाता है।
सिंपलेक्टिक मैनिफोल्ड्स
किसी भी सिंपलेक्टिक मैनिफोल्ड (या वास्तव में किसी भी लगभग सिंपलेक्टिक मैनिफोल्ड) का एक प्राकृतिक आयतन रूप होता है। अगर एक है सरलीकृत रूप के साथ आयामी कई गुना तब सहानुभूतिपूर्ण रूप की गैर-अपघटन के परिणामस्वरूप कहीं भी शून्य नहीं है। परिणाम के रूप में, कोई भी सिम्प्लेक्टिक मैनिफोल्ड ओरियंटेबल (वास्तव में, उन्मुख) होता है। यदि मैनिफोल्ड सिम्प्लेक्टिक और रीमैनियन दोनों है, तो यदि मैनिफोल्ड काहलर मैनिफोल्ड|काहलर है, तो दो वॉल्यूम रूप सहमत हैं।
रीमैनियन वॉल्यूम फॉर्म
किसी भी ओरिएंटेशन (गणित) स्यूडो-[[रीमैनियन कई गुना ]]|स्यूडो-रीमैनियन (रीमैनियन मैनिफोल्ड सहित) मैनिफोल्ड का एक प्राकृतिक आयतन रूप होता है। स्थानीय निर्देशांक में, इसे इस प्रकार व्यक्त किया जा सकता है
आयतन रूप को विभिन्न प्रकार से निरूपित किया जाता है
आयतन रूप के अपरिवर्तनीय
वॉल्यूम फॉर्म अद्वितीय नहीं हैं; वे निम्नानुसार मैनिफोल्ड पर गैर-लुप्त होने वाले फलनों पर एक मरोड़ बनाते हैं। एक गैर-लुप्त होने वाला कार्य दिया गया पर और एक वॉल्यूम फॉर्म पर एक वॉल्यूम फॉर्म है इसके विपरीत, दो खंड रूप दिए गए हैं उनका अनुपात एक गैर-लुप्त होने वाला कार्य है (यदि वे समान अभिविन्यास को परिभाषित करते हैं तो सकारात्मक, यदि वे विपरीत अभिविन्यास को परिभाषित करते हैं तो नकारात्मक)।
निर्देशांक में, वे दोनों केवल एक गैर-शून्य फलन समय लेब्सेग माप हैं, और उनका अनुपात फलन का अनुपात है, जो निर्देशांक की पसंद से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम प्रमेय#रेडॉन.E2.80.93निकोडिम व्युत्पन्न है|रेडॉन-निकोडिम व्युत्पन्न इसके संबंध में एक ओरिएंटेड मैनिफोल्ड पर, किन्हीं दो वॉल्यूम रूपों की आनुपातिकता को रेडॉन-निकोडिम प्रमेय के ज्यामितीय रूप के रूप में माना जा सकता है।
कोई स्थानीय संरचना नहीं
मैनिफ़ोल्ड पर वॉल्यूम फॉर्म की कोई स्थानीय संरचना नहीं होती है, इस अर्थ में कि छोटे खुले सेटों पर दिए गए वॉल्यूम फॉर्म और यूक्लिडियन स्पेस पर वॉल्यूम फॉर्म के बीच अंतर करना संभव नहीं है। (Kobayashi 1972). यानी हर बिंदु के लिए में वहाँ एक खुला पड़ोस है का और एक भिन्नता का एक खुले सेट पर इस तरह कि वॉल्यूम बनता रहे का ठहराना है साथ में एक परिणाम के रूप में, यदि और दो मैनिफ़ोल्ड हैं, प्रत्येक वॉल्यूम फॉर्म के साथ फिर किसी भी बिंदु के लिए खुले पड़ोस हैं का और का और एक नक्शा इस तरह कि वॉल्यूम बनता रहे पड़ोस तक ही सीमित है वॉल्यूम फॉर्म पर वापस खींचता है पड़ोस तक ही सीमित है : एक आयाम में, कोई इसे इस प्रकार सिद्ध कर सकता है: वॉल्यूम फॉर्म दिया गया है पर परिभाषित करना
वैश्विक संरचना: आयतन
कनेक्टेड मैनिफोल्ड पर एक वॉल्यूम फॉर्म एक एकल वैश्विक अपरिवर्तनीय, अर्थात् (समग्र) आयतन, दर्शाया गया है जो आयतन-रूप संरक्षित मानचित्रों के अंतर्गत अपरिवर्तनीय है; यह अनंत हो सकता है, जैसे कि लेब्सग्यू माप के लिए डिस्कनेक्टेड मैनिफोल्ड पर, प्रत्येक जुड़े घटक का आयतन अपरिवर्तनीय होता है।
प्रतीकों में, यदि अनेक गुनाओं की एक समरूपता है जो पीछे की ओर खींचती है को तब
वॉल्यूम फॉर्म को कवरिंग मानचित्रों के नीचे भी वापस खींचा जा सकता है, इस स्थिति में वे फाइबर की कार्डिनैलिटी (औपचारिक रूप से, फाइबर के साथ एकीकरण द्वारा) द्वारा वॉल्यूम को गुणा करते हैं। अनंत शीट वाले आवरण के मामले में (जैसे ), एक परिमित वॉल्यूम मैनिफोल्ड पर एक वॉल्यूम फॉर्म अनंत वॉल्यूम मैनिफोल्ड पर एक वॉल्यूम फॉर्म में वापस खींचता है।
यह भी देखें
- Cylindrical coordinate system § Line and volume elements
- Measure (mathematics)
- पोंकारे मीट्रिक जटिल तल पर वॉल्यूम फॉर्म की समीक्षा प्रदान करता है
- Spherical coordinate system § Integration and differentiation in spherical coordinates
संदर्भ
- Kobayashi, S. (1972), Transformation Groups in Differential Geometry, Classics in Mathematics, Springer, ISBN 3-540-58659-8, OCLC 31374337.
- Spivak, Michael (1965), Calculus on Manifolds, Reading, Massachusetts: W.A. Benjamin, Inc., ISBN 0-8053-9021-9.