विद्युत चुम्बकीय तरंग समीकरण

From Vigyanwiki

विद्युत चुम्बकीय तरंग समीकरण एक दूसरे क्रम का आंशिक अंतर समीकरण है जो एक माध्यम या निर्वात में विद्युत चुम्बकीय तरंगों के प्रसार का वर्णन करता है। यह स्केलर तरंग समीकरण या तरंग समीकरण का त्रि-आयामी रूप है। समीकरण का समांगी अवकल समीकरण रूप, तो विद्युत क्षेत्र ई या चुंबकीय क्षेत्र बी के संदर्भ में लिखा गया है, इस प्रकार E या चुंबकीय क्षेत्र B, रूप लेता है:

जहाँ
पारगम्यता (विद्युत चुंबकत्व) के साथ माध्यम μ में प्रकाश की गति (अर्थात चरण वेग) है, और परावैद्युतांक ε, और 2 सदिश लाप्लासियन है। निर्वात में, vph = c0 = 299792458 m/s,एक मौलिक भौतिक स्थिरांक को प्रदर्शित करता हैं।[1] इस प्रकार विद्युत चुंबकीय तरंग समीकरण मैक्सवेल के समीकरणों से उत्पन्न हुआ है। अधिकांशतः प्राचीन साहित्य में, B चुंबकीय प्रवाह घनत्व या चुंबकीय प्रेरण कहा जाता है। निम्नलिखित समीकरण के अनुसार
इसमें किसी भी विद्युत चुम्बकीय तरंग को मुख्यतः अनुप्रस्थ तरंग होनी चाहिए, जहाँ विद्युत क्षेत्र E हो और चुंबकीय क्षेत्र B दोनों तरंग प्रसार की दिशा के लंबवत रहती हैं।

विद्युत चुम्बकीय तरंग समीकरण की उत्पत्ति

मैक्सवेल से पीटर गुथरी टैट के लिए पोस्टकार्ड।

अपने 1865 के पेपर में विद्युत चुम्बकीय क्षेत्र का गतिशील सिद्धांत शीर्षक से, जेम्स क्लर्क मैक्सवेल ने एम्पीयर के परिपथीय सिद्धांत में सुधार करके इसका उपयोग किया गया हैं, जिसे उन्होंने अपने 1861 के पेपर बल की भौतिक रेखाओं पर के भाग III में बनाया था। उनके 1864 के भाग VI में विद्युत चुम्बकीय सिद्धांत प्रकाश शीर्षक से,[2] मैक्सवेल ने विद्युत चुंबकत्व के कुछ अन्य समीकरणों के साथ विस्थापन धारा को जोड़ा और उन्होंने प्रकाश की गति के बराबर गति के साथ एक तरंग समीकरण प्राप्त किया था। उन्होंने टिप्पणी की:

परिणामों के समझौते से ऐसा प्रतीत होता है कि प्रकाश और चुंबकत्व एक ही पदार्थ के स्नेह हैं, और यह प्रकाश एक विद्युत चुम्बकीय त्रुटि है जो विद्युत चुम्बकीय नियमों के अनुसार क्षेत्र के माध्यम से प्रसारित होता है।[3]

मैक्सवेल की विद्युत चुम्बकीय तरंग समीकरण की व्युत्पत्ति को आधुनिक भौतिकी शिक्षा में एक बहुत कम भार विधि से बदल दिया गया है जिसमें एम्पीयर के परिपथ संबंधी नियम के सही संस्करण को फैराडे के प्रेरण के नियम के साथ जोड़ा गया है।

आधुनिक पद्धति का उपयोग करके निर्वात में विद्युत चुम्बकीय तरंग समीकरण प्राप्त करने के लिए, हम मैक्सवेल के समीकरणों के आधुनिक 'हीवीसाइड' रूप से प्रारंभ करते हैं।एक निर्वात- और आवेश-मुक्त स्थान में, ये समीकरण हैं:

ये सामान्य मैक्सवेल के समीकरण हैं जो आवेश और धारा दोनों की स्थिति में विशेष रूप से शून्य पर सेट हैं। कर्ल समीकरणों का कर्ल (गणित) उक्त समीकरण देता है:
हम सदिश कैलकुलस पहचान कर्ल के कर्ल का उपयोग कर सकते हैं
जहाँ V अंतरिक्ष का कोई सदिश फलन है। इस प्रकार उक्त समीकरण से-
जहाँ V डायाडिक्स है जो डायवर्जेंस ऑपरेटर द्वारा संचालित होने पर होता है ∇ ⋅ सदिश देता है। इस स्थिति को हम उक्त समीकरण से समझ सकते हैं।
इस प्रकार पुनः सर्वसमिका में दाईं ओर का पहला पद लुप्त हो जाता है और हमें तरंग समीकरण प्राप्त होते हैं:
जहाँ
इस मुक्त स्थान में प्रकाश की गति को संलग्न किया जाता है।

समांगी तरंग समीकरण का सहपरिवर्ती रूप

अनुप्रस्थ गति में समय फैलाव। आवश्यकता है कि प्रकाश की गति हर जड़त्वीय फ्रेम में स्थिर है, विशेष सापेक्षता की ओर ले जाती है।

विशेष आपेक्षिकता में मैक्सवेल के समीकरणों के इन सूत्रीकरण को सहप्रसरण और सदिशों के विपरीत रूप में लिखा जा सकता है

जहां विद्युत चुम्बकीय चार-क्षमता है

लॉरेंज गेज स्थिति के साथ:

और इस प्रकार
यहाँ पर डी'अलेम्बर्ट ऑपरेटर है।

घुमावदार स्पेसटाइम में सजातीय तरंग समीकरण

विद्युत चुम्बकीय तरंग समीकरण को दो प्रकार से संशोधित किया जाता है, व्युत्पन्न को सहसंयोजक व्युत्पन्न के साथ परिवर्तित कर दिया जाता है और नया शब्द प्रकट होता है जो वक्रता पर निर्भर करता है।

जहाँ रिक्की वक्रता टेन्सर है और अर्धविराम सहपरिवर्ती विभेदन को इंगित करता है।


घुमावदार स्पेसटाइम में लॉरेंज गेज की स्थिति का सामान्यीकरण माना जाता है:

अमानवीय विद्युत चुम्बकीय तरंग समीकरण

स्थानीयकृत समय-भिन्न चार्ज और वर्तमान धारा घनत्व एक निर्वात में विद्युत चुम्बकीय तरंगों के स्रोत के रूप में कार्य कर सकते हैं। मैक्सवेल के समीकरणों को सूत्रों के साथ तरंग समीकरण के रूप में लिखा जा सकता है। तरंग समीकरणों में स्रोतों का योग आंशिक अवकल समीकरणों को विषम बना देता है।

सजातीय विद्युत चुम्बकीय तरंग समीकरण का हल

वैद्युतचुंबकीय तरंग समीकरण का सामान्य समाधान रूप की तरंगों का सुपरपोज़िशन सिद्धांत है

आयामहीन तर्क φ के वस्तुतः किसी किसी भी अच्छी तरह से व्यवहार किए गए फलन g दिया जाता हैं, जहाँ ω कोणीय आवृत्ति (प्रति सेकंड रेडियंस में) है, और k = (kx, ky, kz) (रेडियन प्रति मीटर में) तरंग सदिश है।

चूंकि फलन g हो सकता है और अधिकांशतः एक मोनोक्रोमैटिक साइन लहर होता है, इसमें साइनसॉइडल या आवधिक भी नहीं होता है। व्यवहारिक रूप से, g की अनंत आवधिकता नहीं हो सकती है क्योंकि किसी भी वास्तविक विद्युत चुम्बकीय तरंग का समय और स्थान में सदैव सीमित एक विस्तार होना चाहिए। परिणामस्वरूप, और फूरियर रूपांतरण के सिद्धांत के आधार पर, एक वास्तविक लहर में साइनसॉइडल आवृत्तियों के अनंत सेट की सुपरपोजिशन सम्मिलित होनी चाहिए।

इसके अतिरिक्त, वैध समाधान के लिए, तरंग सदिश और कोणीय आवृत्ति स्वतंत्र नहीं हैं; उन्हें फैलाव संबंध का पालन करना चाहिए:

जहाँ k तरंग संख्या है और λ तरंग दैर्ध्य है। चर c का उपयोग केवल इस समीकरण में किया जा सकता है जब विद्युत चुम्बकीय तरंग निर्वात में किया जाता हैं।

मोनोक्रोमैटिक, साइनसोइडल स्थिर-अवस्था

वियोज्य रूप में एकल आवृत्ति के साइनसोइडल तरंगों को उपयोग करने से तरंग समीकरण के समाधान का सबसे सरल समूह इस प्रकार है:

जहाँ

विमान तरंग समाधान

एक इकाई सामान्य सदिश द्वारा परिभाषित विमान पर विचार करें

तत्पश्चात् तरंग समीकरणों के तलीय प्रगामी तरंग समाधान हैं

जहाँ r = (x, y, z) स्थिति सदिश (मीटर में) है।

ये प्राप्त होने वाला मान सामान्य सदिश की दिशा में यात्रा करने वाली प्लेनर तरंगों का प्रतिनिधित्व n से करते हैं, इस प्रकार यदि हम z दिशा की दिशा के रूप में n परिभाषित करते हैं, और यह x दिशा की दिशा के रूप में E, तो फैराडे के नियम के अनुसार चुंबकीय क्षेत्र निहित है y दिशा और विद्युत क्षेत्र से संबंध द्वारा होता है

क्योंकि विद्युत और चुंबकीय क्षेत्रों का विचलन शून्य है, प्रसार की दिशा में कोई क्षेत्र नहीं हैं।
यह समाधान तरंग समीकरणों का रैखिक ध्रुवीकरण (तरंगों) का समाधान है। गोलाकार रूप से ध्रुवीकृत समाधान भी हैं जिनमें क्षेत्र सामान्य सदिश के बारे में घूमते हैं।

वर्णक्रमीय अपघटन

निर्वात में मैक्सवेल के समीकरणों की रैखिकता के कारण, समाधानों को ज्या के अध्यारोपण में विघटित किया जा सकता है। यह अंतर समीकरणों के समाधान के लिए फूरियर रूपांतरण विधि का आधार है। विद्युत चुम्बकीय तरंग समीकरण का उन लोगों के सोइडल समाधान रूप लेता है

जहाँ

  • t समय है (सेकंड में),
  • ω कोणीय आवृत्ति है (रेडियन प्रति सेकंड में),
  • k = (kx, ky, kz) तरंग सदिश है (रेडियन प्रति मीटर में), और
  • चरण (तरंगें) (रेडियंस में) है।

तरंग सदिश कोणीय आवृत्ति से संबंधित है

जहाँ k तरंग संख्या है और λ तरंग दैर्ध्य है।

विद्युत चुम्बकीय वर्णक्रम तरंग दैर्ध्य के फलन के रूप में क्षेत्र परिमाण (या ऊर्जा) का प्लॉट है।

मल्टीपोल विस्तार

मोनोक्रोमैटिक क्षेत्रों को समय के साथ बदलते हुए मानते हुए, यदि कोई मैक्सवेल के समीकरणों को B से समाप्त करने के लिए उपयोग करते है , विद्युत चुम्बकीय तरंग समीकरण हेल्महोल्ट्ज़ समीकरण E के लिए कम हो जाता है :

साथ में k = ω/c जैसा कि ऊपर दिया गया है। वैकल्पिक रूप से, कोई समाप्त कर सकता है E के पक्ष में B प्राप्त करने के लिए:
आवृत्ति ω के साथ एक सामान्य विद्युत चुम्बकीय क्षेत्र ω को इन दो समीकरणों के समाधान के योग के रूप में लिखा जा सकता है। हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी मान प्राप्त करने के लिए किया जाता हैं | हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी समाधानों को गोलाकार हार्मोनिक्स में विस्तार के रूप में व्यक्त किया जा सकता है जिसमें गुणांक गोलाकार बेसेल कार्यों के समानुपाती होते हैं। चूंकि, इस विस्तार को प्रत्येक सदिश घटक E या B पर लागू किया जाता हैं इस प्रकार ऐसे समाधान प्रदान करेगा जो सामान्य रूप से विचलन-मुक्त (∇ ⋅ E = ∇ ⋅ B = 0) नहीं हैं, और इसलिए गुणांकों पर अतिरिक्त प्रतिबंधों की आवश्यकता होती है।

मल्टीपोल विस्तार इस कठिनाई को E या B नहीं, किन्तु rE या rB को गोलाकार हार्मोनिक्स में विस्तारित करके रोकता है। ये विस्तार अभी भी E और B के लिए मूल हेल्महोल्ट्ज समीकरणों को हल करते हैं क्योंकि विचलन मुक्त क्षेत्र F के लिए, 2 (rF) = r ⋅ (∇2 F).एक सामान्य विद्युत चुम्बकीय क्षेत्र के लिए परिणामी भाव हैं:

जहाँ और क्रम (l, m) के विद्युत बहुध्रुवीय क्षेत्र हैं, और और संगत चुंबकीय बहुध्रुव क्षेत्र हैं, और aE(l, m) और aM(l, m) विस्तार के गुणांक हैं। बहुध्रुव क्षेत्र किसके द्वारा दिए गए हैं
जहाँ hl(1,2)(x) गोलाकार बेसेल फलन गोलाकार हैं, इसका फलन El(1,2) और Bl(1,2) सीमा स्थितियों द्वारा निर्धारित किया जाता है, और
सदिश गोलाकार हार्मोनिक्स सामान्यीकृत हैं जिससे कि

विद्युतचुंबकीय क्षेत्र के बहुध्रुव विस्तार में गोलाकार समरूपता से जुड़ी कई समस्याओं में आवेदन मिलता है, उदाहरण के लिए एंटीना विकिरण पैटर्न, या परमाणु गामा क्षय होता हैं। इन अनुप्रयोगों में, अधिकांशतः निकट और दूर के क्षेत्र विकिरण क्षेत्र में विकीर्ण होने वाली शक्ति में रुचि होती है, जिसमें दूर-क्षेत्र को विकीर्ण करना भी सम्मिलित है। इस क्षेत्रों में, E और B क्षेत्र असम्बद्ध रूप से दृष्टिकोण करते हैं
समय-औसत विकीर्ण शक्ति का कोणीय वितरण तब दिया जाता है

यह भी देखें

सिद्धांत और प्रयोग

अनुप्रयोग

जीवनी

टिप्पणियाँ

  1. Current practice is to use c0 to denote the speed of light in vacuum according to ISO 31. In the original Recommendation of 1983, the symbol c was used for this purpose. See NIST Special Publication 330, Appendix 2, p. 45 Archived 2016-06-03 at the Wayback Machine
  2. Maxwell 1864, page 497.
  3. See Maxwell 1864, page 499.


अग्रिम पठन

विद्युत चुंबकत्व

जर्नल लेख

स्नातक स्तर की पाठ्यपुस्तकें

  • Griffiths, David J. (1998). इलेक्ट्रोडायनामिक्स का परिचय (तीसरा संस्करण). Prentice Hall. ISBN 0-13-805326-X.
  • Tipler, Paul (2004). वैज्ञानिकों और इंजीनियरों के लिए भौतिकी: बिजली, चुंबकत्व, प्रकाश और प्राथमिक आधुनिक भौतिकी (5वां संस्करण)।. W. H. Freeman. ISBN 0-7167-0810-8.
  • एडवर्ड एम. परसेल, बिजली और चुंबकत्व (मैकग्रा-हिल, न्यूयॉर्क, 1985)। ISBN 0-07-004908-4.
  • हरमन ए. हॉस और जेम्स आर. मेल्चर, विद्युत चुंबकीय फील्ड्स एंड एनर्जी (प्रेंटिस-हॉल, 1989) ISBN 0-13-249020-X.
  • बनेश हॉफमैन, रिलेटिविटी एंड इट्स रूट्स (फ्रीमैन, न्यूयॉर्क, 1983)। ISBN 0-7167-1478-7.
  • डेविड एच. स्टेलिन, ऐन डब्ल्यू. मोर्गेंथेलर, और जिन औ कोंग, विद्युत चुंबकीय वेव्स (प्रेंटिस-हॉल, 1994) ISBN 0-13-225871-4.
  • चार्ल्स एफ स्टीवंस, द सिक्स कोर थ्योरीज़ ऑफ़ मॉडर्न फ़िज़िक्स, (एमआईटी प्रेस, 1995) ISBN 0-262-69188-4.
  • मार्कस ज़ैन, विद्युत चुंबकीय फील्ड थ्योरी: समस्या समाधान दृष्टिकोण, (जॉन विले एंड संस, 1979) ISBN 0-471-02198-9

स्नातक स्तर की पाठ्यपुस्तकें

  • Jackson, John D. (1998). क्लासिकल इलेक्ट्रोडायनामिक्स (तीसरा संस्करण). Wiley. ISBN 0-471-30932-X.
  • लेव डेविडोविच लैंडौ|लैंडौ, एल.डी., द क्लासिकल थ्योरी ऑफ़ फील्ड्स (सैद्धांतिक भौतिकी का पाठ्यक्रम: वॉल्यूम 2), (बटरवर्थ-हेनीमैन: ऑक्सफोर्ड, 1987)। ISBN 0-08-018176-7.
  • Maxwell, James C. (1954). बिजली और चुंबकत्व पर एक ग्रंथ. Dover. ISBN 0-486-60637-6.
  • चार्ल्स डब्ल्यू. मिस्नर, किप थॉर्न|किप एस. थॉर्न, जॉन आर्चीबाल्ड व्हीलर, ग्रेविटेशन, (1970) डब्ल्यू.एच. फ्रीमैन, न्यूयॉर्क; ISBN 0-7167-0344-0. (अवकल रूपों के संदर्भ में मैक्सवेल के समीकरणों का उपचार प्रदान करता है।)

सदिश कलन

  • पी। सी। मैथ्यूज सदिश कैलकुलस, स्प्रिंगर 1998, ISBN 3-540-76180-2
  • एच। एम. शाय, डिव ग्रैड कर्ल एंड दैट ऑल दैट: एन इनफॉर्मल टेक्स्ट ऑन सदिश कैलकुलस, चौथा संस्करण (डब्ल्यू. डब्ल्यू. नॉर्टन एंड कंपनी, 2005) ISBN 0-393-92516-1.