एक यागी-उदय एंटीना। एंटीना में इलेक्ट्रॉनों को गति देकर रेडियो तरंगों को एंटीना से विकीर्ण किया जा सकता है। यह एक
जुटना (भौतिकी) प्रक्रिया है, इसलिए विकीर्ण की गई कुल ऊर्जा त्वरण करने वाले इलेक्ट्रॉनों की संख्या के वर्ग के समानुपाती होती है।
वैद्युतगतिकी में, लार्मर सूत्र का उपयोग एक गैर-सापेक्ष बिंदु आवेश द्वारा विकीर्ण की गई कुल ऊर्जा (भौतिकी) की गणना करने के लिए किया जाता है क्योंकि यह त्वरित होता है। यह पहली बार 1897 में जे. जे. लार्मर द्वारा प्राप्त किया गया था,[1] प्रकाश के तरंग सिद्धांत के संदर्भ में प्रस्तुत किया गया है।
जब कोई आवेशित कण (जैसे इलेक्ट्रॉन, प्रोटॉन, या आयन) त्वरित होता है, तो ऊर्जा विद्युत चुम्बकीय तरंगों के रूप में विकीर्ण होती है। कण के लिए जिसका वेग प्रकाश की गति के सापेक्ष से छोटा होता है (अर्थात, गैर-सापेक्षवादी), कुल ऊर्जा जो कण को विकीर्ण करती है (जब एक बिंदु आवेश के रूप में माना जाता है) की गणना लार्मर सूत्र द्वारा की जा सकती है:


जहाँ

या

— उचित त्वरण होते है,

- द्वारा आवेशित करना होता है, और

- प्रकाश की गति होती है। सापेक्षवादी सिद्धांत सामान्यीकरण लियानार्ड-विएचर्ट क्षमता द्वारा दिया गया है।
किसी भी इकाई प्रणाली में, एकल इलेक्ट्रॉन द्वारा विकीर्ण की गई ऊर्जा को मौलिक इलेक्ट्रॉन त्रिज्या और इलेक्ट्रॉन द्रव्यमान के रूप में व्यक्त किया जा सकता है:

एक निहितार्थ यह है कि
बोह्र मॉडल के रूप में एक नाभिक के चारों ओर परिक्रमा करने वाले एक इलेक्ट्रॉन को ऊर्जा खो देनी चाहिए, नाभिक में गिर कर और परमाणु को संचय हो जाना चाहिए। यह पहेली तब तक हल नहीं हुई थी जब तक
क्वांटम यांत्रिकी प्रस्तुत नहीं की गई है।
व्युत्पत्ति
व्युत्पत्ति 1: गणितीय दृष्टिकोण (सीजीएस इकाइयों का उपयोग करके)
हमें पहले विद्युत और चुंबकीय क्षेत्र के रूप को खोजने की जरूरत है। क्षेत्रों को लिखा जा सकता है (पूर्ण व्युत्पत्ति के लिए लियनार्ड-विचर्ट क्षमता देखें)
![{\displaystyle \mathbf {E} (\mathbf {r} ,t)=q\left({\frac {\mathbf {n} -{\boldsymbol {\beta }}}{\gamma ^{2}(1-{\boldsymbol {\beta }}\cdot \mathbf {n} )^{3}R^{2}}}\right)_{\rm {ret}}+{\frac {q}{c}}\left({\frac {\mathbf {n} \times [(\mathbf {n} -{\boldsymbol {\beta }})\times {\dot {\boldsymbol {\beta }}}]}{(1-{\boldsymbol {\beta }}\cdot \mathbf {n} )^{3}R}}\right)_{\rm {ret}}}](/index.php?title=Special:MathShowImage&hash=71aa79abb37f9c8e52a1624b687c05c9&mode=mathml)
और

जहाँ

आवेशित वेग से विभाजित होता है

,

आवेश का त्वरण जिसे c से विभाजित किया जाता है,

में एक इकाई सदिश होती है

दिशा,

का परिमाण है

,

आवेशित स्थान होता है, और

दाईं ओर की शर्तों का मूल्यांकन
कम समय पर किया जाता है
दाहिनी ओर आवेशित कण के वेग और त्वरण में समाहित विद्युत क्षेत्रों का योग है। केवल वेग क्षेत्र पर निर्भर करता है,
जबकि त्वरण क्षेत्र दोनों पर निर्भर करता है
और
और दोनों के बीच कोणीय संबंध होता है। चूंकि वेग क्षेत्र आनुपातिक होता है
, और यह दूरी के साथ बहुत जल्दी गिर जाता है। दूसरी ओर, त्वरण क्षेत्र आनुपातिक होता है
, जिसका अर्थ है कि यह दूरी के साथ और धीरे-धीरे गिरता है। इस वजह से, त्वरण क्षेत्र विकिरण क्षेत्र का प्रतिनिधितत्व करता है और अधिकांश ऊर्जा को आवेशित से दूर ले जाने के लिए जिम्मेदार होता है।
हम इसके पॉयंटिंग संवाहक की गणना करके विकिरण क्षेत्र की ऊर्जा प्रवाह घनत्व को पा सकते हैं:

जहां 'ए' अवनिर्देश इस बात महत्व देते हैं कि केवल त्वरण क्षेत्र प्राप्ति कर रहे हैं। यह मानते हुए कि गति पर कण स्थिर होते है, चुंबकीय और विद्युत क्षेत्रों के बीच संबंध में प्रतिस्थापन

और सरलीकरण बना देता है
[2]

यदि त्वरण और अवलोकन संवाहक के बीच के कोण को बराबर होने दें

, और त्वरण का प्रस्तुत करते हैं

, तो प्रति इकाई
ठोस कोण से निकलने वाली ऊर्जा होती है

इस मात्रा को सभी ठोस कोणों (अर्थात, ऊपर) पर एकीकृत करके विकीर्ण की गई कुल ऊर्जा पाई जाती है

और

). यह देता है

जो गैर-सापेक्ष त्वरित आवेशित के लिए लार्मर परिणाम होते है। यह कण द्वारा विकरित ऊर्जा को उसके त्वरण से संबंधित होता है। यह स्पष्ट रूप से दर्शाता है कि आवेशित जितनी तेजी से बढ़ता है, विकिरण उतना ही अधिक होगा। हम इसकी अपेक्षा करेंगे क्योंकि विकिरण क्षेत्र त्वरण पर निर्भर करता है।
सापेक्षवादी सामान्यीकरण
सहपरिवर्ती रूप
संवेग के संदर्भ में लिखा गया है, p, असापेक्षतावादी लार्मर सूत्र है (CGS इकाइयों में)[3]

ऊर्जा
P को
लोरेंत्ज़ अपरिवर्तनीय दिखाया जा सकता है।
[3] लार्मर सूत्र के किसी भी सापेक्षवादी सामान्यीकरण
P को कुछ मात्रा में लोरेंत्ज़ अपरिवर्तनीय मात्रा से संबंधित होना चाहिए ।

गैर-सापेक्षवादी सूत्र में प्रकट होने से पता चलता है कि सापेक्षतावादी रूप से सही सूत्र में
चार-त्वरण aμ = dpμ/dτ के आंतरिक गुणनफल को लेकर पाया गया लोरेंत्ज़ अदिश सम्मलित होना चाहिए स्वयं [यहाँ
pμ = (γmc, γmv) चार-संवेग होते है]। लार्मर सूत्र का सही आपेक्षिक सामान्यीकरण होता है (CGS इकाइयों में)
[3]
यह दिखाया जा सकता है कि यह आंतरिक गुणन किसके द्वारा दिया गया है[3]

और इसलिए
β ≪ 1,की सीमा में, यह कम हो जाता है

, इस प्रकार गैर-सापेक्षवादी स्थिति को पुन: उत्पन्न करता है। लोरेंत्ज़ अपरिवर्तनीय उचित त्वरण के संदर्भ में व्यक्त किया गया है, सापेक्षतावादी लार्मर ऊर्जा होती है (सीजीएस में अभी भी)
गैर-सहसंयोजक रूप
उपरोक्त आंतरिक गुणनफल β और इसका समय व्युत्पन्न को इसके संदर्भ में भी लिखा जा सकता है। फिर लार्मर सूत्र का सापेक्षिक सामान्यीकरण है (CGS इकाइयों में)[3]
यह लियोनार्ड परिणाम है, जो पहली बार 1898 में प्राप्त हुआ था।
h> का अर्थ है कि जब लोरेंत्ज़ कारक
शून्य के बहुत समीप है (अर्थात
) कण द्वारा उत्सर्जित विकिरण नगण्य होने की संभावना होती है। चूँकि, जैसा
विकिरण की तरह बढ़ता है
चूंकि कण ईएम तरंगों के रूप में अपनी ऊर्जा खोने की कोशिश करता है। इसके अतिरिक्त, जब त्वरण और वेग ओर्थोगोनल होते हैं तो ऊर्जा एक कारक से कम हो जाती है
, अर्थात् कारक
हो जाता है
. गति जितनी तेज होती है, यह कमी उतनी ही अधिक होती जाती है।
विभिन्न प्रकार की गति में किस प्रकार के विकिरण नुकसान की उम्मीद की जा सकती है, इसका अनुमान लगाने के लिए हम लियोनार्ड के परिणाम का उपयोग कर सकते हैं।
कोणीय वितरण
विकिरणित ऊर्जा का कोणीय वितरण एक सामान्य सूत्र द्वारा दिया जाता है, चाहे कण सापेक्षवादी हो या नहीं। सीजीएस इकाइयों में, यह सूत्र है[4]
![{\displaystyle {\frac {dP}{d\Omega }}={\frac {q^{2}}{4\pi c}}{\frac {|\mathbf {\hat {n}} \times [(\mathbf {\hat {n}} -{\boldsymbol {\beta }})\times {\dot {\boldsymbol {\beta }}}]|^{2}}{(1-\mathbf {\hat {n}} \cdot {\boldsymbol {\beta }})^{5}}},}](/index.php?title=Special:MathShowImage&hash=6ab882095e24803e3808fc382377cf9a&mode=mathml)
जहाँ

कण से पर्यवेक्षक की ओर इंगित करते हुए एक इकाई वेक्टर होता है। रैखिक गति (त्वरण के समानांतर वेग) के स्थितियों में, यह सरल हो जाता है
[5]

जहाँ

प्रेक्षक और कण की गति के बीच का कोण होता है।