अनुप्रयुक्त यांत्रिकी

From Vigyanwiki

विज्ञान की वह शाखा जिसके अंतर्गत किसी भी पदार्थ की गति से संबंधित विज्ञान का अध्यन व जिसे उपकरणों की सहायता के बिना मनुष्यों द्वारा अनुभव या कथित किया जा सकता है, अनुप्रयुक्‍त यांत्रिकी (एप्लाइड मैकेनिक्स) कहलाती है।[1] संक्षेप में, जब यांत्रिकी की अवधारणा सैद्धांतिक से उत्कृष्ठ हो जाती है और अनुप्रयुक्‍त और क्रियान्वित हो जाती है, तो सामान्य यांत्रिकी अनुप्रयुक्‍त यांत्रिकी बन जाती है। यह बहुत बड़ा अंतर है जो अनुप्रयुक्‍त यांत्रिकी को प्रयोगात्मक दिनप्रतिदिन के जीवन के लिए एक आवश्यक समझ बनाता है।[2] इसमें विभिन्न प्रकार के क्षेत्रों और विषयों में कई अनुप्रयोग हैं, जिनमें संरचनात्मक अभियांत्रिकी, खगोल विज्ञान, समुद्र विज्ञान, मौसम विज्ञान, हाइड्रोलिक्स, यांत्रिक अभियांत्रिकी, अंतरिक्ष अभियांत्रिकी, नैनोटेक्नोलॉजी, संरचनात्मक डिजाइन, भूकंप अभियांत्रिकी, द्रव गतिकी, ग्रह विज्ञान और अन्य जीवन विज्ञान सम्मिलित हैं, लेकिन इन तक ही सीमित नहीं है।[3][4] कई विषयों के बीच अनुसंधान को जोड़ने वाली, अनुप्रयुक्त यांत्रिकी विज्ञान और अभियांत्रिकी दोनों में एक महत्वपूर्ण भूमिका निभाता है।[1]

शुद्ध यांत्रिकी निकायों के बाह्य क्रियाविधि के लिए निकायों (ठोस और तरल पदार्थ) या निकायों की प्रणालियों की प्रतिक्रिया का वर्णन करता है, या तो विराम या गति की प्रारंभिक अवस्था में, बलों के प्रभाव के अधीन। अनुप्रयुक्त यांत्रिकी भौतिक सिद्धांत और प्रौद्योगिकी के लिए इसके अनुप्रयोग के बीच की रिक्ति को जोड़ता है।

दो मुख्य श्रेणियों से बना, अनुप्रयुक्त यांत्रिकी को चिरसम्मत यांत्रिकी में विभाजित किया जा सकता है; स्थूलदर्शित ठोस (मैक्रोस्कोपिक सॉलिड्स) और द्रव यांत्रिकी के यांत्रिकी का अध्ययन; स्थूलदर्शीय तरल पदार्थों के यांत्रिकी का अध्ययन।[4] अनुप्रयुक्त यांत्रिकी की प्रत्येक शाखा में उपश्रेणियाँ होती हैं जो उनके स्वयं के उपखंडों के माध्यम से भी बनती हैं।[4] स्थैतिकी और गतिकी या गतिविज्ञान में विभाजित चिरसम्मत यांत्रिकी, और भी उप-विभाजित हैं, स्थैतिकी के अध्ययन दृढ़ निकायों और दृढ़ संरचनाओं में विभाजित हैं, और गतिकी के अध्ययन शुद्धगतिकी (किनेमेटिक्स) और बल गतिकी (कैनेटीक्स) में विभाजित हैं।[4] चिरसम्मत यांत्रिकी की तरह, द्रव यांत्रिकी को भी दो वर्गों में विभाजित किया गया है: स्थैतिकी और गतिकी।[4]

प्रायोगिक विज्ञानों के अंतर्गत, अनुप्रयुक्त यांत्रिकी नए विचारों और सिद्धांतों को तैयार करने, घटना की खोज और व्याख्या करने, और प्रयोगात्मक और अभिकलनात्मक उपकरण विकसित करने में उपयोगी है।[5] प्राकृतिक विज्ञानों के अनुप्रयोग में, यांत्रिकी को उष्मागतिकी, ऊष्मा का अध्ययन और अधिक सामान्यतः ऊर्जा, और वैद्युतयांत्रिकी (इलेक्ट्रोमैकेनिक्स), विद्युत और चुंबकत्व के अध्ययन द्वारा पूरक कहा गया था।

अवलोकन

चिरसम्मत यांत्रिकी और द्रव यांत्रिकी के सिद्धांतों के अनुप्रयोग के माध्यम से अभियांत्रिकी की समस्याओं को सामान्य रूप से अनुप्रयुक्त यांत्रिकी के साथ हल किया जाता है।[4] क्योंकि अनुप्रयुक्त यांत्रिकी को जनपद अभियांत्रिकी, यांत्रिक अभियांत्रिकी, अंतरिक्ष अभियांत्रिकी, पदार्थ अभियांत्रिकी, और जैव-चिकित्सा (बायोमेडिकल) अभियांत्रिकी जैसे अभियांत्रिकी विषयों में लागू किया जा सकता है, इसे कभी-कभी अभियांत्रिकी यांत्रिकी कहा जाता है।[4]

अनुप्रयुक्त यांत्रिकी के संबंध में विज्ञान और अभियांत्रिकी आपस में जुड़े हुए हैं, क्योंकि विज्ञान में शोध सिविल, यांत्रिक, अंतरिक्ष, सामग्री और जैव चिकित्सा अभियांत्रिकी विषयों में अनुसंधान प्रक्रियाओं से जुड़े हैं।[1] जनपद अभियांत्रिकी में, अनुप्रयुक्त यांत्रिकी की अवधारणाओं को संरचनात्मक डिजाइन और संरचनात्मक, तटीय, भू-प्राद्यौगिकी, निर्माण और भूकंप अभियांत्रिकी जैसे विभिन्न अभियांत्रिकी उप-विषयों पर लागू किया जा सकता है।[4] यांत्रिक अभियांत्रिकी में, इसे मेक्ट्रोनिक्स और रोबोटिक्स, डिजाइन और ड्राफ्टिंग, नैनो टेक्नोलॉजी, मशीन तत्वों, संरचनात्मक विश्लेषण, घर्षण संक्षोभ वेल्डिंग और ध्वनिक अभियांत्रिकी में लागू किया जा सकता है।[4] अंतरिक्ष अभियांत्रिकी में, अनुप्रयुक्त यांत्रिकी का उपयोग वायुगतिकी, अंतरिक्ष संरचनात्मक यांत्रिकी और प्रणोदन, विमान डिजाइन और विमान यातायात (फ्लाइट) यांत्रिकी में किया जाता है।[4] पदार्थ अभियांत्रिकी में, अनुप्रयुक्त यांत्रिकी की अवधारणाओं का उपयोग ताप प्रत्यास्थता, प्रत्यास्थता सिद्धांत, फ्रैक्चर और फेलियर तंत्र, संरचनात्मक डिजाइन अनुकूलन, फ्रैक्चर और फेलियर, सक्रिय पदार्थ और कंपोजिट, और अभिकलनात्मक यांत्रिकी में किया जाता है।[6] अनुप्रयुक्त यांत्रिकी में अनुसंधान को अस्थिरोग विज्ञान (आर्थोपेडिक्स) जैसे जैवचिकित्सा अभियांत्रिकी क्षेत्रों से प्रत्यक्ष रूप से जोड़ा जा सकता है; जैवयांत्रिकी; मानव शरीर की गति का विश्लेषण; मांसपेशियों, टेंडॉन्स, स्नायुबंधन और उपास्थि के नरम ऊतक मॉडलिंग; जैव द्रव यांत्रिकी; और गतिशील प्रणाली, प्रदर्शन में वृद्धि, और इष्टतम नियंत्रण।[7]

संक्षिप्त इतिहास

गणित पर आधारित सैद्धांतिक आधार वाला पहला विज्ञान यांत्रिकी था; यांत्रिकी के अंतर्निहित सिद्धांतों को सबसे पहले आइजैक न्यूटन ने अपनी 1687 की पुस्तक फिलोसोफी नेचुरलिस प्रिंसिपिया मैथेमेटिका[3] में चित्रित किया था। अनुप्रयुक्त यांत्रिकी को अपने स्वयं के अनुशासन के रूप में परिभाषित करने के लिए सबसे प्रारम्भी कार्यों में से एक जर्मन भौतिक विज्ञानी और अभियांत्रिक फ्रांज जोसेफ गेर्स्टनर द्वारा लिखित तीन खंड हैंडबच डेर मैकेनिक था।[8] अनुप्रयुक्त यांत्रिकी पर अंग्रेजी में प्रकाशित होने वाला पहला सेमिनल काम 1858 में अंग्रेजी यांत्रिक अभियांत्रिक विलियम रैंकिन द्वारा ए मैनुअल ऑफ एप्लाइड मैकेनिक्स था।[8][9] अगस्त फ़ोप्पल, जर्मन यांत्रिक अभियांत्रिक और प्रोफेसर, ने 1898 में वोरलेसुंगेन उबर टेक्निस्क मेकानिक प्रकाशित किया, जिसमें उन्होंने अनुप्रयुक्त यांत्रिकी के अध्ययन के लिए कलन (कैलकुलस) का परिचय दिया।[8]

अनुप्रयुक्त गणित और यांत्रिकी के जर्नल के प्रकाशन, अनुप्रयुक्त गणित और यांत्रिकी की स्थापना, और अनुप्रयुक्त यांत्रिकी की अंतर्राष्ट्रीय कांग्रेस की पहली बैठक के साथ 1920 के दशक की प्रारम्भ में चिरसम्मत यांत्रिकी से भिन्न अनुशासन के रूप में अनुप्रयुक्त यांत्रिकी की स्थापना की गई थी।[1] 1921 में ऑस्ट्रियाई वैज्ञानिक रिचर्ड वॉन मिसेस ने अनुप्रयुक्त गणित और यांत्रिकी के जर्नल (ज़ीट्सच्रिफ्ट फर एंग्वेंटे मैथेमेटिक एंड मैकेनिक) की प्रारम्भ की और 1922 में जर्मन वैज्ञानिक लुडविग प्रांटल के साथ सोसायटी ऑफ एप्लाइड मैथमेटिक्स एंड मैकेनिक्स (गेसेल्सचैफ्ट फर एंगवेन्डे मैथेमेटिक एंड मैकेनिक) की स्थापना की।[1] 1922 में इंसब्रुक, ऑस्ट्रिया में जलगतिकी और वायुगतिकी पर एक सम्मेलन के दौरान, हंगरी के एक अभियांत्रिक थिओडोर वॉन कार्मन और इटलियन  गणितज्ञ टुल्लियो लेवी-सिविता ने मुलाकात की और अनुप्रयुक्त यांत्रिकी पर एक सम्मेलन आयोजित करने का निर्णय किया।[1] 1924 में अनुप्रयुक्त यांत्रिकी की अंतर्राष्ट्रीय कांग्रेस की पहली बैठक डेल्फ़्ट, नीदरलैंड में आयोजित की गई थी जिसमें दुनिया भर के 200 से अधिक वैज्ञानिकों ने भाग लिया था।[1][3] इस पहली बैठक के बाद से कांग्रेस हर चार वर्ष में आयोजित की जाती रही है, द्वितीय विश्व युद्ध के दौर को छोड़कर; 1960 में बैठक का नाम बदलकर इंटरनेशनल कांग्रेस ऑफ़ थ्योरेटिकल एंड एप्लाइड मैकेनिक्स कर दिया गया।[1]

प्रथम विश्व युद्ध के बाद यूरोप में अप्रत्याशित राजनीतिक परिदृश्य और द्वितीय विश्व युद्ध की क्रांति के कारण कई यूरोपीय वैज्ञानिक और अभियांत्रिक संयुक्त राज्य अमेरिका चले गए।[1] यूक्रेनी अभियांत्रिक स्टीफन टिमोशेंको 1918 में बोल्शेविक रेड आर्मी से भाग गए और अंततः 1922 में अमेरिका चले गए; अगले बाईस वर्षों में उन्होंने मिशिगन विश्वविद्यालय और स्टैनफोर्ड विश्वविद्यालय में अनुप्रयुक्त यांत्रिकी सिखाई।[10] टिमोचेंको ने अनुप्रयुक्त यांत्रिकी में तेरह पाठ्यपुस्तकें लिखीं, जिनमें से कई ने अपने क्षेत्रों में स्वर्ण मानक माना; उन्होंने 1927 में यांत्रिक इंजीनियरों का अमरीकी समुदाय के अनुप्रयुक्त यांत्रिकी विभाजन की भी स्थापना की और उन्हें "अमेरिका के अभियांत्रिकी यांत्रिकी के पिता" माना जाता है।[10] 1930 में थिओडोर वॉन कार्मन ने जर्मनी छोड़ दिया और कैलिफोर्निया प्रौद्योगिकी संस्थान में वैमानिकी प्रयोगशाला के पहले निदेशक बने; वॉन कार्मन ने बाद में 1944 में जेट प्रोपल्शन प्रयोगशाला की सह-स्थापना की।[1] टिमोचेंको और वॉन कर्मन के नेतृत्व में, यूरोप से प्रतिभा का प्रवाह, और वैमानिकी और रक्षा उद्योगों का तेजी से विकास, अनुप्रयुक्त यांत्रिकी 1950 तक अमेरिका में एक परिपक्व अनुशासन बन गया।[1]

शाखाएँ

गतिकी

गतिकी, विभिन्न वस्तुओं की गति और संचलन का अध्ययन, आगे दो शाखाओं में विभाजित किया जा सकता है, शुद्धगतिकी और बल गतिकी।[4] चिरसम्मत यांत्रिकी के लिए, शुद्धगतिकी समय, वेग, विस्थापन और त्वरण का उपयोग करते हुए गतिमान निकायों का विश्लेषण होगा।[4] गतिज बलों और द्रव्यमान के प्रभाव के लेंस के माध्यम से गतिमान पिंडों का अध्ययन होगा।[4] द्रव यांत्रिकी के संदर्भ में, द्रव गतिकी प्रवाह से संबंधित है और विभिन्न तरल पदार्थों की गति का वर्णन करती है।[4]

स्थैतिकी

स्थैतिकी का अध्ययन विराम की अवस्था में निकायों का अध्ययन और वर्णन है।[4] चिरसम्मत यांत्रिकी में स्थैतिक विश्लेषण को दो श्रेणियों में विभाजित किया जा सकता है, विकृत निकाय और गैर-विकृति निकाय।[4] विकृत निकायों का अध्ययन करते समय, कठोर संरचनाओं पर कार्य करने वाली शक्तियों से संबंधित विचारों का विश्लेषण किया जाता है। गैर-विकृत निकायों का अध्ययन करते समय, संरचना और पदार्थ की शक्ति का परीक्षण देखा जाता है।[4] द्रव यांत्रिकी के संदर्भ में, दबाव अप्रभावित द्रव की विश्राम अवस्था को ध्यान में रखा जाता है।[4]

चिरसम्मत यांत्रिकी से संबंध

अनुप्रयुक्त यांत्रिकी विभिन्न अभियांत्रिकी/यांत्रिक विषयों के प्रायोगिक अनुप्रयोगों का परिणाम है; जैसा कि नीचे दी गई तालिका में दर्शाया गया है।[4]

चिरसम्मत यांत्रिकी/

तरल यांत्रिकी

स्थैतिकी गैर-विकृत

निकाय

प्रायोगिक

अनुप्रयोग

सिविल

अभियांत्रिकी

अनुप्रयुक्‍त यांत्रिकी
विकृत

निकाय

यांत्रिक

अभियांत्रिकी

गतिकी शुद्धगतिकी अंतरिक्ष

अभियांत्रिकी

बल गतिकी पदार्थ

अभियांत्रिकी

उदाहरण

न्यूटोनियन फाउंडेशन

प्राथमिक विज्ञानों में से एक होने के नाते जिसके लिए एक व्यवस्थित सैद्धांतिक रूपरेखा विकसित की गई था, सर आइजक न्यूटन के "प्रिंसिपिया" (1687 में प्रकाशित) द्वारा यांत्रिकी का नेतृत्व किया गया था।[3] यह न्यूटन द्वारा विकसित "फूट डालो और राज करो" की रणनीति है जिसने गति को नियंत्रित करने और इसे गतिकी या स्थैतिकी में विभाजित करने में सहायता की।[3] बल के प्रकार, पदार्थ के प्रकार और उक्त पदार्थ पर कार्य करने वाली बाह्य बालों के आधार पर, गतिशील और स्थिर अध्ययन के भीतर "फूट डालो और राज करो" रणनीति तय होगी।[3]

आर्किमिडीज का सिद्धांत

आर्किमिडीज का सिद्धांत एक प्रमुख सिद्धांत है जिसमें द्रव यांत्रिकी से संबंधित कई परिभाषित प्रस्ताव सम्मिलित हैं। जैसा कि आर्किमिडीज़ के सिद्धांत के प्रस्ताव 7 में कहा गया है, ठोस जो उस तरल पदार्थ से भारी होता है जिसे उसमें रखा जाता है, वह तरल पदार्थ के तल में उतर जाएगा।[11] यदि ठोस को तरल पदार्थ के भीतर मूल्यांकन किया जाना है, तो द्रव को उस ठोस द्वारा विस्थापित किए गए द्रव की मात्रा के भार से हल्का मापा जाएगा।[11] आगे प्रस्ताव 5 द्वारा विकसित किया गया, यदि ठोस तरल पदार्थ की तुलना में हल्का है, तो ठोस को तरल से पूरी तरह से ढकने के लिए बलपूर्वक डुबोना होगा।[11] तब विस्थापित तरल पदार्थ की मात्रा का भार ठोस के भार के बराबर होगा।[11]

प्रमुख विषय

अनुप्रयुक्त यांत्रिकी समीक्षाएं[12] पत्रिका से "एएमआर विषय वर्गीकरण व्यवस्था" पर आधारित यह खंड।

नींव और मूल विधियाँ

गतिकी और कंपन

  • गतिकी (यांत्रिकी)
  • शुद्धगतिकी
  • ठोस पदार्थों का कंपन (मूल)
  • कंपन (संरचनात्मक तत्व)
  • कंपन (संरचनाएं)
  • ठोस पदार्थों में तरंग गति
  • ठोस पदार्थों पर प्रभाव
  • असंपीड्य तरल पदार्थों में तरंगें
  • संपीड्य तरल पदार्थों में तरंगें
  • ठोस द्रव परस्पर क्रिया
  • अंतरिक्षयानिकी (खगोलीय और कक्षीय यांत्रिकी)
  • विस्फोट और प्राक्षेपिकी
  • ध्वनि-विज्ञान

स्वत: नियंत्रण

  • निकाय सिद्धांत और डिजाइन
  • इष्टतम नियंत्रण प्रणाली
  • सिस्टम और नियंत्रण अनुप्रयोग
  • रोबोटिक
  • विनिर्माण

ठोस पदार्थों के यांत्रिकी

तरल पदार्थों की यांत्रिकी

ऊष्मीय विज्ञान

पृथ्वी विज्ञान

ऊर्जा प्रणाली और पर्यावरण

जैवविज्ञान

अनुप्रयोग

प्रकाशन

यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Pao, Yih-Hsing (1998-02-01). "Applied Mechanics in Science and Engineering". Applied Mechanics Reviews. 51 (2): 141–153. Bibcode:1998ApMRv..51..141P. doi:10.1115/1.3098993. ISSN 0003-6900.
  2. Drabble, George E. (1971-01-01), Drabble, George E. (ed.), "CHAPTER ONE - INTRODUCTION", Applied Mechanics (in English), Academic Press, pp. 1–8, ISBN 978-0-491-00208-0, retrieved 2021-11-06
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Eberhard, Peter; Juhasz, Stephen, eds. (2016). इतम (in British English). doi:10.1007/978-3-319-31063-3. ISBN 978-3-319-31061-9.
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 Abdel Wahab, Magd (March 2020). "संपादकीय". Applied Mechanics (in English). 1 (1): 1–2. doi:10.3390/applmech1010001.
  5. Kurrer, Karl‐Eugen (2008-04-23). The History of the Theory of Structures: From Arch Analysis to Computational Mechanics (in English) (1 ed.). Wiley. doi:10.1002/9783433600160. ISBN 978-3-433-01838-5.
  6. "Mechanics & Materials – Mechanical Engineering". me.engin.umich.edu. Retrieved 2021-11-06.
  7. "Applied Mechanics and Biomedical Engineering". www.brunel.ac.uk (in British English). Retrieved 2021-11-06.
  8. 8.0 8.1 8.2 Kurrer, Karl‐Eugen (2008-04-23). The History of the Theory of Structures (in English). Wiley. doi:10.1002/9783433600160. ISBN 978-3-433-01838-5.
  9. Rankine, William John Macquorn (1858). A manual of applied mechanics. University of California Libraries. London : R. Griffin.
  10. 10.0 10.1 Weingardt, Richard G. (2008-10-01). "Stephen P. Timoshenko". Leadership and Management in Engineering (in English). 8 (4): 309–314. doi:10.1061/(ASCE)1532-6748(2008)8:4(309). ISSN 1532-6748.
  11. 11.0 11.1 11.2 11.3 Archimedes; Heath, Thomas Little (1897). The works of Archimedes. Wellesley College Library. Cambridge, University Press.
  12. "Journal on Applied Mechanics Reviews (AMR) | ASME - ASME". www.asme.org (in English). Retrieved 2021-11-06.

अग्रिम पठन

  • J.P. Den Hartog, Strength of Materials, Dover, New York, 1949.
  • F.P. Beer, E.R. Johnston, J.T. DeWolf, Mechanics of Materials, McGraw-Hill, New York, 1981.
  • S.P. Timoshenko, History of Strength of Materials, Dover, New York, 1953.
  • J.E. Gordon, The New Science of Strong Materials, Princeton, 1984.
  • H. Petroski, To Engineer Is Human, St. Martins, 1985.
  • T.A. McMahon and J.T. Bonner, On Size and Life, Scientific American Library, W.H. Freeman, 1983.
  • M. F. Ashby, Materials Selection in Design, Pergamon, 1992.
  • A.H. Cottrell, Mechanical Properties of Matter, Wiley, New York, 1964.
  • S.A. Wainwright, W.D. Biggs, J.D. Organisms, Edward Arnold, 1976.
  • S. Vogel, Comparative Biomechanics, Princeton, 2003.
  • J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, 2001.
  • J.L. Meriam, L.G. Kraige. Engineering Mechanics Volume 2: Dynamics, John Wiley & Sons., New York, 1986.
  • J.L. Meriam, L.G. Kraige. Engineering Mechanics Volume 1: Statics, John Wiley & Sons., New York, 1986.

बाहरी कड़ियाँ

Video and web lectures