कोणीय विस्थापन

From Vigyanwiki
Revision as of 17:29, 1 February 2023 by alpha>Artiverma
एक निश्चित अक्ष ओ के बारे में एक कठोर शरीर पी का रोटेशन।

किसी पिंड का कोणीय विस्थापन वह कोण है (कांति, डिग्री (कोण) या परिभ्रमण (ज्यामिति) में) जिसके माध्यम से बिंदु निर्दिष्ट अर्थ में केंद्र या निर्दिष्ट अक्ष के चारों ओर घूमता है। जब कोई पिंड अपनी धुरी के चारों ओर घूमता है, तो गति का केवल एक कण के रूप में विश्लेषण नहीं किया जा सकता है, क्योंकि वृत्ताकार गति में यह किसी भी समय बदलते वेग और त्वरण से गुजरता है (टी )। किसी पिंड के घूर्णन से निपटने के दौरान, पिंड को ही कठोर मानना ​​सरल हो जाता है। पिंड को सामान्यतः कठोर माना जाता है जब सभी कणों के बीच अलगाव पूरे पिंड की गति में स्थिर रहता है, उदाहरण के लिए इसके द्रव्यमान के भाग उड़ नहीं रहे हैं। यथार्थवादी अर्थ में, सभी चीजें विकृत हो सकती हैं, चूँकि यह प्रभाव न्यूनतम और नगण्य है। इस प्रकार स्थिर अक्ष पर दृढ़ पिंड के घूमने को घूर्णी गति कहा जाता है।

उदाहरण

उदाहरण में दाईं ओर (या कुछ मोबाइल संस्करणों में), एक कण या शरीर P मूल, O, घूर्णन वामावर्त से निश्चित दूरी r पर है। तब यह महत्वपूर्ण हो जाता है कि इसके ध्रुवीय निर्देशांक (r,θ) के संदर्भ में कण P की स्थिति का प्रतिनिधित्व करें। इस विशेष उदाहरण में, θ का मूल्य बदल रहा है, जबकि त्रिज्या का मूल्य समान है। (आयताकार निर्देशांक (x, y) में x और y दोनों समय के साथ भिन्न होते हैं)। जैसे-जैसे कण वृत्त के साथ चलता है, यह चाप (ज्यामिति) s की यात्रा करता है, जो संबंध के माध्यम से कोणीय स्थिति से संबंधित हो जाता है:-


माप

कोणीय विस्थापन को रेडियन या डिग्री में मापा जा सकता है। रेडियन का उपयोग करना वृत्त के चारों ओर यात्रा की गई दूरी और केंद्र से दूरी r के बीच एक बहुत ही सरल संबंध प्रदान करता है।

उदाहरण के लिए, यदि कोई पिंड त्रिज्या r के वृत्त के चारों ओर 360 ° घूमता है, तो कोणीय विस्थापन परिधि के चारों ओर यात्रा की गई दूरी द्वारा दिया जाता है - जो कि 2πr-त्रिज्या द्वारा विभाजित है: जो आसानी से सरल हो जाता है: इसलिए, 1 क्रांति है रेडियन।

जब कण बिंदु P से बिंदु Q पर यात्रा करता है , जैसा कि यह बाईं ओर चित्रण में करता है, वृत्त की त्रिज्या कोण में परिवर्तन के माध्यम से जाती है जो कोणीय विस्थापन के बराबर है।

तीन आयाम

चित्र 1: यूलर का रोटेशन प्रमेय।एक महान सर्कल घुमाव के तहत एक और महान सर्कल में बदल जाता है, हमेशा अपनी मूल स्थिति में गोले का व्यास छोड़ देता है।
चित्रा 2: एक रोटेशन एक यूलर अक्ष और कोण द्वारा दर्शाया गया है।

तीन आयामों में, कोणीय विस्थापन एक दिशा और एक परिमाण के साथ एक इकाई है।दिशा रोटेशन की धुरी को निर्दिष्ट करती है, जो हमेशा यूलर के रोटेशन प्रमेय के आधार पर मौजूद होती है;परिमाण उस अक्ष के बारे में रेडियन में रोटेशन को निर्दिष्ट करता है (दिशा निर्धारित करने के लिए दाहिने हाथ के नियम का उपयोग करके)।इस इकाई को अक्ष-कोण कहा जाता है।

दिशा और परिमाण होने के बावजूद, कोणीय विस्थापन एक वेक्टर (ज्यामिति) नहीं है क्योंकि यह इसके अलावा विनिमेय कानून का पालन नहीं करता है।[1] फिर भी, जब इनफिनिटिमल रोटेशन से निपटते हैं, तो दूसरे क्रम के infinitesimals को छोड़ दिया जा सकता है और इस मामले में कम्यूटिविटी दिखाई देती है।

कोणीय विस्थापन का वर्णन करने के कई तरीके मौजूद हैं, जैसे रोटेशन मैट्रिक्स या यूलर कोण ।दूसरों के लिए SO (3) पर चार्ट देखें।

मैट्रिक्स अंकन

यह देखते हुए कि अंतरिक्ष में किसी भी फ्रेम को एक रोटेशन मैट्रिक्स द्वारा वर्णित किया जा सकता है, उनमें से विस्थापन को एक रोटेशन मैट्रिक्स द्वारा भी वर्णित किया जा सकता है।हो रहा और दो मैट्रिस, उनके बीच के कोणीय विस्थापन मैट्रिक्स को प्राप्त किया जा सकता है ।जब इस उत्पाद को दोनों फ्रेम के बीच बहुत कम अंतर किया जाता है, तो हम पहचान के करीब एक मैट्रिक्स प्राप्त करेंगे।

सीमा में, हमारे पास एक infinitesimal रोटेशन मैट्रिक्स होगा।

infinitesimal रोटेशन matrices

एक infinitesimal कोणीय विस्थापन एक तिरछा-सममित मैट्रिक्स है#infinitesimal घुमाव मैट्रिक्स:

  • जैसा कि किसी भी रोटेशन मैट्रिक्स में एक एकल वास्तविक eigenvalue होता है, जो +1 है, यह eigenvalue रोटेशन अक्ष को दर्शाता है।
  • इसके मॉड्यूल को इनफिनिटिमल रोटेशन के मूल्य से घटाया जा सकता है।
  • मैट्रिक्स का आकार इस तरह है:

हम यहां इन्फिनिटिमल एंगुलर विस्थापन टेंसर या रोटेशन जनरेटर से जुड़े हो सकते हैं:

ऐसा है कि इसका संबद्ध रोटेशन मैट्रिक्स है ।जब इसे समय तक विभाजित किया जाता है, तो यह कोणीय वेग वेक्टर का उत्पादन करेगा।

रोटेशन के जनरेटर

मान लीजिए कि हम एक यूनिट वेक्टर [x, y, z] द्वारा रोटेशन की एक धुरी निर्दिष्ट करते हैं, और मान लीजिए कि हमारे पास उस वेक्टर के बारे में कोण Δθ का एक infinitesimal रोटेशन है।एक अनंत जोड़ के रूप में रोटेशन मैट्रिक्स का विस्तार करना, और पहला ऑर्डर दृष्टिकोण लेना, रोटेशन मैट्रिक्स ΔR के रूप में दर्शाया गया है:

इस अक्ष के बारे में कोण θ के माध्यम से एक परिमित रोटेशन को एक ही अक्ष के बारे में छोटे घुमावों के उत्तराधिकार के रूप में देखा जा सकता है।Θ/के रूप में θ/n जहां n एक बड़ी संख्या है, अक्ष के बारे में θ का एक रोटेशन का प्रतिनिधित्व किया जा सकता है:

यह देखा जा सकता है कि यूलर के प्रमेय में अनिवार्य रूप से कहा गया है कि सभी रोटेशन को इस रूप में दर्शाया जा सकता है।उत्पाद मैट्रिक्स ए के साथ जुड़े वेक्टर (x, y, z) के रूप में विशेष रोटेशन का जनरेटर है, यह दर्शाता है कि रोटेशन मैट्रिक्स और एक्सिस-कोण प्रारूप घातीय फ़ंक्शन द्वारा संबंधित हैं।

एक जनरेटर जी के लिए एक सरल अभिव्यक्ति प्राप्त कर सकता है। एक मनमाना विमान के साथ शुरू होता है[2] लंबवत इकाई वैक्टर ए और बी की एक जोड़ी द्वारा परिभाषित किया गया है।इस विमान में एक लंबवत वाई के साथ एक मनमाना वेक्टर एक्स चुन सकता है।एक तो x के संदर्भ में y के लिए हल करता है और एक विमान में एक रोटेशन के लिए एक अभिव्यक्ति में प्रतिस्थापित करता है, जिसमें रोटेशन मैट्रिक्स आर होता है जिसमें जनरेटर जी = बीए शामिल हैT - abT

रोटेशन में विमान के बाहर वैक्टर को शामिल करने के लिए किसी को दो प्रक्षेपण (रैखिक बीजगणित) को शामिल करके आर के लिए उपरोक्त अभिव्यक्ति को संशोधित करने की आवश्यकता होती है जो अंतरिक्ष को विभाजित करता है।इस संशोधित रोटेशन मैट्रिक्स को मैट्रिक्स एक्सपोनेंशियल#रोटेशन केस के रूप में फिर से लिखा जा सकता है।

पूर्ण रोटेशन मैट्रिक्स के बजाय इन जनरेटर के संदर्भ में विश्लेषण अक्सर आसान होता है।जनरेटर के संदर्भ में विश्लेषण को रोटेशन समूह के झूठ बीजगणित के रूप में जाना जाता है।

झूठ के साथ संबंध aggebras

झूठ बीजगणित में मैट्रिसेस स्वयं रोटेशन नहीं हैं;तिरछा-सममितीय मैट्रिस डेरिवेटिव, रोटेशन के आनुपातिक अंतर हैं।एक वास्तविक अंतर रोटेशन, या इनफिनिटिमल रोटेशन मैट्रिक्स का रूप है

कहाँ पे गायब है और छोटा है Aso(n)उदाहरण के लिए A = Lx,

गणना नियम हमेशा की तरह हैं, सिवाय इसके कि दूसरे आदेश के infinitesimals को नियमित रूप से गिरा दिया जाता है।इन नियमों के साथ, ये मैट्रिस सभी समान गुणों को संतुष्ट नहीं करते हैं, जो कि सामान्य परिमित रोटेशन मैट्रिसेस के सामान्य उपचार के तहत infinitesimals के सामान्य उपचार के तहत संतुष्ट नहीं करते हैं।[3] यह पता चला है कि जिस क्रम में इन्फिनिटिमल रोटेशन लागू होते हैं, वह अप्रासंगिक है।इस अनुकरणीय को देखने के लिए, रोटेशन समूह से परामर्श करें (3) #infinitesimal घुमाव | infinitesimal रोटेशन SO (3)।

घातीय मानचित्र

झूठ बीजगणित को झूठ समूह से जोड़ना घातीय मानचित्र (झूठ सिद्धांत) है, जिसे मानक मैट्रिक्स घातीय सीरीज़ के लिए परिभाषित किया गया है eA[4] किसी भी तिरछी-सममित मैट्रिक्स के लिए A, exp(A) हमेशा एक रोटेशन मैट्रिक्स होता है।[nb 1] एक महत्वपूर्ण व्यावहारिक उदाहरण है 3 × 3 मामला।रोटेशन समूह में (3) में, यह दिखाया गया है कि कोई हर पहचान कर सकता है Aso(3) एक यूलर वेक्टर के साथ ω = θ u, कहाँ पे u = (x,y,z) एक इकाई परिमाण वेक्टर है।

पहचान के गुणों से su(2) ≅ R3, u के शून्य स्थान में है A।इस प्रकार, u द्वारा अपरिवर्तित छोड़ दिया जाता है exp(A) और इसलिए एक रोटेशन अक्ष है।

रोड्रिग्स के रोटेशन फॉर्मूला#मैट्रिक्स नोटेशन का उपयोग करना | रोड्रिग्स के साथ मैट्रिक्स फॉर्म पर रोटेशन फॉर्मूला θ = θ2 + θ2, त्रिकोणमितीय पहचान की मानक सूची के साथ#मल्टीपल-कोण और आधा-कोण फॉर्मूला एक प्राप्त करता है,

यह अक्ष के चारों ओर एक रोटेशन के लिए मैट्रिक्स है u कोण से θ आधे-कोण के रूप में।पूर्ण विवरण के लिए, रोटेशन समूह देखें तो (3) #Exponential मानचित्र | घातीय मानचित्र SO (3)।

ध्यान दें कि infinitesimal कोणों के लिए दूसरे आदेश की शर्तों को नजरअंदाज किया जा सकता है और अवशेष बने रह सकते हैं exp(A) = I + A


यह भी देखें

टिप्पणियाँ

  1. Note that this exponential map of skew-symmetric matrices to rotation matrices is quite different from the Cayley transform discussed earlier, differing to 3rd order,
    Conversely, a skew-symmetric matrix A specifying a rotation matrix through the Cayley map specifies the same rotation matrix through the map exp(2 artanh A).


संदर्भ

  1. Kleppner, Daniel; Kolenkow, Robert (1973). An Introduction to Mechanics. McGraw-Hill. pp. 288–89. ISBN 9780070350489.
  2. in Euclidean space
  3. (Goldstein, Poole & Safko 2002, §4.8)
  4. (Wedderburn 1934, §8.02)



स्रोत