डिग्री (कोण)
| Degree | |
|---|---|
| File:Right angle.svg | |
| General information | |
| इकाई प्रणाली | Non-SI accepted unit |
| की इकाई | Angle |
| चिन्ह, प्रतीक | °[1][2] or deg[3] |
| Conversions | |
| 1°[1][2] in ... | ... is equal to ... |
| turns | 1/360 turn |
| radians | π/180 rad ≈ 0.01745.. rad |
| milliradians | 50·π/9 mrad ≈ 17.45.. mrad |
| gons | 10/9g |
डिग्री (पूर्ण रूप से, चाप (आर्क) की एक डिग्री, चाप डिग्री, या चापडिग्री), जिसे सामान्यतः° (डिग्री प्रतीक) द्वारा निरूपित किया जाता है, एक समतल कोण का माप है जिसमें पूर्ण घूर्णन 360 डिग्री होता है।[4]
यह एसआई इकाई नहीं है - कोणीय माप की एसआई इकाई रेडियन है - लेकिन इसका उल्लेख एसआई ब्रोशर में स्वीकृत इकाई के रूप में किया गया है।[5] क्योंकि पूर्ण घुमाव 2π रेडियन के बराबर होता है, डिग्री π/180 रेडियन के बराबर होता है।
उनहत्तर डिग्री (नीले रंग में दिखाया गया है)
इतिहास
घुमाव और कोण की इकाई के रूप में डिग्री चुनने की मूल प्रेरणा अज्ञात है। सिद्धांत कहता है कि यह इस तथ्य से जुड़ा है कि 360 एक वर्ष में लगभग दिनों की संख्या है। प्राचीन खगोलविदों ने देखा कि सूर्य, जो वर्ष के दौरान क्रांतिवृत्त पथ के माध्यम से चलता है, प्रत्येक दिन लगभग एक डिग्री अपने पथ में आगे बढ़ता हुआ प्रतीत होता है। कुछ प्राचीन कैलेंडर, जैसे फ़ारसी कैलेंडर और बेबीलोनियन कैलेंडर, एक वर्ष में 360 दिनों का उपयोग करते थे। 360 दिनों वाले कैलेंडर का उपयोग साठवाँ संख्याओं के उपयोग से संबंधित हो सकता है।[4]
अन्य सिद्धांत यह है कि बाबुलियों ने मूल इकाई के रूप में समबाहु त्रिभुज के कोण का उपयोग करते हुए वृत्त को उप-विभाजित किया, और बाद वाले को 60 भागों में उप-विभाजित किया, जो कि उनके साठवाँ अंकीय प्रणाली के अनुसार था।[7][8] बेबीलोनियन खगोल विज्ञान और उनके यूनानी उत्तराधिकारियों द्वारा उपयोग की जाने वाली सबसे पुरानी त्रिकोणमिति, वृत्त की जीवा पर आधारित थी। त्रिज्या के बराबर लंबाई की एक जीवा ने एक प्राकृतिक आधार मात्रा बनाई। इसका एक-साठवाँ हिस्सा, अपने मानक सेक्सजेसिमल डिवीजनों का उपयोग करते हुए, एक डिग्री था।
समोस और हिप्पार्कस के एरिस्टार्चस बेबीलोनियन खगोलीय ज्ञान और तकनीकों का व्यवस्थित रूप से दोहन करने वाले पहले यूनानी वैज्ञानिकों में से एक प्रतीत होते हैं।[9][10] टिमोचारिस, एरिस्टार्चस, एरिस्टिलस, आर्किमिडीज और हिप्पार्कस पहले यूनानी थे जो वृत्त को 60 आर्क मिनट के 360 डिग्री में विभाजित करने के लिए जाने जाते थे।[11] एराटोस्थनीज ने वृत्त को 60 भागों में विभाजित करने वाली एक सरल साठवाँ प्रणाली का उपयोग किया।
संख्या 360 को चुनने के लिए एक अन्य प्रेरणा यह हो सकती है कि यह आसानी से विभाज्य है: 360 में 24 विभाजक हैं, इसे केवल 7 संख्याओं में से एक बनाते हैं, जैसे कि दो बार से कम किसी भी संख्या में अधिक भाजक नहीं होते हैं (अनुक्रम A072938 OEIS में) )[12][13] इसके अलावा, यह 7 को छोड़कर 1 से 10 तक हर संख्या से विभाज्य है। इस संपत्ति में कई उपयोगी अनुप्रयोग हैं, जैसे कि दुनिया को 24 समय क्षेत्रों में विभाजित करना, जिनमें से प्रत्येक नाममात्र 15 ° देशांतर है, के साथ संबंध बनाने के लिए 24 घंटे के दिन सम्मेलन की स्थापना की।
अंत में, यह मामला हो सकता है कि इनमें से एक से अधिक कारक खेल में आ गए हों। उस सिद्धांत के अनुसार, संख्या लगभग 365 है क्योंकि आकाशीय क्षेत्र के खिलाफ सूर्य की स्पष्ट गति, और ऊपर दिए गए कुछ गणितीय कारणों के लिए इसे 360 तक गोल किया गया था।
उपखंड
कई व्यावहारिक उद्देश्यों के लिए, एक डिग्री छोटा पर्याप्त कोण है जो पूरी डिग्री पर्याप्त सटीकता प्रदान करती है। जब यह मामला नहीं है, जैसा कि खगोल विज्ञान में या भौगोलिक निर्देशांक (अक्षांश और देशांतर) के लिए, डिग्री माप दशमलव डिग्री (डीडी नोटेशन) का उपयोग करके लिखा जा सकता है; उदाहरण के लिए, 40.1875°.
वैकल्पिक रूप से, पारंपरिक सेक्सजेसिमल इकाई उपखंडों का उपयोग किया जा सकता है: डिग्री को 60 मिनट (चाप के) में विभाजित किया जाता है, और एक मिनट को 60 सेकंड (चाप के) में विभाजित किया जाता है। डिग्री-मिनट-सेकंड के उपयोग को डीएमएस संकेतन भी कहा जाता है। ये उपखंड, जिन्हें आर्कमिनट और आर्कसेकंड भी कहा जाता है, क्रमशः प्राइम (') और डबल प्राइम (″) द्वारा दर्शाए जाते हैं। उदाहरण के लिए, 40.1875° = 40° 11′ 15″। आर्कसेकंड के दशमलव अंशों का उपयोग करके अतिरिक्त सटीकता प्रदान की जा सकती है।
माप की सुविधा के लिए समुद्री चार्ट को डिग्री और दशमलव मिनट में चिह्नित किया जाता है; 1 मिनट अक्षांश 1 समुद्री मील है। ऊपर का उदाहरण 40° 11.25′ (सामान्यतः11′25 या 11′.25 लिखा जाता है) के रूप में दिया जाएगा।[14]
तीसरे, चौथे आदि की पुरानी प्रणाली, जो सेक्सजेसिमल इकाई उपखंड को जारी रखती है, का उपयोग अलक्षी द्वारा किया जाता था[citation needed] और अन्य प्राचीन खगोलविद, लेकिन आज शायद ही कभी इसका उपयोग किया जाता है। सुपरस्क्रिप्ट में सोलहवीं की संख्या के लिए रोमन अंक लिखकर उपविभागों को दर्शाया गया: 1I एक अभाज्य (प्रतीक) (चाप का मिनट) के लिए, 1II डबल प्राइम के लिए, 1III ट्रिपल प्राइम के लिए, 1IV चौगुनी अभाज्य संख्या आदि के लिए।[15]इसलिए, चाप के मिनट और सेकंड के लिए आधुनिक प्रतीक, और दूसरा शब्द भी इस प्रणाली का उल्लेख करते हैं।[16]
तीसरे, चौथे आदि की पुरानी प्रणाली, जो सेक्सजेसिमल इकाई उपखंड को जारी रखती है, का उपयोग अल-काशी और अन्य प्राचीन खगोलविदों द्वारा किया जाता था, लेकिन आज शायद ही कभी इसका उपयोग किया जाता है। इन उपविभागों को सुपरस्क्रिप्ट में साठवें नंबर के लिए रोमन अंक लिखकर दर्शाया गया था: 1I एक "प्राइम" (चाप का मिनट) के लिए, 1II दूसरे के लिए, 1III तीसरे के लिए, 1IV चौथे के लिए, आदि। [15] इसलिए, चाप के मिनट और सेकंड के लिए आधुनिक प्रतीक, और "सेकंड" शब्द भी इस प्रणाली का उल्लेख करते हैं।
एसआई उपसर्गों को भी लागू किया जा सकता है, उदाहरण के लिए, मिलीडिग्री, माइक्रोडिग्री, आदि।
वैकल्पिक इकाइयां
व्यावहारिक ज्यामिति से परे अधिकांश गणितीय कार्यों में कोणों को डिग्री के बजाय रेडियन में मापा जाता है। यह कई कारणों से है; उदाहरण के लिए, जब रेडियन में उनके तर्क व्यक्त किए जाते हैं तो त्रिकोणमितीय कार्यों में सरल और अधिक "प्राकृतिक" गुण होते हैं। ये विचार संख्या 360 की सुविधाजनक विभाज्यता को पछाड़ते हैं। पूर्ण मोड़ (360°) 2π रेडियन के बराबर है, इसलिए 180° π रेडियन के बराबर है, या समकक्ष, डिग्री गणितीय स्थिरांक है: 1° = π⁄180।
मोड़ (चक्र या क्रांति के अनुरूप) का उपयोग प्रौद्योगिकी और विज्ञान में किया जाता है। एक मोड़ 360 ° के बराबर है।
मीट्रिक प्रणाली के आविष्कार के साथ, दस की शक्तियों के आधार पर, फ्रांस और आस-पास के देशों में डिग्री को दशमलव "डिग्री" से बदलने का प्रयास किया गया था, [नोट 3] जहां समकोण में संख्या 400 के साथ 100 गॉन के बराबर होती है पूर्ण चक्र में गॉन (1° = 10⁄9 गॉन)। इसे ग्रेड (नोव्यू) या ग्रेड कहा गया। कुछ उत्तरी यूरोपीय देशों (अर्थात् एक मानक डिग्री, 1/360 मोड़) में मौजूदा शब्द ग्रेड (ई) के साथ भ्रम की वजह से, नई इकाई को जर्मन में न्यूग्राड कहा जाता था (जबकि "पुरानी" डिग्री को ऑल्टग्रेड के रूप में जाना जाता था। ), इसी तरह डेनिश, स्वीडिश और नार्वेजियन (ग्रेडियन भी) में नायग्रेड और आइसलैंडिक में निग्राडा। भ्रम को समाप्त करने के लिए, बाद में नई इकाई के लिए गोन नाम अपनाया गया। यद्यपि नेपोलियन द्वारा मेट्रिफिकेशन के इस विचार को छोड़ दिया गया था, लेकिन कई क्षेत्रों में ग्रेड का उपयोग जारी रहा और कई वैज्ञानिक कैलकुलेटर उनका समर्थन करते हैं। डेसीग्रेड्स (1⁄4,000) का उपयोग प्रथम विश्व युद्ध में फ्रांसीसी तोपखाने स्थलों के साथ किया गया था।
एक कोणीय मील, जो सैन्य अनुप्रयोगों में सबसे अधिक उपयोग किया जाता है, के कम से कम तीन विशिष्ट संस्करण हैं, जो 1⁄6,400 से 1⁄6,000 तक हैं। यह लगभग मिलीराडियन (c. 1⁄6,283) के बराबर है। 1⁄6,000 की क्रांति का एक सैन्य साम्राज्यवादी रूसी सेना में उत्पन्न हुआ, जहां 600 इकाइयों का एक चक्र देने के लिए एक समबाहु जीवा को दसवें हिस्से में विभाजित किया गया था। इसे आर्टिलरी के सेंट पीटर्सबर्ग संग्रहालय में लगभग 1900 से एक लाइनिंग प्लेन (अप्रत्यक्ष फायर आर्टिलरी को निशाना बनाने के लिए एक प्रारंभिक उपकरण) पर देखा जा सकता है।
| घुमाव | रेडियंस | डिग्री | ग्रेडियन्स |
|---|---|---|---|
| 0 मोड़ | 0 रेड | 0 डिग्री | 0 जी |
| 1/24मोड़ | π/12रेड | 15° | 16+2/3जी |
| 1/16मोड़ | π/8रेड | 22.5 डिग्री | 25 ग्राम |
| 1/12मोड़ | π/6रेड | 30° | 33+1/3जी |
| 1/10मोड़ | π/5रेड | 36° | 40 ग्राम |
| 1/8मोड़ | π/4रेड | 45° | 50 ग्राम |
| 1/2 πमोड़ | 1 रेड | सी। 57.3 डिग्री | सी। 63.7 जी |
| 1/6मोड़ | π/3रेड | 60 डिग्री | 66+2/3जी |
| 1/5मोड़ | 2 π/5रेड | 72° | 80 ग्राम |
| 1/4मोड़ | π/2रेड | 90° | 100 ग्राम |
| 1/3मोड़ | 2 π/3रेड | 120° | 133+1/3जी |
| 2/5मोड़ | 4π _/5रेड | 144° | 160 ग्राम |
| 1/2मोड़ | π रेड | 180 डिग्री | 200 ग्राम |
| 3/4मोड़ | 3 π/2रेड | 270 डिग्री | 300 ग्राम |
| 1 मोड़ | 2π रेड _ | 360 डिग्री | 400 ग्राम |
यह भी देखें
- कम्पास
- वक्रता की डिग्री
- भौगोलिक समन्वय प्रणाली
- ग्रेडियन
- मेरिडियन चाप
- वर्ग डिग्री
- वर्ग मिनट
- वर्ग दूसरा
- स्टेरेडियन
टिप्पणियाँ
संदर्भ
- ↑ HP 48G Series – User's Guide (UG) (8 ed.). Hewlett-Packard. December 1994 [1993]. HP 00048-90126, (00048-90104). Retrieved 2015-09-06.
- ↑ HP 50g graphing calculator user's guide (UG) (1 ed.). Hewlett-Packard. 2006-04-01. HP F2229AA-90006. Retrieved 2015-10-10.
- ↑ HP Prime Graphing Calculator User Guide (UG) (PDF) (1 ed.). Hewlett-Packard Development Company, L.P. October 2014. HP 788996-001. Archived from the original (PDF) on 2014-09-03. Retrieved 2015-10-13.
- ↑ 4.0 4.1 Weisstein, Eric W. "डिग्री". mathworld.wolfram.com (in English). Retrieved 2020-08-31.
- ↑ Bureau international des poids et mesures, Le Système international d’unités (SI) / The International System of Units (SI), 9th ed.[permanent dead link] (Sèvres: 2019), ISBN 978-92-822-2272-0, c. 4, pp. 145–146.
- ↑ Euclid (2008). "Book 4". Euclid's Elements of Geometry [Euclidis Elementa, editit et Latine interpretatus est I. L. Heiberg, in aedibus B. G. Teubneri 1883–1885] (in English). Translated by Heiberg, Johan Ludvig; Fitzpatrick, Richard (2 ed.). Princeton University Press. ISBN 978-0-6151-7984-1. [1]
- ↑ Jeans, James Hopwood (1947). The Growth of Physical Science. Cambridge University Press (CUP). p. 7.
- ↑ Murnaghan, Francis Dominic (1946). Analytic Geometry. p. 2.
- ↑ Rawlins, Dennis. "On Aristarchus". DIO - the International Journal of Scientific History.
- ↑ Toomer, Gerald James. Hipparchus and Babylonian astronomy.
- ↑ "2 (Footnote 24)" (PDF). Aristarchos Unbound: Ancient Vision / The Hellenistic Heliocentrists' Colossal Universe-Scale / Historians' Colossal Inversion of Great & Phony Ancients / History-of-Astronomy and the Moon in Retrograde!. March 2008. p. 19. ISSN 1041-5440. Retrieved 2015-10-16.
{{cite book}}:|journal=ignored (help) - ↑ Brefeld, Werner. "Teilbarkeit hochzusammengesetzter Zahlen" [Divisibility highly composite numbers] (in Deutsch).
- ↑ Brefeld, Werner (2015). (अनजान). Rowohlt Verlag.
- ↑ Hopkinson, Sara (2012). आरवाईए डे स्किपर हैंडबुक - सेल. Hamble: The Royal Yachting Association. p. 76. ISBN 9781-9051-04949.
- ↑ Al-Biruni (1879) [1000]. The Chronology of Ancient Nations. Translated by Sachau, C. Edward. pp. 147–149.
- ↑ Flegg, Graham H. (1989). Numbers Through the Ages. Macmillan International Higher Education. pp. 156–157. ISBN 1-34920177-4.
{{cite book}}: Check|author-link=value (help)
बाहरी कड़ियाँ
- "Degrees as an angle measure"., with interactive animation
- Gray, Meghan; Merrifield, Michael; Moriarty, Philip (2009). "° Degree of Angle". Sixty Symbols. Brady Haran for the University of Nottingham.