चेर्न वर्ग विशिष्ट वर्ग हैं। वे चिकने मैनिफोल्ड पर सदिश समूहों से जुड़े टोपोलॉजिकल अपरिवर्तनीय हैं। इस प्रश्न का उत्तर देना अधिकतम कठिन हो सकता है, कि क्या दो प्रत्यक्ष रूप से भिन्न सदिश समूह एक जैसे हैं। चेर्न वर्ग सरल परीक्षण प्रदान करते हैं: यदि सदिश समूहों की जोड़ी के चेर्न वर्ग सहमत नहीं हैं, तो सदिश समूह भिन्न हैं। चूंकि, इसका उलटा सच नहीं है।
टोपोलॉजी, विभेदक ज्यामिति एवं बीजगणितीय ज्यामिति में, यह गिनना प्रायः महत्वपूर्ण होता है कि सदिश समूह में कितने रैखिक रूप से स्वतंत्र अनुभाग हैं। उदाहरण के लिए, चेर्न कक्षाएं इसके बारे में कुछ जानकारी प्रदान करती हैं, उदाहरण के लिए, रीमैन-रोच प्रमेय एवं अतियाह-सिंगर सूचकांक प्रमेय होती है। अभ्यास में चेर्न कक्षाओं की गणना करना भी संभव है। विभेदक ज्यामिति (एवं कुछ प्रकार की बीजगणितीय ज्यामिति) में, चेर्न वर्गों को वक्रता रूप के गुणांकों में बहुपद के रूप में व्यक्त किया जा सकता है।
निर्माण
विषय तक पहुंचने की विभिन्न विधियां हैं, जिनमें से प्रत्येक चेर्न वर्ग के थोड़े भिन्न स्वाद पर केंद्रित है। चेर्न कक्षाओं के लिए मूल दृष्टिकोण बीजगणितीय टोपोलॉजी के माध्यम से था। चेर्न कक्षाएं होमोटोपी सिद्धांत के माध्यम से उत्पन्न होती हैं जो वर्गीकृत स्थान (इस स्थिति में अनंत ग्रासमैनियन) के लिए सदिश समूह से जुड़ी मैपिंग प्रदान करती है। मैनिफोल्ड M पर किसी भी समष्टि सदिश समूह V के लिए, M से वर्गीकरण स्थान तक मैप F उपस्थित है, जैसे कि समूह V, वर्गीकरण स्थान पर सार्वभौमिक समूह के पुलबैक एवं F के समान है, एवं चेर्न कक्षाएं इसलिए V को सार्वभौमिक समूह के चेर्न वर्गों के पुलबैक के रूप में परिभाषित किया जा सकता है। परिवर्तन में, इन सार्वभौमिक चेर्न वर्गों को शूबर्ट चक्रों के संदर्भ में स्पष्ट रूप से लिखा जा सकता है।
यह दिखाया जा सकता है कि M से वर्गीकृत स्थान तक किन्हीं दो मानचित्रों F, G के लिए जिनके पुलबैक समान समूह V हैं, मानचित्र समस्थानिक होने चाहिए। इसलिए, किसी भी सार्वभौमिक चेर्न वर्ग के F या जी द्वारा M के कोहोमोलॉजी वर्ग में पुलबैक वर्ग होना चाहिए। इससे ज्ञात होता है कि V की चेर्न कक्षाएं उत्तम रूप से परिभाषित हैं।
इस आलेख में मुख्य रूप से वर्णित वक्रता दृष्टिकोण के माध्यम से, चेर्न के दृष्टिकोण ने विभेदक ज्यामिति का उपयोग किया। उन्होंने दिखाया, कि पूर्व परिभाषा वास्तव में उनके समकक्ष थी। परिणामी सिद्धांत को चेर्न-वील सिद्धांत के रूप में जाना जाता है।
अलेक्जेंडर ग्रोथेंडिक का दृष्टिकोण यह भी दर्शाता है कि स्वयंसिद्ध रूप से किसी को केवल लाइन समूह केस को परिभाषित करने की आवश्यकता है।
बीजगणितीय ज्यामिति में चेर्न वर्ग स्वाभाविक रूप से उत्पन्न होते हैं। बीजगणितीय ज्यामिति में सामान्यीकृत चेर्न वर्गों को किसी भी गैर-एकवचन विविधता पर सदिश समूहों (या अधिक सटीक रूप से, स्थानीय रूप से मुक्त शीव्स) के लिए परिभाषित किया जा सकता है। बीजगणित-ज्यामितीय चेर्न वर्गों को अंतर्निहित क्षेत्र में किसी विशेष गुण की आवश्यकता नहीं होती है। विशेष रूप से, सदिश समूहों का समष्टि होना आवश्यक नहीं है।
विशेष प्रतिमान के पश्चात भी, चेर्न वर्ग का सहज अर्थ सदिश समूह के अनुभाग (श्रेणी सिद्धांत) के 'आवश्यक शून्य' से संबंधित है: उदाहरण के लिए प्रमेय कहता है कि कोई बालों वाली गेंद को समतल नहीं कर सकता (बालों वाली गेंद प्रमेय) है। यद्यपि यह वास्तव में वास्तविक सदिश समूह (गेंद पर बाल वास्तव में वास्तविक रेखा की प्रतियां हैं) के बारे में प्रश्न बोल रहा है, ऐसे सामान्यीकरण हैं जिनमें बाल समष्टि हैं (नीचे समष्टि बालों वाली गेंद प्रमेय का उदाहरण देखें), या कई अन्य क्षेत्रों पर 1-आयामी प्रक्षेप्य स्थानों के लिए है।
(मान लीजिए कि X टोपोलॉजिकल स्पेस है जिसमें सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार है।)
महत्वपूर्ण विशेष विषय तब होता है जब V लाइन समूह होता है। तत्पश्चात एकमात्र गैर-सारहीन चेर्न वर्ग प्रथम चेर्न वर्ग है, जो X के दूसरे कोहोलॉजी समूह का तत्व है। चूंकि यह शीर्ष चेर्न वर्ग है, यह समूह के यूलर वर्ग के समान है।
प्रथम चेर्न वर्ग अपरिवर्तनीयों का पूर्ण समुच्चय बन जाता है जिसके साथ टोपोलॉजिकल रूप से बोलते हुए, समष्टि लाइन समूहों को वर्गीकृत किया जाता है। अर्थात्, X एवं तत्वों के ऊपर लाइन समूहों के समरूपता वर्गों के मध्य आक्षेप है, जो अपने प्रथम चेर्न क्लास को लाइन समूह से जोड़ता है। इसके अतिरिक्त, यह आक्षेप समूह समरूपता है (इस प्रकार समरूपता):
समष्टि लाइन समूहों का टेंसर उत्पाद दूसरे कोहोमोलॉजी समूह में जोड़ से मेल खाता है।[1][2] बीजगणितीय ज्यामिति में, प्रथम चेर्न वर्ग द्वारा समष्टि रेखा समूहों (आइसोमोर्फिज्म वर्गों) का यह वर्गीकरण विभाजक (बीजगणितीय ज्यामिति) के रैखिक तुल्यता वर्गों द्वारा होलोमोर्फिक लाइन समूहों के (आइसोमोर्फिज्म वर्गों) वर्गीकरण का अपरिष्कृत अनुमान है।
अत्यधिक आयाम वाले समष्टि सदिश समूहों के लिए, चेर्न वर्ग पूर्ण अपरिवर्तनीय नहीं हैं।
चिकनी मैनिफोल्ड M पर सदिश समूह N के समष्टि हर्मिटियन मीट्रिक सदिश समूह V को देखते हुए, प्रत्येक चेर्न वर्ग के प्रतिनिधि (जिसे 'चेर्न फॉर्म' भी कहा जाता है) V के को वक्रता रूप के विशिष्ट बहुपद के गुणांक के रूप में दिया गया है। ओमेगा ऑफ V.
निर्धारक रिंग के ऊपर है आव्यूह जिनकी प्रविष्टियाँ t में बहुपद हैं एवं m पर सम समष्टि अंतर रूपों के क्रमविनिमेय बीजगणित में गुणांक हैं। वक्रता रूप V को इस प्रकार परिभाषित किया गया है।
ω के साथ कनेक्शन प्रपत्र एवं डी बाहरी व्युत्पन्न, या उसी अभिव्यक्ति के माध्यम से जिसमें ω v के गेज समूह के लिए गेज क्षेत्र है। स्केलर t का उपयोग केवल निर्धारक से योग उत्पन्न करने के लिए अनिश्चित (चर) के रूप में किया जाता हैI एवं n × n पहचान मैट्रिक्स को दर्शाता है।
यह कहने के लिए कि दी गई अभिव्यक्ति चेर्न वर्ग का प्रतिनिधि है, यह दर्शाता है कि यहां 'वर्ग' का अर्थ यथार्थ अंतर रूप को जोड़ने तक है। अर्थात्, चेर्न कक्षाएं डी राम कोहोमोलोजी वर्ग अर्थ में कोहोमोलॉजी कक्षाएं हैं। यह दिखाया जा सकता है कि चेर्न रूपों की कोहोमोलॉजी कक्षाएं V में कनेक्शन की रूचि पर निर्भर नहीं करती हैं।
, हमें चेर्न रूपों के लिए निम्नलिखित अभिव्यक्ति मिलती है:
यूलर वर्ग के माध्यम से
कोई चेर्न वर्ग को यूलर वर्ग के संदर्भ में परिभाषित कर सकता है। मिल्नोर एवं स्टैशेफ की पुस्तक में यह दृष्टिकोण है, एवं सदिश समूह के अभिविन्यास की भूमिका पर बल देता है।
मूल अवलोकन यह है कि समष्टि सदिश समूह विहित अभिविन्यास के साथ आता है, अंततः क्योंकि जुड़ा है। इसलिए, कोई बस समूह के शीर्ष चेर्न वर्ग को उसके यूलर वर्ग (अंतर्निहित वास्तविक सदिश समूह का यूलर वर्ग) के रूप में परिभाषित करता है एवं निचले चेर्न वर्गों को आगमनात्मक विधियां से संभालता है।
सटीक निर्माण इस प्रकार है, एक-कम रैंक का समूह प्राप्त करने के लिए आधार परिवर्तन करने का विचार है। होने देना पैराकॉम्पैक्ट स्पेस B पर समष्टि सदिश समूह बनें है। B को शून्य खंड के रूप में E में एम्बेडेड मानते हुए, मान लीजिए
आइए एवं नए सदिश समूह को परिभाषित करें:
ऐसा है कि प्रत्येक फाइबर F में गैर-शून्य सदिश V द्वारा विस्तृत रेखा द्वारा E के फाइबर F का भागफल है (B' का बिंदु E के फाइबर F एवं F पर गैर-शून्य सदिश द्वारा निर्दिष्ट किया गया है।)[3] तब फाइबर समूह के लिए गाइसिन अनुक्रम से E की तुलना में रैंक कम है।
:
हमने देखा कि के लिए समरूपता है
. होने देना
इसके पश्चात इस परिभाषा के लिए चेर्न वर्गों के सिद्धांतों को संतुष्ट करने के लिए कुछ कार्य करना पड़ता है।
यह भी देखें: थॉम समरूपतावाद।
उदाहरण
रीमैन क्षेत्र का समष्टि स्पर्शरेखा समूह
होने देना रीमैन क्षेत्र बनें: 1-आयामी समष्टि प्रक्षेप्य स्थान, मान लीजिए कि रीमैन क्षेत्र के लिए z होलोमोर्फिक फलनकई गुना है। होने देना समष्टि स्पर्शरेखा वाले सदिशों का समूह बनें प्रत्येक बिंदु पर, जहां a सम्मिश्र संख्या है। हम हेयरी बॉल प्रमेय के समष्टि संस्करण को सिद्ध करते हैं: V में कोई खंड नहीं है जो प्रत्येक स्थान गैर-शून्य है।
इसके लिए, हमें निम्नलिखित तथ्य की आवश्यकता है: सारहीन समूह का प्रथम चेर्न वर्ग शून्य है, अर्थात,
यह इस तथ्य से प्रमाणित होता है कि सारहीन समूह सदैव समतल कनेक्शन को स्वीकार करता है। तो वो हम दिखाएंगे
काहलर मीट्रिक पर विचार करें
कोई सरलता से दिखाता है कि वक्रता 2-रूप द्वारा दी गई है
इसके अतिरिक्त, प्रथम चेर्न वर्ग की परिभाषा के अनुसार
हमें यह दिखाना होगा कि यह सह-समरूपता वर्ग गैर-शून्य है। यह रीमैन क्षेत्र पर इसके अभिन्न अंग की गणना करने के लिए पर्याप्त है:
ध्रुवीय निर्देशांक पर स्विच करने के पश्चात स्टोक्स के प्रमेय के अनुसार, सटीक रूप 0 पर एकीकृत होगा, इसलिए कोहोमोलॉजी वर्ग गैर-शून्य है।
इससे यह सिद्ध होता है कोई साधारण सदिश समूह नहीं है.
जहाँ संरचना शीफ़ है (अर्थात, सारहीन रेखा समूह), सेरे का ट्विस्टिंग शीफ (अर्थात, हाइपरप्लेन समूह) है एवं अंतिम गैर-शून्य पद स्पर्शरेखा शीफ/समूह है।
उपरोक्त अनुक्रम प्राप्त करने के दो विधियां हैं:
[5] Let be the coordinates of let be the canonical projection, and let . Then we have:
In other words, the cotangent sheaf, which is a free -module with basis , fits into the exact sequence
जहां a
मध्य पद का आधार पुनः. वही अनुक्रम संपूर्ण प्रक्षेप्य स्थान पर स्पष्ट रूप से सटीक है और इसका दोहराव उपरोक्त अनुक्रम है।
Let L be a line in that passes through the origin. It is an elementary geometry to see that the complex tangent space to at the point L is naturally the set of linear maps from L to its complement. Thus, the tangent bundle can be identified with the hom bundle
where η is the vector bundle such that . It follows:
कुल चेर्न वर्ग की योगात्मकता द्वारा (अर्थात, व्हिटनी योग सूत्र),
जहां a कोहोमोलॉजी समूह का विहित जनरेटर है ; अर्थात, टॉटोलॉजिकल लाइन समूह के प्रथम चेर्न वर्ग का नकारात्मक (टिप्पणी: कब E का द्वैत है।)
विशेष रूप से, किसी के लिए ,
चेर्न बहुपद
चेर्न बहुपद चेर्न वर्गों और संबंधित धारणाओं को व्यवस्थित रूप से संभालने की सुविधाजनक विधि है। परिभाषा के अनुसार, जटिल सदिश समूह E के लिए, E का चेर्न बहुपद ct इस प्रकार दिया गया है:
यह कोई नया अपरिवर्तनीय नहीं है: औपचारिक चर t केवल ck की डिग्री का ट्रैक रखता है(एवं)।[6] विशेष रूप से, पूर्ण रूप से E के कुल चेर्न वर्ग द्वारा निर्धारित होता है:
एवं इसके विपरीत व्हिटनी योग सूत्र, चेर्न वर्गों के सिद्धांतों में से (नीचे देखें), कहता है कि ct इस अर्थ में योगात्मक है:
अब यदि (समष्टि) लाइन समूहों का प्रत्यक्ष योग है, तो यह योग सूत्र से निम्नानुसार है:
जहाँ प्रथम चेर्न कक्षाएं हैं। जड़ें , जिसे E की चेर्न जड़ें कहा जाता है, बहुपद के गुणांक निर्धारित करते हैं: अर्थात,
जहां pkप्राथमिक सममित बहुपद हैं। दूसरे शब्दों में, ai को औपचारिक चर के रूप में सोचते हुए, ck ok हैं। सममित बहुपद पर मूलभूत तथ्य यह है कि कोई भी सममित बहुपद, मान लीजिए, ti में कोई भी सममित बहुपद ti' में प्रारंभिक सममित बहुपद में एक बहुपद है। या तो विभाजन सिद्धांत द्वारा या रिंग सिद्धांत द्वारा, कोई चेर्न बहुपद कोहोमोलॉजी रिंग को बड़ा करने के पश्चात रैखिक कारकों में गुणनखंडित किया जाता है; E को पूर्व वर्णन में लाइन समूहों का सीधा योग होना आवश्यक नहीं है। निष्कर्ष यह है
" जटिल सदिश समूह E पर किसी भी सममित बहुपद F का मूल्यांकन F को बहुपद के रूप में लिखकर किया जा सकता है। σk और तत्पश्चात प्रतिस्थापित करना σk by ck(E)."
उदाहरण: हमारे पास बहुपद sk हैं
साथ में एवं इसी प्रकार (cf. न्यूटन की पहचान प्राथमिक सममित बहुपदों के संदर्भ में शक्ति योग व्यक्त करना न्यूटन की पहचान)। योग
को E का चेर्न वर्ण कहा जाता है, जिसके पूर्व कुछ पद हैं: (हम E को लिखने से विस्थापित कर देते हैं।)
उदाहरण: E का टोड वर्ग इस प्रकार दिया गया है:
टिप्पणी: यह अवलोकन कि चेर्न वर्ग अनिवार्य रूप से प्राथमिक सममित बहुपद है, चेर्न वर्गों को परिभाषित करने के लिए उपयोग किया जा सकता है। चलो Gn n-आयामी समष्टि सदिश स्थानों के अनंत ग्रासमैनियन बनें। यह इस अर्थ में वर्गीकृत स्थान है कि, X के ऊपर रैंक n के समष्टि सदिश समूह E को देखते हुए, सतत मानचित्र है
समरूपता तक अद्वितीय बोरेल का प्रमेय Gn की कोहोमोलॉजी रिंग कहता है, निस्संदेह सममित बहुपदों का वलय है, जो प्रारंभिक सममित बहुपद σk; में बहुपद हैं; इसलिए, fE का पुलबैक पढ़ता है:
तत्पश्चात कहता है:
टिप्पणी: कोई भी चारित्रिक वर्ग चेर्न वर्गों में बहुपद है, जिसका कारण इस प्रकार है। होने देना कॉन्ट्रावेरिएंट फ़ैक्टर बनें, जो सीडब्ल्यू कॉम्प्लेक्स X के लिए, X के ऊपर रैंक n के समष्टि सदिश समूहों के आइसोमोर्फिज्म वर्गों का समुच्चय निर्दिष्ट करता है एवं, मानचित्र पर, इसका पुलबैक प्रदान करता है। परिभाषा के अनुसार, विशिष्ट वर्ग प्राकृतिक परिवर्तन है कोहोमोलॉजी फ़ैक्टर के लिए सहसंयोजी वलय की वलय संरचना के कारण विशिष्ट वर्ग वलय बनाते हैं। योनेडा की लेम्मा कहती है कि विशिष्ट वर्गों का यह वलय वास्तव में Gn का कोहोमोलॉजी वलय है:
गणना सूत्र
मान लीजिए E रैंक r का सदिश समूह है एवं इसका चेर्न बहुपद।
हम लाइन समूहों के शेष चेरन वर्गों की गणना करने के लिए इन अमूर्त गुणों का उपयोग कर सकते हैं, याद करें कि दिखा . तत्पश्चात टेंसर शक्तियों का उपयोग करके, हम उन्हें चेर्न वर्गों से जोड़ सकते हैं किसी भी पूर्णांक के लिए.
गुण
टोपोलॉजिकल स्पेस X पर समष्टि सदिश समूह E को देखते हुए, E की चेर्न ck(e), का तत्व है
पूर्णांक गुणांकों के साथ X की सहसंरूपता कोई 'कुल चेर्न क्लास' को भी परिभाषित कर सकता है।
चूँकि मान वास्तविक गुणांकों के साथ सह-समरूपता के अतिरिक्त अभिन्न सह-समरूपता समूहों में हैं, ये चेर्न वर्ग रीमैनियन उदाहरण की तुलना में थोड़ा अधिक परिष्कृत हैं।
शास्त्रीय स्वयंसिद्ध परिभाषा
चेर्न वर्ग निम्नलिखित चार सिद्धांतों को संतुष्ट करते हैं:
हस्लर व्हिटनी योग सूत्र: यदि एवं समष्टि सदिश समूह है, तत्पश्चात सदिश समूहों के प्रत्यक्ष योग का चेर्न वर्ग द्वारा दिए गए हैं
वह है,
सामान्यीकरण: टॉटोलॉजिकल लाइन समूह का कुल चेर्न वर्ग 1−H है, जहां H पोंकारे द्वैत है, हाइपरप्लेन के लिए पोंकारे दोहरा है।
ग्रोथेंडिक स्वयंसिद्ध दृष्टिकोण
वैकल्पिक रूप से, Alexander Grothendieck (1958) इन्हें सिद्धांतों के थोड़े छोटे समुच्चय से प्रतिस्थापित किया गया:
स्वाभाविकता: (ऊपर के समान)
एडिटिविटी: यदि तो, सदिश समूहों का एक सटीक क्रम है .
सामान्यीकरण: यदि ई एक लाइन समूह है, तो कहाँ अंतर्निहित वास्तविक सदिश समूह का यूलर वर्ग है।
वह लेरे-हिर्श प्रमेय का उपयोग करके दिखाते हैं कि एक मनमाना परिमित रैंक समष्टि सदिश समूह के कुल चेर्न वर्ग को टॉटोलॉजिकल रूप से परिभाषित लाइन समूह के पहले चेर्न वर्ग के संदर्भ में परिभाषित किया जा सकता है।
अर्थात्, प्रोजेक्टिवाइज़ेशन का परिचय देना रैंक एन समष्टि सदिश समूह ई → बी पर फाइबर समूह के रूप में बी जिसका फाइबर किसी भी बिंदु पर है फाइबर ई का प्रक्षेप्य स्थान हैb. इस समूह का कुल स्थान इसके टॉटोलॉजिकल कॉम्प्लेक्स लाइन समूह से सुसज्जित है, जिसे हम निरूपित करते हैं , एवं प्रथम चेर्न वर्ग
प्रत्येक फाइबर पर प्रतिबंध लगाता है हाइपरप्लेन के (पोंकारे-डुअल) वर्ग को घटाकर, जो समष्टि प्रक्षेप्य स्थानों के सह-समरूपता को ध्यान में रखते हुए, फाइबर के सह-समरूपता को फैलाता है।
कक्षाएं
इसलिए, फाइबर के सह-समरूपता के आधार तक सीमित परिवेशीय सह-समरूपता वर्गों का एक परिवार बनाते हैं। लेरे-हिर्श प्रमेय तब बताता है कि किसी भी वर्ग में 1, ए, ए के रैखिक संयोजन के रूप में विशिष्ट रूप से लिखा जा सकता है2, ..., एn−1गुणांक के रूप में आधार पर वर्गों के साथ।
विशेष रूप से, कोई ई के चेर्न वर्गों को ग्रोथेंडिक के अर्थ में परिभाषित कर सकता है, जिसे दर्शाया गया है इस प्रकार कक्षा का विस्तार करके , संबंध के साथ:
तत्पश्चात कोई यह जाँच सकता है कि यह वैकल्पिक परिभाषा किसी भी अन्य परिभाषा से मेल खाती है जिसे कोई पसंद कर सकता है, या पिछले स्वयंसिद्ध लक्षण वर्णन का उपयोग कर सकता है।
शीर्ष चेर्न वर्ग
वास्तव में, ये गुण विशिष्ट रूप से चेर्न वर्गों की विशेषता बताते हैं। अन्य बातों के अतिरिक्त, उनका तात्पर्य यह है:
यदि n, V की सम्मिश्र रैंक है, तो सभी k > n के लिए। इस प्रकार कुल चेर्न वर्ग समाप्त हो जाता है।
वी (अर्थ) का शीर्ष चेर्न वर्ग , जहां n V का रैंक है) सदैव अंतर्निहित वास्तविक सदिश समूह के यूलर वर्ग के समान होता है।
बीजगणितीय ज्यामिति में
स्वयंसिद्ध वर्णन
चेर्न कक्षाओं का एक एवं निर्माण है जो कोहोमोलॉजी रिंग, चाउ रिंग के बीजगणितीय एनालॉग में मान लेता है। यह दिखाया जा सकता है कि चेर्न कक्षाओं का एक अनूठा सिद्धांत है जैसे कि यदि आपको बीजगणितीय सदिश समूह दिया जाता है अर्ध-प्रक्षेपी विविधता पर वर्गों का एक क्रम होता है ऐसा है कि
सदिश समूहों का सटीक क्रम दिया गया है व्हिटनी योग सूत्र मानता है:
के लिए
वो मैप एक वलय आकारिकी तक विस्तारित है
डिग्री डी हाइपरसर्फेस
यदि एक डिग्री है चिकनी हाइपरसतह, हमारे पास संक्षिप्त सटीक अनुक्रम है
रिश्ता दे रहा हूँ
तत्पश्चात हम इसकी गणना इस प्रकार कर सकते हैं
कुल चर्न वर्ग देना। विशेष रूप से, हम पा सकते हैं एक स्पिन 4-मैनिफोल्ड है यदि सम है, इसलिए डिग्री की प्रत्येक चिकनी हाइपरसतह एक कई गुना घूमना है।
निकटतम धारणाएँ
चेर्न चरित्र
चेर्न कक्षाओं का उपयोग किसी स्थान के टोपोलॉजिकल के-सिद्धांत से लेकर उसके तर्कसंगत कोहोमोलॉजी (पूर्ण होने) तक रिंगों की एक समरूपता का निर्माण करने के लिए किया जा सकता है। एक लाइन समूह एल के लिए, चेर्न कैरेक्टर सीएच द्वारा परिभाषित किया गया है
अधिक सामान्यतः, यदि प्रथम चेर्न कक्षाओं के साथ लाइन समूहों का सीधा योग है चेर्न चरित्र को योगात्मक रूप से परिभाषित किया गया है
विभाजन सिद्धांत को प्रारम्भ करके उचित ठहराए गए इस अंतिम अभिव्यक्ति को मनमाने ढंग से सदिश समूह वी के लिए परिभाषा सीएच (वी) के रूप में लिया जाता है।
यदि एक कनेक्शन का उपयोग चेर्न वर्गों को परिभाषित करने के लिए किया जाता है जब आधार कई गुना होता है (अर्थात, चेर्न-वेइल सिद्धांत), तो चेर्न चरित्र का स्पष्ट रूप है
कहाँ Ω कनेक्शन का वक्रता रूप है।
चेर्न चरित्र आंशिक रूप से उपयोगी है क्योंकि यह टेंसर उत्पाद के चेर्न वर्ग की गणना की सुविधा प्रदान करता है। विशेष रूप से, यह निम्नलिखित पहचानों का पालन करता है:
जैसा कि ऊपर कहा गया है, चेर्न कक्षाओं के लिए ग्रोथेंडिक एडिटिविटी एक्सिओम का उपयोग करते हुए, इनमें से पहली पहचान को यह बताने के लिए सामान्यीकृत किया जा सकता है कि सीएच के-सिद्धांत के (एक्स) से एक्स के तर्कसंगत कोहोमोलॉजी में एबेलियन समूहों का एक समरूपता है। दूसरी पहचान इस तथ्य को स्थापित करता है कि यह समरूपता K(X) में उत्पादों का भी सम्मान करती है, एवं इसलिए ch छल्लों की एक समरूपता है।
चेर्न वर्ण का उपयोग हिरज़ेब्रुच-रीमैन-रोच प्रमेय में किया जाता है।
चेर्न संख्या
यदि हम आयाम के एक कुंडा कई गुना पर कार्य करते हैं , तत्पश्चात कुल डिग्री के चेर्न वर्गों का कोई भी उत्पाद (अर्थात, उत्पाद में चेर्न वर्गों के सूचकांकों का योग होना चाहिए ) को एक पूर्णांक, सदिश समूह का चेर्न नंबर देने के लिए ओरिएंटेशन होमोलॉजी क्लास (या मैनिफोल्ड पर एकीकृत) के साथ जोड़ा जा सकता है। उदाहरण के लिए, यदि मैनिफोल्ड का आयाम 6 है, तो तीन रैखिक रूप से स्वतंत्र चेर्न संख्याएँ दी गई हैं , , एवं . सामान्य तौर पर, यदि मैनिफ़ोल्ड में आयाम है , संभावित स्वतंत्र चेर्न संख्याओं की संख्या पूर्णांक विभाजनों की संख्या है .
एक समष्टि (या लगभग समष्टि) मैनिफोल्ड के स्पर्शरेखा समूह के चेर्न नंबरों को मैनिफोल्ड के चेर्न नंबर कहा जाता है, एवं महत्वपूर्ण अपरिवर्तनीय हैं।
सामान्यीकृत सहसंगति सिद्धांत
चेर्न कक्षाओं के सिद्धांत का एक सामान्यीकरण है, जहां सामान्य कोहॉमोलॉजी को सामान्यीकृत कोहॉमोलॉजी सिद्धांत से बदल दिया जाता है। वे सिद्धांत जिनके लिए ऐसा सामान्यीकरण संभव है, समष्टि कोबॉर्डिज्म#औपचारिक समूह कानून कहलाते हैं। चेर्न वर्गों के औपचारिक गुण समान रहते हैं, एक महत्वपूर्ण अंतर के साथ: नियम जो कारकों के पहले चेर्न वर्गों के संदर्भ में लाइन समूहों के टेंसर उत्पाद के पहले चेर्न वर्ग की गणना करता है, वह (सामान्य) जोड़ नहीं है, बल्कि एक है औपचारिक समूह कानून.
बीजगणितीय ज्यामिति
बीजगणितीय ज्यामिति में सदिश समूहों के चेर्न वर्गों का एक समान सिद्धांत है। चेर्न वर्ग किन समूहों में आते हैं, इसके आधार पर कई भिन्नताएँ हैं:
समष्टि किस्मों के लिए चेर्न कक्षाएं ऊपर बताए अनुसार सामान्य कोहोलॉजी में मान ले सकती हैं।
सामान्य क्षेत्रों की किस्मों के लिए, चेर्न वर्ग कोहॉमोलॉजी सिद्धांतों जैसे कि ईटेल कोहोमोलोजी या एल-एडिक कोहोमोलॉजी में मान ले सकते हैं।
सामान्य क्षेत्रों में किस्मों वी के लिए चेर्न वर्ग चाउ समूहों सीएच (वी) के समरूपता में भी मान ले सकते हैं: उदाहरण के लिए, विविधता वी पर लाइन समूह का प्रथम चेर्न वर्ग सीएच (वी) से सीएच तक एक समरूपता है ( वी) डिग्री को 1 से कम करना। यह इस तथ्य से मेल खाता है कि चाउ समूह एक प्रकार के होमोलॉजी समूहों के एनालॉग हैं, एवं कोहोमोलॉजी समूहों के तत्वों को कैप उत्पाद का उपयोग करके होमोलॉजी समूहों के होमोमोर्फिज्म के रूप में माना जा सकता है।
यदि एम लगभग एक समष्टि मैनिफोल्ड है, तो इसका स्पर्शरेखा समूह एक समष्टि सदिश समूह है। इस प्रकार एम के 'चेर्न वर्ग' को इसके स्पर्शरेखा समूह के चेर्न वर्ग के रूप में परिभाषित किया गया है। यदि M भी सघन स्थान है एवं आयाम 2d का है, तो चेर्न वर्गों में कुल डिग्री 2d के प्रत्येक एकपदी को M के मूल वर्ग के साथ जोड़ा जा सकता है, एक पूर्णांक देते हुए, M का 'चेर्न संख्या'। यदि M' एक एवं लगभग है समान आयाम का समष्टि मैनिफोल्ड, तो यह एम के लिए कोबॉर्डेंट है यदि एवं केवल यदि एम' की चेर्न संख्याएं एम के साथ मेल खाती हैं।
सिद्धांत संगत लगभग समष्टि संरचनाओं की मध्यस्थता द्वारा, वास्तविक सिंपलेक्टिक ज्यामिति सदिश समूहों तक भी फैला हुआ है। विशेष रूप से, सिंपलेक्टिक मैनिफ़ोल्ड ्स में एक अच्छी तरह से परिभाषित चेर्न वर्ग होता है।
Consequently, Newton's identities may be used to re-express the power sums in ch(V) above solely in terms of the Chern classes of V, giving the claimed formula.