काहलर मैनिफोल्ड

From Vigyanwiki

गणित और विशेष रूप से अवकल ज्यामिति में, काहलर मैनिफोल्ड तीन परस्पर संगत संरचनाओं वाला एक मैनिफोल्ड है, जिसमे एक जटिल संरचना, एक रीमैनियन संरचना, और एक समकोणिक संरचना सम्मिलत है। इस अवधारणा का अध्ययन सबसे पहले 1930 में जान अर्नोल्डस शौटेन और डेविड वान डेंजिग द्वारा किया गया था, और फिर 1933 में इसे एरिच काहलर द्वारा प्रस्तावित किया गया था। शब्दावली आंद्रे वेइल द्वारा तय की गई है। काहलर ज्यामिति काहलर मैनिफोल्ड्स, उनकी ज्यामिति और सांस्थिति के अध्ययन के साथ-साथ संरचनाओं और निर्माणों के अध्ययन को संदर्भित करती है जो कि काहलर मैनिफोल्ड्स पर किए जा सकते हैं, इसमें विशेष संबंधो की मौजूदगी जैसे हर्मिटियन यांग-मिल्स संबंध या विशेष मापीय जैसे केलर-आइंस्टीन मापीय का अध्ययन संम्मिलित होता है।

प्रत्येक सुचारू योजना जटिल प्रक्षेप्य प्रकार काहलर मैनिफोल्ड है। हॉज सिद्धांत बीजगणितीय ज्यामिति का एक केंद्रीय हिस्सा है, जिसे काहलर मापीय का उपयोग करके सिद्ध किया गया है।

परिभाषाएँ

चूंकि काहलर मैनिफोल्ड्स कई संगत संरचनाओं से सुसज्जित हैं, इसलिए उन्हें विभिन्न दृष्टिकोणों से वर्णित किया जा सकता है,

संसुघटित दृष्टिकोण

काहलर मैनिफोल्ड एक संसुघटित मैनिफोल्ड (X, ω) है जो एक अभिन्न लगभग-जटिल संरचना J से सुसज्जित है जो संसुघटित रूप ω के साथ संगत है, जिसका अर्थ है कि प्रत्येक बिंदु पर X के स्पर्शी समष्टि पर द्विएकघाती समघात

सममित और सकारात्मक निश्चित (और इसलिए X पर एक रीमैनियन मापीय) है।[1]

जटिल दृष्टिकोण

काहलर मैनिफोल्ड हर्मिटियन मापीय h के साथ एक जटिल मैनिफोल्ड X है जिसका संबद्ध 2-रूप ω बंद है। अधिक विस्तार से, h ​​X के प्रत्येक बिंदु पर स्पर्शी समष्टि TX पर एक सकारात्मक निश्चित हर्मिटियन रूप देता है, और 2-रूप ω को स्पर्श सदिश u और v के लिए

द्वारा परिभाषित किया गया है (जहाँ i सम्मिश्र संख्या है है)। काहलर मैनिफोल्ड X के लिए, 'काहलर रूप' ω एक वास्तविक बंद (1,1)-रूप है। काहलर मैनिफ़ोल्ड को रीमैनियन मैनिफ़ोल्ड के रूप में भी देखा जा सकता है, तथा रीमैनियन मापीय g को

द्वारा परिभाषित किया गया है। समान रूप से, काहलर मैनिफोल्ड X जटिल आयाम n का एक हर्मिटियन मैनिफोल्ड है जैसे कि X के प्रत्येक बिंदु p के लिए, p के चारों ओर एक पूर्णसममितिक निर्देशांक चार्ट है जिसमें मापीय Cn पर मानक मापीय के साथ p के पास 2 अनुक्रम करने के लिए सहमत है।[2] अर्थात्, यदि चार्ट 'Cn' में p से 0 लेता है, और इन निर्देशांकों में मापीय को hab = (/za, /zb) के रूप में लिखा जाता है, तब {1, ..., n}. में सभी a, b के लिए

होता है ।

चूंकि 2-रूप ω बंद है, इसलिए यह डी राम सह समरूपता H2(X, R) में एक तत्व निर्धारित करता है, जिसे काहलर वर्ग के रूप में जाना जाता है।

रीमैनियन दृष्टिकोण

काहलर मैनिफोल्ड सम आयाम 2n का एक रीमैनियन मैनिफोल्ड X है जिसका समविधिता समूह एकात्मक समूह U(n) में समाहित है।[3] समान रूप से, प्रत्येक बिंदु पर X के स्पर्शी समष्टि पर एक जटिल संरचना J होती है (अर्थात,J2 = −1 के साथ TX से स्वयं तक एक वास्तविक रेखीय मानचित्र) जैसे कि J मापीय g को सुरक्षित रखता है (जिसका अर्थ है कि g(Ju, Jv) = g(u, v)) और J को समानांतर परिवहन द्वारा संरक्षित किया जाता है।

काहलर क्षमता

एक जटिल मैनिफोल्ड पर एक सुचारू वास्तविक-मूल्यवान फलन ρ को पूर्णतः प्लुरिसुबरमोनिक कहा जाता है यदि वास्तविक बंद (1,1)-रूप

ससकारात्मक है, जो कि काहलर रूप है। यहाँ डॉल्बॉल्ट प्रचालक हैं। फलन ρ को ω के लिए 'काहलर क्षमता' कहा जाता है।

इसके विपरीत, पोंकारे लेम्मा के जटिल संस्करण द्वारा, जिसे स्थानीय -लेम्मा के रूप में जाना जाता है, प्रत्येक काहलर मापीय को स्थानीय रूप से इस तरह वर्णित किया जा सकता है। अर्थात यदि (X, ω) एक काहलर मैनिफोल्ड है, तो X में प्रत्येक बिंदु p के लिए p का प्रतिवैस U और U पर एक सहज वास्तविक-मूल्यवान फलन ρ है जैसे कि [4] यहां ρ को ω के लिए 'स्थानीय काहलर क्षमता' कहा जाता है। किसी एकल फलन के संदर्भ में सामान्य रीमैनियन मापीय का वर्णन करने का कोई तुलनीय तरीका नहीं है।

काहलर संभावनाओं का समष्टि

हालाँकि एकल काहलर क्षमता का उपयोग करके विश्व स्तर पर काहलर रूप का वर्णन करना हमेशा संभव नहीं होता है, इस तरह से दो काहलर रूपों के अंतर का वर्णन करना संभव है, बशर्ते वे एक ही डी राम सह समरूपता वर्ग में हों। यह हॉज सिद्धांत के -लेम्मा का परिणाम है।

अर्थात्, यदि एक सुसम्बद्ध काहलर मैनिफोल्ड है, तो सह समरूपता वर्ग को काहलर वर्ग कहा जाता है। इस वर्ग का कोई अन्य प्रतिनिधि, का कहना है, कि कुछ एक-रूप के लिए से से भिन्न है। -लेम्मा आगे बताता है कि यह सुचारू फलन के लिए इस सटीक रूप सटीक रूप को के रूप में लिखा जा सकता है। उपरोक्त स्थानीय चर्चा में, कोई स्थानीय काहलर वर्ग को एक खुले उपसमुच्चय पर लेता है, और पोंकारे लेम्मा द्वारा कोई भी काहलर रूप स्थानीय रूप से शून्य के अनुरूप होगा। इस प्रकार स्थानीय काहलर क्षमता स्थानीय स्तर पर के लिए समान है।

सामान्यतः यदि एक काहलर वर्ग है, तो ऐसे सुचारू कार्य के लिए किसी भी अन्य काहलर मापीय को के रूप में लिखा जा सकता है। यह प्रपत्र स्वचालित रूप से एक सकारात्मक रूप नहीं है, इसलिए वर्ग के लिए काहलर क्षमता की समष्टि उन सकारात्मक स्थितियों के रूप में परिभाषित की गई है, जिन्हें आमतौर पर द्वारा दर्शाया जाता है,

यदि दो काहलर क्षमताएं एक स्थिरांक से भिन्न होती हैं, तो वे एक ही काहलर मापीय को परिभाषित करते हैं, इसलिए वर्ग में काहलर मापीय की समष्टि को भागफल से पहचाना जा सकता है। काहलर क्षमता की समष्टि एक संकुचन योग्य समष्टि है। इस तरह काहलर क्षमता की समष्टि किसी दिए गए वर्ग में सभी काहलर मापीय का एक साथ अध्ययन करने की अनुमति देती है, और अस्तित्व के अध्ययन में यह परिप्रेक्ष्य काहलर मापीय के लिए परिणाम देता है।

काहलर मैनिफ़ोल्ड्स और आयतन न्यूनतमीकृत

एक सुसम्बद्ध काहलर मैनिफोल्ड X के लिए, X के एक बंद जटिल उपसमष्टि की मात्रा उसके सजातीय वर्ग द्वारा निर्धारित की जाती है। एक अर्थ में, इसका मतलब यह है कि एक जटिल उपसमष्टि की ज्यामिति उसकी सांस्थिति के संदर्भ में सीमित है। (यह वास्तविक उपमेनिफोल्ड्स के लिए पूरी तरह से विफल रहता है।) स्पष्ट रूप से, 'विर्टिंगर का सूत्र' कहता है कि

जहां Y एक r-आयामी बंद जटिल उपसमष्टि है और ω काहलर रूप है।[5] चूँकि ω बंद है, यह समाकलन केवल H2r(X, R) में Y के वर्ग पर निर्भर करता है। ये आयतन हमेशा सकारात्मक होते हैं, जो जटिल उपसमष्टि के संबंध में H2(X, R) में काहलर वर्ग ω की एक मजबूत सकारात्मकता व्यक्त करते हैं। विशेष रूप से, जटिल आयाम n के सुसम्बद्ध काहलर मैनिफोल्ड X के लिए, H2n(X, R)में ωn शून्य नहीं है।

एक संबंधित तथ्य यह है कि सुसम्बद्ध काहलर मैनिफोल्ड X का प्रत्येक बंद जटिल उपसमष्टि Y एक न्यूनतम उपमैनिफोल्ड (इसके एकवचन समुच्चय के बाहर) है। और भी अधिक, अंशांकित ज्यामिति के सिद्धांत के अनुसार, Y एक ही समरूपता वर्ग में सभी (वास्तविक) चक्रों के बीच मात्रा को न्यूनतम करता है।

काहलर की पहचान

काहलर मैनिफोल्ड पर सुचारू, जटिल और रीमानियन संरचनाओं के बीच प्रबल अन्योन्यक्रिया के परिणामस्वरूप, काहलर मैनिफोल्ड के जटिल अवकल रूपों पर विभिन्न संचालको के बीच प्राकृतिक पहचान होती है जो यादृच्छिक रूप से जटिल मैनिफोल्ड के लिए नहीं होती है। ये पहचान बाहरी व्युत्पन्न , डॉल्बॉल्ट संचालक और उनके सहयोगी, लाप्लासियन , और लेफ्शेट्ज़ संचालक और उनके सहायक, संकुचन संचालक से संबंधित हैं।[6] पहचान काहलर मैनिफोल्ड्स पर विश्लेषणात्मक टूलकिट का आधार बनती है, और हॉज सिद्धांत के साथ मिलकर काहलर मैनिफोल्ड्स और उनके सह समरूपता के कई महत्वपूर्ण गुणों को सिद्ध करने में प्रमुख हैं। विशेष रूप से काहलर की पहचान नाकानो लुप्त प्रमेय, लेफ्शेट्ज़ अधिसमतल प्रमेय, हार्ड लेफ्सचेट्ज़ प्रमेय, हॉज-रीमैन द्विरेखीय संबंध और हॉज सूचकांक प्रमेय को सिद्ध करने में महत्वपूर्ण है।

काहलर मैनिफोल्ड पर लाप्लासियन

आयाम N के रीमैनियन मैनिफोल्ड पर, सुचारू r-रूप पर लाप्लासियन को द्वारा परिभाषित किया गया है जहां बाहरी व्युत्पन्न है और , जहां हॉज स्टार संचालक है। (समान रूप से, सुसम्बद्ध समर्थन के साथ r-फॉर्म पर L2 आंतरिक उत्पाद के संबंध में का सहायक है।) हर्मिटियन मैनिफोल्ड X के लिए, और को

के रूप में विघटित किया जाता है, और यहा दो अन्य लाप्लासियन को परिभाषित किया गया है,

यदि X काहलर है, तो काहलर की पहचान से पता चलता है कि ये लाप्लासियन स्थिरांक तक सभी समान हैं, [7]

इन पहचानों का अर्थ है कि काहलर मैनिफोल्ड X पर,

जहां X पर सुसंगत r-रूपों की समष्टि है (Δα = 0 के साथ α बनता है) और सुसंगत (p,q)-रूप की समष्टि है। अर्थात अवकल रूप सुसंगत है यदि इसका प्रत्येक (p,q)-घटक सुसंगत है।

इसके अलावा, एक सुसम्बद्ध काहलर मैनिफोल्ड X के लिए, हॉज सिद्धांत उपरोक्त विभाजन की व्याख्या देता है जो काहलर मापीय की चयन पर निर्भर नहीं करता है। अर्थात्, जटिल गुणांक वाले X की सह समरूपता Hr(X, C) कुछ सुसंगत शीफ सह समरूपता समूहों के प्रत्यक्ष योग के रूप में विभाजित होती है,[8]

बाईं ओर का समूह केवल सांस्थितिक समष्टि के रूप में X पर निर्भर करता है, जबकि दाईं ओर का समूह एक जटिल मैनिफोल्ड के रूप में X पर निर्भर करता है। तो यह 'हॉज अपघटन प्रमेय' सुसम्बद्ध काहलर मैनिफोल्ड्स के लिए सांस्थिति और जटिल ज्यामिति को जोड़ता है।

मान लीजिए Hp,q(X) सम्मिश्र सदिश समष्टि Hq(X, Ωp) है, जिसे किसी दिए गए काहलर मापीय के संबंध में सुसंगत रूपों की समष्टि से पहचाना जा सकता है। X के हॉज नंबरों को hp,q(X) = dimCHp,q(X) द्वारा परिभाषित किया गया है। हॉज अपघटन का तात्पर्य सुसम्बद्ध काहलर मैनिफोल्ड X के हॉज नंबरों के संदर्भ में बेट्टी नंबर के अपघटन से है,

सुसम्बद्ध काहलर मैनिफोल्ड के हॉज नंबर कई पहचानों को संतुष्ट करते हैं। हॉज समरूपता hp,q = hq,p का प्रभाव है क्योंकि लाप्लासियन एक वास्तविक संचालक होता है, और इसलिए होता है। पहचान hp,q = hnp,nq को यह प्रयोग करके सिद्ध किया जा सकता है कि हॉज स्टार संचालक एक समरूपता देता है। यह सेरे द्वैत का भी अनुसरण करता है।

सुसम्बद्ध काहलर मैनिफोल्ड्स की सांस्थिति

हॉज सिद्धांत का एक सरल परिणाम यह है कि कि हॉज समरूपता के अनुसार सुसम्बद्ध काहलर मैनिफोल्ड की प्रत्येक विषम बेट्टी संख्या b2a+1 सम है। यह सामान्य रूप से सुसम्बद्ध सुसम्बद्ध मैनिफोल्ड्स के लिए सच नहीं है, जैसा कि हॉपफ सतह के उदाहरण से पता चलता है, जो S1 × S3 से भिन्न है और इसलिए इसमें b1 = 1 है।

काहलर पैकेज, हॉज सिद्धांत पर निर्मित, सुसम्बद्ध काहलर मैनिफोल्ड्स के सह-समरूपता पर आगे के प्रतिबंधों का एक संग्रह है। परिणामों में लेफ्सचेट्ज़ हाइपरप्लेन प्रमेय, हार्ड लेफ्सचेट्ज़ प्रमेय और हॉज-रीमैन बिलिनियर संबंध संम्मिलित हैं।[9] एक संबंधित परिणाम यह है कि प्रत्येक सुसम्बद्ध काहलर मैनिफोल्ड तर्कसंगत समस्थेयता सिद्धांत के अर्थ में औपचारिक है।[10]

यह प्रश्न कि कौन से समूह सुसम्बद्ध काहलर मैनिफ़ोल्ड्स के मौलिक समूह हो सकते हैं, जिन्हें काहलर समूह कहा जाता है, व्यापक रूप से खुले है। हॉज सिद्धांत संभावित काहलर समूहों पर कई प्रतिबंध देता है।[11] सबसे सरल प्रतिबंध यह है कि काहलर समूह के अबेलियनाइजेशन की श्रेणी भी होनी चाहिए, क्योंकि सुसम्बद्ध काहलर मैनिफोल्ड की बेटी संख्या बी1 भी है। (उदाहरण के लिए, पूर्णांक Z एक सुसम्बद्ध काहलर मैनिफोल्ड का मूल समूह नहीं हो सकता है।) गैर-एबेलियन हॉज सिद्धांत जैसे सिद्धांत के विस्तार इस पर और प्रतिबंध देते हैं कि कौन से समूह काहलर समूह हो सकते हैं।

काहलर की स्थिति के बिना, स्थिति सरल है, क्लिफोर्ड टौब्स ने दिखाया कि प्रत्येक परिमित रूप से प्रस्तुत समूह आयाम 3 के कुछ सुसम्बद्ध जटिल मैनिफोल्ड के मूल समूह के रूप में उत्पन्न होता है।[12] (इसके विपरीत, किसी भी बंद मैनिफोल्ड का मूल समूह अंतिम रूप से प्रस्तुत किया जाता है।)

जटिल प्रक्षेप्य किस्मों और सुसम्बद्ध काहलर मैनिफ़ोल्ड्स की विशेषताएँ

कोडैरा एम्बेडिंग प्रमेय सभी सुसम्बद्ध काहलर मैनिफोल्ड्स के बीच सुचारू जटिल प्रक्षेप्य किस्मों की विशेषता बताता है। अर्थात्, एक सुसम्बद्ध कॉम्प्लेक्स मैनिफोल्ड X प्रक्षेप्य है यदि और केवल तभी जब H2(X, R) इंटीग्रल सह समरूपता समूह की छवि में है H2(X, Z). (चूँकि काहलर रूप का एक धनात्मक गुणज काहलर रूप है, यह कहने के बराबर है कि X के पास काहलर रूप है जिसका वर्ग H2(X, R) में है H2(X, Q).) समान रूप से, H2(X, Z)). काहलर रूप ω जो इन शर्तों को पूरा करता है (अर्थात, काहलर रूप ω एक अभिन्न अंतर रूप है) को हॉज रूप भी कहा जाता है, और इस समय काहलर मापीय को हॉज मापीय कहा जाता है। हॉज मेट्रिक के साथ सुसम्बद्ध काहलर मैनिफोल्ड्स को हॉज मैनिफोल्ड्स भी कहा जाता है।[13][14] काहलर मैनिफोल्ड्स के कई गुण थोड़ी अधिक व्यापकता में हैं -मैनिफोल्ड्स, वह सुसम्बद्ध कॉम्प्लेक्स मैनिफोल्ड्स है जिसके लिए Ddbar लेम्मा|-लेम्मा रखती है। विशेष रूप से बॉटल-चेर्न सह समरूपता एक सुसम्बद्ध कॉम्प्लेक्स मैनिफोल्ड्स के डोल्बौल्ट सह समरूपता का एक विकल्प है, और वे आइसोमोर्फिक हैं यदि और केवल यदि मैनिफोल्ड संतुष्ट करता है -लेम्मा, और विशेष रूप से सहमत हैं जब मैनिफोल्ड काहलर है। सामान्य तौर पर बॉटल-चेर्न सह समरूपता से लेकर डॉल्बुल्ट सह समरूपता तक के प्राकृतिक मानचित्र के कर्नेल में काहलर के मैनिफोल्ड की विफलता के बारे में जानकारी होती है।[15] प्रत्येक सुसम्बद्ध कॉम्प्लेक्स वक्र प्रक्षेप्य है, लेकिन कम से कम 2 जटिल आयाम में, कई सुसम्बद्ध काहलर मैनिफ़ोल्ड हैं जो प्रोजेक्टिव नहीं हैं; उदाहरण के लिए, अधिकांश जटिल टोरस प्रक्षेप्य नहीं होते हैं। कोई यह पूछ सकता है कि क्या प्रत्येक सुसम्बद्ध काहलर मैनिफोल्ड को कम से कम (जटिल संरचना को लगातार अलग-अलग करके) एक सुचारू प्रक्षेप्य विविधता में विकृत किया जा सकता है। एनरिकेस-कोडैरा वर्गीकरण पर कुनिहिको कोदैरा के काम का तात्पर्य है कि जटिल आयाम 2 के प्रत्येक सुसम्बद्ध काहलर मैनिफोल्ड को वास्तव में एक सुचारू प्रक्षेप्य विविधता में विकृत किया जा सकता है। हालाँकि, क्लेयर पड़ोसी ने पाया कि यह कम से कम 4 आयामों में विफल रहता है। उसने जटिल आयाम 4 के एक सुसम्बद्ध काहलर मैनिफोल्ड का निर्माण किया जो कि किसी भी सुचारू जटिल प्रक्षेप्य विविधता के बराबर भी समस्थेयता नहीं है।[16] कोई भी सभी सुसम्बद्ध कॉम्प्लेक्स मैनिफोल्ड्स के बीच सुसम्बद्ध काहलर मैनिफोल्ड्स के लक्षण वर्णन के लिए भी पूछ सकता है। जटिल आयाम 2 में, कोडैरा और यम-टोंग सिउ ने दिखाया कि एक सुसम्बद्ध जटिल सतह में काहलर मापीय होता है यदि और केवल तभी जब इसकी पहली बेट्टी संख्या सम हो।[17] इस परिणाम का एक वैकल्पिक प्रमाण जिसमें सुसम्बद्ध जटिल सतहों के वर्गीकरण का उपयोग करके कठिन केस-दर-केस अध्ययन की आवश्यकता नहीं होती है, बुचडाहल और लामारी द्वारा स्वतंत्र रूप से प्रदान किया गया था।[18][19] इस प्रकार काहलर सुसम्बद्ध जटिल सतहों के लिए एक विशुद्ध रूप से टोपोलॉजिकल संपत्ति है। हिरोनका%27s_example#A_deformation_of_Kähler_manifolds_that_is_not_a_Kähler_manifold|हालाँकि, हिरोनका का उदाहरण दिखाता है कि यह कम से कम 3 आयामों में विफल रहता है। अधिक विस्तार से, उदाहरण सुचारू सुसम्बद्ध कॉम्प्लेक्स 3-फोल्ड का 1-पैरामीटर परिवार है जैसे कि अधिकांश फाइबर काहलर (और यहां तक ​​कि प्रक्षेप्य) हैं ), लेकिन एक फाइबर काहलर नहीं है। इस प्रकार एक सुसम्बद्ध काहलर मैनिफोल्ड एक गैर-काहलर कॉम्प्लेक्स मैनिफोल्ड से भिन्न हो सकता है।

काहलर-आइंस्टीन मैनिफोल्ड्स

काहलर मैनिफोल्ड को काहलर-आइंस्टीन कहा जाता है यदि इसमें निरंतर रिक्की वक्रता होती है। समान रूप से, रिक्की वक्रता टेंसर मापीय टेंसर के स्थिर λ गुना के बराबर है, रिक = λg। आइंस्टीन का संदर्भ सामान्य सापेक्षता से आता है, जो द्रव्यमान की अनुपस्थिति में दावा करता है कि स्पेसटाइम शून्य रिक्की वक्रता के साथ एक 4-आयामी लोरेंट्ज़ियन मैनिफोल्ड है। अधिक जानकारी के लिए आइंस्टीन मैनिफोल्ड्स पर लेख देखें।

यद्यपि रिक्की वक्रता को किसी भी रीमैनियन मैनिफोल्ड के लिए परिभाषित किया गया है, यह काहलर ज्यामिति में एक विशेष भूमिका निभाता है: काहलर मैनिफोल्ड X की रिक्की वक्रता को एक वास्तविक बंद (1,1)-रूप के रूप में देखा जा सकता है जो सी का प्रतिनिधित्व करता है 1(एक्स) (स्पर्शरेखा बंडल का पहला चेर्न वर्ग) में H2(X, R). यह इस प्रकार है कि एक कॉम्पैक्ट काहलर-आइंस्टीन मैनिफोल्ड एक्स में विहित बंडल K होना चाहिएX या तो एंटी-एम्पल, होमोलॉजिकली ट्रिवियल, या पर्याप्त लाइन बंडल , यह इस पर निर्भर करता है कि आइंस्टीन स्थिरांक λ सकारात्मक, शून्य या नकारात्मक है या नहीं। उन तीन प्रकारों के काहलर मैनिफोल्ड्स को क्रमशः फैनो किस्म, कैलाबी-याउ मैनिफोल्ड|कैलाबी-याउ, या पर्याप्त कैनोनिकल बंडल (जो सामान्य प्रकार का तात्पर्य है) के साथ कहा जाता है। कोडैरा एम्बेडिंग प्रमेय के अनुसार, पर्याप्त कैनोनिकल बंडल के साथ फैनो मैनिफोल्ड्स और मैनिफोल्ड्स स्वचालित रूप से प्रोजेक्टिव किस्में हैं।

शिंग-तुंग याउ ने कैलाबी अनुमान को सिद्ध कर दिया: पर्याप्त विहित बंडल के साथ प्रत्येक सुचारू प्रक्षेप्य किस्म में एक काहलर-आइंस्टीन मापीय (निरंतर नकारात्मक रिक्की वक्रता के साथ) होता है, और प्रत्येक कैलाबी-याउ मैनिफोल्ड में एक काहलर-आइंस्टीन मापीय (शून्य रिक्की वक्रता के साथ) होता है। ये परिणाम बीजगणितीय किस्मों के वर्गीकरण के लिए महत्वपूर्ण हैं, जिसमें पर्याप्त विहित बंडल वाली किस्मों के लिए मियाओका-याउ असमानता और कैलाबी-याउ मैनिफोल्ड्स के लिए ब्यूविल-बोगोमोलोव अपघटन जैसे अनुप्रयोग संम्मिलित हैं।[20] इसके विपरीत, हर सुचारू फ़ानो किस्म में काहलर-आइंस्टीन मापीय नहीं होता है (जिसमें निरंतर सकारात्मक रिक्की वक्रता होगी)। हालाँकि, ज़िउक्सियॉन्ग चेन, साइमन डोनाल्डसन और सॉन्ग सन ने याउ-गिरोह टीआई प्रेस -डोनाल्डसन अनुमान को सिद्ध कर दिया: एक सुचारू फ़ानो किस्म में काहलर-आइंस्टीन मापीय होता है यदि और केवल अगर यह के-स्थिर है, एक विशुद्ध रूप से बीजगणित-ज्यामितीय स्थिति है।

ऐसी स्थितियों में जहां काहलर-आइंस्टीन मापीय मौजूद नहीं हो सकता है, निरंतर स्केलर वक्रता काहलर मापीय और चरम काहलर मापीय सहित हल्के सामान्यीकरण का अध्ययन करना संभव है। जब काहलर-आइंस्टीन मापीय मौजूद हो सकता है, तो ये व्यापक सामान्यीकरण स्वचालित रूप से काहलर-आइंस्टीन हैं।

होलोमोर्फिक अनुभागीय वक्रता

यूक्लिडियन अंतरिक्ष पर मानक मापीय से रीमैनियन मैनिफोल्ड X का विचलन अनुभागीय वक्रता द्वारा मापा जाता है, जो एक बिंदु पर X के स्पर्शी समष्टि में किसी भी वास्तविक 2-प्लेन से जुड़ी एक वास्तविक संख्या है। उदाहरण के लिए, 'सीपी' पर मानक मापीय की अनुभागीय वक्रताn (के लिए n ≥ 2) 1/4 और 1 के बीच भिन्न होता है। एक हर्मिटियन मैनिफोल्ड (उदाहरण के लिए, एक काहलर मैनिफोल्ड) के लिए, होलोमोर्फिक अनुभागीय वक्रता का मतलब स्पर्शी समष्टि में जटिल रेखाओं तक सीमित अनुभागीय वक्रता है। यह उस सीपी में अधिक सरलता से व्यवहार करता हैn में 1 के बराबर होलोमोर्फिक अनुभागीय वक्रता है। दूसरे चरम पर, 'सी' में खुली इकाई गेंद (गणित)n में -1 के बराबर होलोमोर्फिक अनुभागीय वक्रता के साथ एक रीमैनियन मैनिफोल्ड#जियोडेसिक पूर्णता काहलर मापीय है। (इस मापीय के साथ, गेंद को 'कॉम्प्लेक्स हाइपरबोलिक स्पेस' भी कहा जाता है।)

होलोमोर्फिक अनुभागीय वक्रता अंतर्निहित जटिल मैनिफोल्ड की जटिल ज्यामिति से घनिष्ठ रूप से संबंधित है। यह अहलफोर्स श्वार्ज़ लेम्मा का एक प्रारंभिक परिणाम है कि यदि नकारात्मक होलोमोर्फिक अनुभागीय वक्रता (ऊपर एक नकारात्मक स्थिरांक से घिरा) के हर्मिटियन मापीय के साथ एक हर्मिटियन मैनिफोल्ड है, तो यह ब्रॉडी हाइपरबोलिक है (यानी, प्रत्येक होलोमोर्फिक मानचित्र स्थिर है) यदि X सुसम्बद्ध होता है, तो यह कोबायाशी मापीय के मैनिफोल्ड के बराबर है।[21] दूसरी ओर, यदि सकारात्मक होलोमोर्फिक अनुभागीय वक्रता के काहलर मापीय के साथ एक सुसम्बद्ध काहलर मैनिफोल्ड है, यांग शियाओकुई ने दिखाया कि X तर्कसंगत रूप से जुड़ा हुआ है।

जटिल ज्यामिति की एक उल्लेखनीय विशेषता यह है कि जटिल उपमानों पर होलोमोर्फिक अनुभागीय वक्रता कम हो जाती है।[22] (यही बात अधिक सामान्य अवधारणा, होलोमोर्फिक द्विभाजित वक्रता के लिए भी लागू होती है।) उदाहरण के लिए, C का प्रत्येक जटिल उपमानn ('सी' से प्रेरित मापीय के साथ)n) में होलोमोर्फिक अनुभागीय वक्रता ≤ 0 है।

हर्मिटियन मैनिफोल्ड्स के बीच होलोमोर्फिक मानचित्रों के लिए, होलोमोर्फिक अनुभागीय वक्रता श्वार्ज़ लेम्मा दूसरे क्रम के अनुमान में दिखाई देने वाले लक्ष्य वक्रता शब्द को नियंत्रित करने के लिए पर्याप्त मजबूत नहीं है। इसने ज़ियाओकुई यांग और फांगयांग झेंग द्वारा प्रस्तुत 'वास्तविक द्विभाजक वक्रता' पर विचार करने को प्रेरित किया।[23] यह कॉम्प्लेक्स कर्वेचर संचालक के नाम से मैन-चुन ली और जेफरी स्ट्रीट्स के काम में भी दिखाई देता है।[24]


उदाहरण

  1. कॉम्प्लेक्स समन्वय स्थान सीnमानक हर्मिटियन मापीय के साथ काहलर मैनिफोल्ड है।
  2. एक सुसम्बद्ध कॉम्प्लेक्स टोरस 'सी'n/Λ (Λ एक पूर्ण जाली (समूह)) 'सी' पर यूक्लिडियन मापीय से एक फ्लैट मापीय प्राप्त करता हैn, और इसलिए यह एक सुसम्बद्ध काहलर मैनिफोल्ड है।
  3. उन्मुखी 2-मैनिफोल्ड पर प्रत्येक रीमैनियन मापीय काहलर है। (वास्तव में, इसका होलोनॉमी समूह रोटेशन समूह SO(2) में समाहित है, जो एकात्मक समूह U(1) के बराबर है।) विशेष रूप से, एक उन्मुख रीमैनियन 2-मैनिफोल्ड एक विहित तरीके से एक रीमैन सतह है; इसे इज़ोटेर्मल निर्देशांक के अस्तित्व के रूप में जाना जाता है। इसके विपरीत, प्रत्येक रीमैन सतह काहलर है क्योंकि किसी भी हर्मिटियन मापीय का काहलर रूप आयामी कारणों से बंद है।
  4. जटिल प्रक्षेप्य स्थान 'सीपी' पर काहलर मापीय का एक मानक विकल्प हैn, फ़ुबिनी-अध्ययन मीट्रिक। एक विवरण में एकात्मक समूह संम्मिलित है U(n + 1), सी के रैखिक ऑटोमोर्फिज्म का समूहn+1 जो मानक हर्मिटियन रूप को संरक्षित करता है। फ़ुबिनी-स्टडी मापीय 'सीपी' पर अद्वितीय रीमैनियन मापीय हैn (एक धनात्मक गुणज तक) जो कि क्रिया के अंतर्गत अपरिवर्तनीय है U(n + 1)सीपी परn. 'सीपी' का एक स्वाभाविक सामान्यीकरणnग्रासमैनियन जैसे सुसम्बद्ध प्रकार के हर्मिटियन सममित स्थानों द्वारा प्रदान किया जाता है। सुसम्बद्ध प्रकार के हर्मिटियन सममित स्थान पर प्राकृतिक काहलर मापीय में अनुभागीय वक्रता ≥ 0 है।
  5. काहलर मैनिफोल्ड के जटिल सबमैनिफोल्ड पर प्रेरित मापीय काहलर है। विशेष रूप से, कोई भी स्टीन मैनिफोल्ड ('सी' में एंबेडेड)n) या सुचारू प्रक्षेप्य बीजगणितीय विविधता ('सीपी' में एम्बेडेड)n) काहलर है. यह उदाहरणों का एक बड़ा वर्ग है.
  6. 'सी' में ओपन यूनिट बॉल 'बी'n में एक पूर्ण काहलर मापीय है जिसे बर्गमैन मापीय कहा जाता है, जिसमें होलोमोर्फिक अनुभागीय वक्रता -1 के बराबर होती है। गेंद का प्राकृतिक सामान्यीकरण गैर-सुसम्बद्ध प्रकार के हर्मिटियन सममित स्थानों द्वारा प्रदान किया जाता है, जैसे सीगल ऊपरी आधा स्थान। गैर-सुसम्बद्ध प्रकार का प्रत्येक हर्मिटियन सममित स्थान X कुछ 'सी' में एक बंधे हुए डोमेन के लिए आइसोमोर्फिक हैn, और X का बर्गमैन मापीय अनुभागीय वक्रता ≤ 0 के साथ एक पूर्ण काहलर मापीय है।
  7. प्रत्येक K3 सतह Kähler (Siu द्वारा) है।[17]


यह भी देखें

टिप्पणियाँ

  1. Cannas da Silva (2001), Definition 16.1.
  2. Zheng (2000), Proposition 7.14.
  3. Kobayashi & Nomizu (1996), v. 2, p. 149.
  4. Moroianu (2007), Proposition 8.8.
  5. Zheng (2000), section 7.4.
  6. Huybrechts (2005), Section 3.1.
  7. Huybrechts (2005), Proposition 3.1.12.
  8. Huybrechts (2005), Corollary 3.2.12.
  9. Huybrechts (2005), sections 3.3 and 5.2,
  10. Huybrechts (2005), Proposition 3.A.28.
  11. Amorós et al. (1996)
  12. Amorós et al. (1996), Corollary 1.66.
  13. Wells (2007) p.217 Definition 1.1
  14. Kodaira (1954)
  15. Angella, D. and Tomassini, A., 2013. On the $\partial\overline {\partial} $-Lemma and Bott-Chern cohomology. Inventiones mathematicae, 192(1), pp.71-81.
  16. Voisin (2004)
  17. 17.0 17.1 Barth et al. (2004), section IV.3.
  18. Buchdahl (1999)
  19. Lamari (1999)
  20. Zheng (2000), Corollary 9.8.
  21. Zheng (2000), Lemma 9.14.
  22. Kobayashi & Nomizu (1996), v. 2, Proposition IX.9.2.
  23. Yang & Zheng (2018)
  24. Lee & Streets (2021)


संदर्भ


बाहरी संबंध