एकात्मक समूह: Difference between revisions
(→टोपोलॉजी: modification) |
No edit summary |
||
| Line 4: | Line 4: | ||
{{Lie groups |Classical}} | {{Lie groups |Classical}} | ||
गणित में, डिग्री n का एकात्मक समूह, जिसे U(n) द्वारा निरूपित किया जाता है, n × n एकात्मक आव्यूहों का समूह है, जिसमें आव्यूह गुणन का समूह संचालन होता है। एकात्मक समूह सामान्य रैखिक समूह GL(n, C) का एक उपसमूह है। | गणित में, डिग्री n का एकात्मक समूह, जिसे U(n) द्वारा निरूपित किया जाता है, n × n एकात्मक आव्यूहों का समूह है, जिसमें आव्यूह गुणन का समूह संचालन होता है। एकात्मक समूह सामान्य रैखिक समूह GL(n, C) का एक उपसमूह है। | ||
| Line 43: | Line 44: | ||
U(n) का[[ वेइल समूह | वेइल समूह]][[ सममित समूह | सममित समूह]] S है<sub>n</sub>, प्रविष्टियों को अनुमति देकर विकर्ण टोरस पर कार्य करना: | U(n) का[[ वेइल समूह | वेइल समूह]][[ सममित समूह | सममित समूह]] S है<sub>n</sub>, प्रविष्टियों को अनुमति देकर विकर्ण टोरस पर कार्य करना: | ||
:<math>\operatorname{diag}\left(e^{i\theta_1}, \dots, e^{i\theta_n}\right) \mapsto \operatorname{diag}\left(e^{i\theta_{\sigma(1)}}, \dots, e^{i\theta_{\sigma(n)}}\right)</math> | :<math>\operatorname{diag}\left(e^{i\theta_1}, \dots, e^{i\theta_n}\right) \mapsto \operatorname{diag}\left(e^{i\theta_{\sigma(1)}}, \dots, e^{i\theta_{\sigma(n)}}\right)</math> | ||
== संबंधित समूह == | == संबंधित समूह == | ||
| Line 104: | Line 104: | ||
=== परिमित क्षेत्र === | === परिमित क्षेत्र === | ||
के साथ परिमित क्षेत्र में {{nowrap|1=''q'' = ''p''<sup>''r''</sup>}} तत्व, एफ<sub>''q''</sub>, एक अद्वितीय द्विघात विस्तार क्षेत्र है, F<sub>''q''<sup>2</sup></sub>, ऑर्डर 2 ऑटोमोर्फिज्म के साथ <math>\alpha\colon x \mapsto x^q</math> ([[ फ्रोबेनियस ऑटोमोर्फिज्म ]] की आरवीं शक्ति)। यह एक 'एफ' पर हर्मिटियन फॉर्म को परिभाषित करने की अनुमति देता है<sub>''q''<sup>2</sup></sub> सदिश स्थान V, एक 'F' के रूप में<sub>''q''</sub>- बिलिनियर नक्शा <math>\Psi\colon V \times V \to K</math> ऐसा है कि <math>\Psi(w, v) = \alpha \left(\Psi(v, w)\right)</math> और <math>\Psi(w, cv) = c\Psi(w, v)</math> के लिए {{nowrap|''c'' ∈ '''F'''<sub>''q''<sup>2</sup></sub>}}. | के साथ परिमित क्षेत्र में {{nowrap|1=''q'' = ''p''<sup>''r''</sup>}} तत्व, एफ<sub>''q''</sub>, एक अद्वितीय द्विघात विस्तार क्षेत्र है, F<sub>''q''<sup>2</sup></sub>, ऑर्डर 2 ऑटोमोर्फिज्म के साथ <math>\alpha\colon x \mapsto x^q</math> ([[ फ्रोबेनियस ऑटोमोर्फिज्म ]] की आरवीं शक्ति)। यह एक 'एफ' पर हर्मिटियन फॉर्म को परिभाषित करने की अनुमति देता है<sub>''q''<sup>2</sup></sub> सदिश स्थान V, एक 'F' के रूप में<sub>''q''</sub>- बिलिनियर नक्शा <math>\Psi\colon V \times V \to K</math> ऐसा है कि <math>\Psi(w, v) = \alpha \left(\Psi(v, w)\right)</math> और <math>\Psi(w, cv) = c\Psi(w, v)</math> के लिए {{nowrap|''c'' ∈ '''F'''<sub>''q''<sup>2</sup></sub>}}. इसके अलावा, सभी गैर-पतित हर्मिटियन एक परिमित क्षेत्र पर एक सदिश स्थान पर बनते हैं पहचान मैट्रिक्स द्वारा दर्शाए गए मानक एक के अनुरूप हैं; अर्थात्, कोई भी हर्मिटियन रूप एकात्मक रूप से समतुल्य है | ||
:<math>\Psi(w, v) = w^\alpha \cdot v = \sum_{i=1}^n w_i^q v_i</math> | :<math>\Psi(w, v) = w^\alpha \cdot v = \sum_{i=1}^n w_i^q v_i</math> | ||
जहां <math>w_i,v_i</math> के निर्देशांकों का प्रतिनिधित्व करते हैं {{nowrap|''w'', ''v'' ∈ ''V''}} किसी विशेष एफ में<sub>''q''<sup>2</sup></sub>-एन-डायमेंशनल स्पेस वी का आधार {{harv|Grove|2002|loc=Thm. 10.3}}. | |||
इस प्रकार विस्तार 'एफ' के लिए आयाम एन के एक (अद्वितीय) एकात्मक समूह को परिभाषित कर सकते हैं<sub>''q''<sup>2</sup></sub>/एफ<sub>''q''</sub>, या तो के रूप में दर्शाया गया है {{nowrap|U(''n'', ''q'')}} या {{nowrap|U(''n'', ''q''<sup>2</sup>)}} लेखक पर निर्भर करता है। निर्धारक 1 के मैट्रिसेस वाले एकात्मक समूह के उपसमूह को विशेष एकात्मक समूह कहा जाता है और निरूपित किया जाता है {{nowrap|SU(''n'', ''q'')}} या {{nowrap|SU(''n'', ''q''<sup>2</sup>)}}. सुविधा के लिए, यह लेख इसका उपयोग करेगा {{nowrap|U(''n'', ''q''<sup>2</sup>)}} सम्मेलन। का केंद्र {{nowrap|U(''n'', ''q''<sup>2</sup>)}} आदेश है {{nowrap|''q'' + 1}} और उन अदिश आव्यूहों से मिलकर बना है जो एकात्मक हैं, जो कि वे आव्यूह cI हैं<sub>V</sub>साथ <math>c^{q+1} = 1</math>. विशेष एकात्मक समूह के केंद्र में आदेश है {{nowrap|gcd(''n'', ''q'' + 1)}} और उन एकात्मक अदिशों से युक्त होता है जिनमें n को विभाजित करने का क्रम भी होता है। इसके केंद्र द्वारा एकात्मक समूह के भागफल को 'प्रक्षेपी एकात्मक समूह' कहा जाता है, {{nowrap|PU(''n'', ''q''<sup>2</sup>)}}, और इसके केंद्र द्वारा विशेष एकात्मक समूह का भाग प्रक्षेपी विशेष एकात्मक समूह है {{nowrap|PSU(''n'', ''q''<sup>2</sup>)}}. अधिकतर मामलों में ({{nowrap|''n'' > 1}} और {{nowrap|(''n'', ''q''<sup>2</sup>) ∉ {(2, 2<sup>2</sup>), (2, 3<sup>2</sup>), (3, 2<sup>2</sup>)}{{void}}}}), {{nowrap|SU(''n'', ''q''<sup>2</sup>)}} एक आदर्श समूह है और {{nowrap|PSU(''n'', ''q''<sup>2</sup>)}} एक परिमित सरल समूह है, {{harv|Grove|2002|loc=Thm. 11.22 and 11.26}}. | इस प्रकार विस्तार 'एफ' के लिए आयाम एन के एक (अद्वितीय) एकात्मक समूह को परिभाषित कर सकते हैं<sub>''q''<sup>2</sup></sub>/एफ<sub>''q''</sub>, या तो के रूप में दर्शाया गया है {{nowrap|U(''n'', ''q'')}} या {{nowrap|U(''n'', ''q''<sup>2</sup>)}} लेखक पर निर्भर करता है। निर्धारक 1 के मैट्रिसेस वाले एकात्मक समूह के उपसमूह को विशेष एकात्मक समूह कहा जाता है और निरूपित किया जाता है {{nowrap|SU(''n'', ''q'')}} या {{nowrap|SU(''n'', ''q''<sup>2</sup>)}}. सुविधा के लिए, यह लेख इसका उपयोग करेगा {{nowrap|U(''n'', ''q''<sup>2</sup>)}} सम्मेलन। का केंद्र {{nowrap|U(''n'', ''q''<sup>2</sup>)}} आदेश है {{nowrap|''q'' + 1}} और उन अदिश आव्यूहों से मिलकर बना है जो एकात्मक हैं, जो कि वे आव्यूह cI हैं<sub>V</sub>साथ <math>c^{q+1} = 1</math>. विशेष एकात्मक समूह के केंद्र में आदेश है {{nowrap|gcd(''n'', ''q'' + 1)}} और उन एकात्मक अदिशों से युक्त होता है जिनमें n को विभाजित करने का क्रम भी होता है। इसके केंद्र द्वारा एकात्मक समूह के भागफल को 'प्रक्षेपी एकात्मक समूह' कहा जाता है, {{nowrap|PU(''n'', ''q''<sup>2</sup>)}}, और इसके केंद्र द्वारा विशेष एकात्मक समूह का भाग प्रक्षेपी विशेष एकात्मक समूह है {{nowrap|PSU(''n'', ''q''<sup>2</sup>)}}. अधिकतर मामलों में ({{nowrap|''n'' > 1}} और {{nowrap|(''n'', ''q''<sup>2</sup>) ∉ {(2, 2<sup>2</sup>), (2, 3<sup>2</sup>), (3, 2<sup>2</sup>)}{{void}}}}), {{nowrap|SU(''n'', ''q''<sup>2</sup>)}} एक आदर्श समूह है और {{nowrap|PSU(''n'', ''q''<sup>2</sup>)}} एक परिमित सरल समूह है, {{harv|Grove|2002|loc=Thm. 11.22 and 11.26}}. | ||
=== डिग्री-2 वियोज्य बीजगणित === | === डिग्री-2 वियोज्य बीजगणित === | ||
सामान्यतः एक क्षेत्र k और एक डिग्री -2 वियोज्य k-बीजगणित K दिया जाता है (जो एक क्षेत्र विस्तार हो सकता है लेकिन इसकी आवश्यकता नहीं है), कोई इस विस्तार के संबंध में एकात्मक समूहों को परिभाषित कर सकता है। | |||
सबसे पहले, K का एक अद्वितीय k-ऑटोमॉर्फिज़्म है <math>a \mapsto \bar a</math> जो एक इनवोल्यूशन है और ठीक k (<math>a = \bar{a}</math> अगर और केवल अगर {{nowrap|''a'' ∈ ''k''}}).<ref>Milne, [http://www.jmilne.org/math/CourseNotes/aag.html Algebraic Groups and Arithmetic Groups], p. 103</ref> यह जटिल संयुग्मन और डिग्री 2 परिमित क्षेत्र एक्सटेंशन के संयुग्मन को सामान्यीकृत करता है, और ऊपर के रूप में हर्मिटियन रूपों और एकात्मक समूहों को परिभाषित करने की अनुमति देता है। | सबसे पहले, K का एक अद्वितीय k-ऑटोमॉर्फिज़्म है <math>a \mapsto \bar a</math> जो एक इनवोल्यूशन है और ठीक k (<math>a = \bar{a}</math> अगर और केवल अगर {{nowrap|''a'' ∈ ''k''}}).<ref>Milne, [http://www.jmilne.org/math/CourseNotes/aag.html Algebraic Groups and Arithmetic Groups], p. 103</ref> यह जटिल संयुग्मन और डिग्री 2 परिमित क्षेत्र एक्सटेंशन के संयुग्मन को सामान्यीकृत करता है, और ऊपर के रूप में हर्मिटियन रूपों और एकात्मक समूहों को परिभाषित करने की अनुमति देता है। | ||
| Line 165: | Line 165: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
<references/> | <references/> | ||
* | * | ||
==संदर्भ== | ==संदर्भ== | ||
| Line 173: | Line 170: | ||
* {{citation|first=Brian C.|last=Hall|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition= 2nd|series=Graduate Texts in Mathematics|volume=222 |publisher=Springer|year=2015|isbn=978-3319134666}} | * {{citation|first=Brian C.|last=Hall|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition= 2nd|series=Graduate Texts in Mathematics|volume=222 |publisher=Springer|year=2015|isbn=978-3319134666}} | ||
{{DEFAULTSORT:Unitary Group}} | {{DEFAULTSORT:Unitary Group}} | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] | ||
Revision as of 17:56, 8 January 2023
| बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
|---|
| File:Cyclic group.svg |
| Lie groups |
|---|
| File:E8Petrie.svg |
गणित में, डिग्री n का एकात्मक समूह, जिसे U(n) द्वारा निरूपित किया जाता है, n × n एकात्मक आव्यूहों का समूह है, जिसमें आव्यूह गुणन का समूह संचालन होता है। एकात्मक समूह सामान्य रैखिक समूह GL(n, C) का एक उपसमूह है।
गणित में, डिग्री n का एकात्मक समूह, जिसे U(n) द्वारा निरूपित किया जाता है, n × n एकात्मक मैट्रिक्स का समूह (गणित) है,जिसमें आव्यूह गुणन का समूह संचालन होता है। एकात्मक समूह सामान्य रेखीय समूह GL(n, C) का एक उपसमूह है.ह्यपेरोरथोगोनल समूह एकात्मक समूह के लिए एक पुरातन नाम है, विशेष रूप से परिमित क्षेत्र में। निर्धारक 1 के साथ एकात्मक मैट्रिसेस के समूह के लिए, विशेष एकात्मक समूह देखें।
साधारण मामले में n = 1, समूह U(1) सर्कल समूह से मेल खाता है, जिसमें गुणन के तहत जटिल संख्या निरपेक्ष मान और दूरी 1 के साथ सभी जटिल संख्याएँ शामिल हैं। सभी एकात्मक समूहों में इस समूह की प्रतियां होती हैं।
एकात्मक समूह U(n) आयाम n2 का एक वास्तविक लाई समूह है। U(n) के लाई बीजगणित में कम्यूटेटर द्वारा दिए गए लाई ब्रैकेट के साथ शामिल हैं n × n तिरछा-हर्मिटियन मैट्रिक्स होते हैं।
सामान्य एकात्मक समूह (जिसे एकात्मक उपमाओं का समूह भी कहा जाता है) में सभी मैट्रिक्स (गणित) ऐसे होते हैं कि ए∗ पहचान मैट्रिक्स का एक शून्येतर गुणक है, और पहचान मैट्रिक्स के सभी सकारात्मक गुणकों के समूह के साथ एकात्मक समूह का गुणनफल है।
गुण
चूंकि एकात्मक मैट्रिक्स का निर्धारक मानदंड के साथ एक जटिल संख्या है 1, निर्धारक एक समूह समरूपता देता है
इस समरूपता का कर्नेल (समूह सिद्धांत) निर्धारक के साथ एकात्मक मैट्रिसेस का सेट है 1. इस उपसमूह को विशेष एकात्मक समूह कहा जाता है, जिसे निरूपित किया जाता है SU(n). फिर हमारे पास लाई समूहों का एक संक्षिप्त सटीक क्रम है:
उपरोक्त नक्शा U(n) को U(1) एक खंड है: हम देख सकते हैं U(1) के उपसमूह के रूप में U(n) जिसके साथ विकर्ण हैं eiθ ऊपरी बाएँ कोने में और 1 शेष विकर्ण पर। इसलिए U(n) का अर्धप्रत्यक्ष उत्पाद है U(1) साथ SU(n).
एकात्मक समूह U(n) के लिए एबेलियन समूह नहीं है n > 1. के एक समूह का केंद्र U(n) अदिश आव्यूहों का समुच्चय है λI साथ λ ∈ U(1); यह शूर के लेम्मा से आता है। केंद्र तब आइसोमोर्फिक है U(1). के केंद्र के बाद से U(n) एक है 1-आयामी एबेलियन सामान्य उपसमूह U(n), एकात्मक समूह सेमीसिंपल बीजगणितीय समूह नहीं है, लेकिन यह रिडक्टिव समूह है।
टोपोलॉजी
एकात्मक समूह U(n) के उपसमुच्चय के रूप में सापेक्ष टोपोलॉजी से संपन्न है M(n, C), सभी का सेट n × n जटिल मैट्रिसेस, जो स्वयं 2n के लिए होमियोमॉर्फिक है2-आयामी यूक्लिडियन अंतरिक्ष होता है।
टोपोलॉजिकल स्पेस के रूप में, यू (एन) कॉम्पैक्ट जगह और जुड़ा हुआ स्थान दोनों है। यह दिखाने के लिए कि U(n) जुड़ा हुआ है, याद रखें कि किसी भी एकात्मक मैट्रिक्स A को अन्य एकात्मक मैट्रिक्स S द्वारा विकर्णित किया जा सकता है। किसी भी विकर्ण एकात्मक मैट्रिक्स में मुख्य विकर्ण पर निरपेक्ष मान 1 की जटिल संख्याएँ होनी चाहिए। इसलिए हम लिख सकते हैं
यू (एन) में पहचान से ए तक एक पथ (टोपोलॉजी) तब दिया जाता है
एकात्मक समूह केवल जुड़ा नहीं है; यू (एन) का मौलिक समूह सभी एन के लिए अनंत चक्रीय है:[1]
इसे देखने के लिए, ध्यान दें कि SU(n) और U(1) के अर्ध-प्रत्यक्ष उत्पाद के रूप में U(n) का उपरोक्त विभाजन U(n) पर एक टोपोलॉजिकल उत्पाद संरचना को प्रेरित करता है, ताकि
अब पहला एकात्मक समूह U(1) स्थैतिक रूप से एक वृत्त है, जिसे Z के लिए एक मौलिक समूह समरूपता के लिए जाना जाता है, जबकि बस जुड़ा हुआ है।[2] निर्धारक नक्शा det: U(n) → U(1) बंटवारे के साथ मौलिक समूहों के एक समरूपता को प्रेरित करता है U(1) → U(n) उलटा प्रेरित करना।
U(n) का वेइल समूह सममित समूह S हैn, प्रविष्टियों को अनुमति देकर विकर्ण टोरस पर कार्य करना:
संबंधित समूह
2-आउट-ऑफ-3 संपत्ति
एकात्मक समूह ओर्थोगोनल समूह, रैखिक जटिल संरचना,और सहानुभूतिपूर्ण समूह समूहों का 3-गुना प्रतिच्छेदन है:
इस प्रकार एक एकात्मक संरचना को एक ओर्थोगोनल संरचना, एक जटिल संरचना और एक सहानुभूतिपूर्ण संरचना के रूप में देखा जा सकता है, जो संगत होने के लिए आवश्यक हैं (जिसका अर्थ है कि एक जटिल संरचना और सहानुभूतिपूर्ण रूप में एक ही जे का उपयोग करता है, और यह जे ऑर्थोगोनल है,सभी समूहों को मैट्रिक्स समूह के रूप में लिखने से एक जे (जो ऑर्थोगोनल है) को ठीक करता है और संगतता सुनिश्चित करता है)।
वास्तव में, यह इन तीनों में से किन्हीं दो का प्रतिच्छेदन है; इस प्रकार एक संगत ऑर्थोगोनल और जटिल संरचना एक सहानुभूतिपूर्ण संरचना को प्रेरित करती है, और आगे भी।[3][4]समीकरणों के स्तर पर इसे इस प्रकार देखा जा सकता है:
इनमें से कोई भी दो समीकरण तीसरे का तात्पर्य है।
रूपों के स्तर पर, इसे एक हर्मिटियन रूप को उसके वास्तविक और काल्पनिक भागों में विघटित करके देखा जा सकता है: वास्तविक भाग सममित (ऑर्थोगोनल) है, और काल्पनिक भाग तिरछा-सममित (सहानुभूतिपूर्ण) है - और ये जटिल से संबंधित हैं संरचना (जो अनुकूलता है)। लगभग काहलर कई गुना पर, इस अपघटन को इस रूप में लिखा जा सकता है h = g + iω, कहां h हर्मिटियन रूप है, g रिमेंनियन मीट्रिक है, i सबसे जटिल कई गुना है, और ω लगभग सहानुभूतिपूर्ण कई गुना है।
लाई समूहों के दृष्टिकोण से, इसे आंशिक रूप से निम्नानुसार समझाया जा सकता है: O(2n) GL(2n, R) का अधिकतम कॉम्पैक्ट उपसमूह है, और U(n) दोनों का अधिकतम कॉम्पैक्ट उपसमूह है GL(n, C) और एसपी (2 एन)। इस प्रकार प्रतिच्छेदन O(2n) ∩ GL(n, C) या O(2n) ∩ Sp(2n) इन दोनों का अधिकतम कॉम्पैक्ट उपसमूह है, इसलिए U(n). इस दृष्टिकोण से, जो अप्रत्याशित है वह चौराहा है GL(n, C) ∩ Sp(2n) = U(n).
विशेष एकात्मक और प्रक्षेपी एकात्मक समूह
जिस प्रकार ओर्थोगोनल समूह O(n) में विशेष ऑर्थोगोनल समूह SO(n) उपसमूह के रूप में और प्रक्षेपी ऑर्थोगोनल समूह PO(n) भागफल के रूप में होता है, और प्रक्षेपी विशेष ऑर्थोगोनल समूह PSO(n) उपभाग के रूप में, एकात्मक समूह U( n) इसे विशेष एकात्मक समूह SU(n), प्रक्षेपी एकात्मक समूह PU(n), और प्रक्षेपी विशेष एकात्मक समूह PSU(n) से संबद्ध करता है। ये दाहिनी ओर क्रमविनिमेय आरेख द्वारा संबंधित हैं; विशेष रूप से, दोनों अनुमानित समूह बराबर हैं: PSU(n) = PU(n).
उपरोक्त शास्त्रीय एकात्मक समूह (जटिल संख्याओं पर) के लिए है - परिमित क्षेत्रों पर एकात्मक समूहों के लिए, एक समान रूप से विशेष एकात्मक और प्रोजेक्टिव एकात्मक समूह प्राप्त करता है, लेकिन सामान्य तौर पर....
.
जी-संरचना: लगभग हर्मिटियन
जी-संरचनाओं की भाषा में, यू (एन)-संरचना के साथ कई गुना एक लगभग हर्मिटियन कई गुना होता है।।
सामान्यीकरण
लाइ थ्योरी के दृष्टिकोण से, शास्त्रीय एकात्मक समूह स्टाइनबर्ग समूह (लाइ थ्योरी) का एक वास्तविक रूप है , जो एक बीजगणितीय समूह है जो सामान्य रेखीय समूह के आरेख ऑटोमोर्फिज्म के संयोजन से उत्पन्न होता है (डाइनकिन आरेख ए को उलट कर)n, जो ट्रांसपोज़ व्युत्क्रम से मेल खाता है) और विस्तार 'C'/'R' (अर्थात् जटिल संयुग्मन) का क्षेत्र ऑटोमोर्फिज्म होता है। ये दोनों ऑटोमोर्फिज्म बीजगणितीय समूह के ऑटोमोर्फिज्म हैं,ऑर्डर 2 हैं, और कम्यूट करते हैं, और एकात्मक समूह बीजीय समूह के रूप में उत्पाद ऑटोमोर्फिज्म के निश्चित बिंदु हैं। शास्त्रीय एकात्मक समूह इस समूह का एक वास्तविक रूप है, जो मानक हर्मिटियन फॉर्म Ψ के अनुरूप है, जो सकारात्मक निश्चित है।
इसे कई तरीकों से सामान्यीकृत किया जा सकता है:
- अन्य हर्मिटियन रूप के सामान्यीकरण से अनिश्चितकालीन एकात्मक समूह उत्पन्न होते हैं U(p, q);
- क्षेत्र विस्तार को किसी भी डिग्री 2 वियोज्य बीजगणित द्वारा प्रतिस्थापित किया जा सकता है, विशेष रूप से परिमित क्षेत्र का डिग्री 2 विस्तार;
- अन्य आरेखों के सामान्यीकरण से लाई प्रकार के अन्य समूहों का उत्पादन होता है, अर्थात् अन्य स्टाइनबर्ग समूह (झूठ सिद्धांत) (के अतिरिक्त ) और सुजुकी-री समूह
- सामान्यीकृत एकात्मक समूह को बीजगणितीय समूह मानते हुए, विभिन्न बीजगणितों पर अपनी बात रख सकते हैं।
अनिश्चित रूप
अनिश्चितकालीन ऑर्थोगोनल समूह के अनुरूप, एक अनिश्चित एकात्मक समूह को परिभाषित किया जा सकता है, जो किसी दिए गए हर्मिटियन रूप को संरक्षित करने वाले परिवर्तनों पर विचार करके, सकारात्मक निश्चित नहीं है (लेकिन आम तौर पर गैर-पतित होने के लिए लिया जाता है)। यहाँ एक सम्मिश्र संख्याओं पर सदिश समष्टि के साथ काम कर रहा है।
एक जटिल सदिश स्थान V पर हर्मिटियन रूप Ψ दिया गया है, एकात्मक समूह U(Ψ) परिवर्तनों का समूह है जो प्रपत्र को संरक्षित करता है: रूपांतरण M ऐसा कि Ψ(Mv, Mw) = Ψ(v, w) सबके लिए v, w ∈ V. मैट्रिसेस के संदर्भ में, मैट्रिक्स द्वारा फॉर्म का प्रतिनिधित्व करते हुए Φ को निरूपित किया जाता है, यह कहता है M∗ΦM = Φ.
यथार्थ के ऊपर सममित द्विरेखीय रूप के लिए, हर्मिटियन रूप एक द्विघात रूप के हस्ताक्षर द्वारा निर्धारित किए जाते हैं, और विकर्ण पर 1 की p प्रविष्टियों और -1 की q प्रविष्टियों के साथ सभी मैट्रिक्स एक विकर्ण रूप में सर्वांगसम होते हैं। गैर-पतित धारणा के बराबर है p + q = n. एक मानक आधार पर, इसे एक द्विघात रूप के रूप में दर्शाया गया है:
और एक सममित रूप के रूप में:
परिणामी समूह को निरूपित किया जाता है U(p,q).
परिमित क्षेत्र
के साथ परिमित क्षेत्र में q = pr तत्व, एफq, एक अद्वितीय द्विघात विस्तार क्षेत्र है, Fq2, ऑर्डर 2 ऑटोमोर्फिज्म के साथ (फ्रोबेनियस ऑटोमोर्फिज्म की आरवीं शक्ति)। यह एक 'एफ' पर हर्मिटियन फॉर्म को परिभाषित करने की अनुमति देता हैq2 सदिश स्थान V, एक 'F' के रूप मेंq- बिलिनियर नक्शा ऐसा है कि और के लिए c ∈ Fq2. इसके अलावा, सभी गैर-पतित हर्मिटियन एक परिमित क्षेत्र पर एक सदिश स्थान पर बनते हैं पहचान मैट्रिक्स द्वारा दर्शाए गए मानक एक के अनुरूप हैं; अर्थात्, कोई भी हर्मिटियन रूप एकात्मक रूप से समतुल्य है
जहां के निर्देशांकों का प्रतिनिधित्व करते हैं w, v ∈ V किसी विशेष एफ मेंq2-एन-डायमेंशनल स्पेस वी का आधार (Grove 2002, Thm. 10.3).
इस प्रकार विस्तार 'एफ' के लिए आयाम एन के एक (अद्वितीय) एकात्मक समूह को परिभाषित कर सकते हैंq2/एफq, या तो के रूप में दर्शाया गया है U(n, q) या U(n, q2) लेखक पर निर्भर करता है। निर्धारक 1 के मैट्रिसेस वाले एकात्मक समूह के उपसमूह को विशेष एकात्मक समूह कहा जाता है और निरूपित किया जाता है SU(n, q) या SU(n, q2). सुविधा के लिए, यह लेख इसका उपयोग करेगा U(n, q2) सम्मेलन। का केंद्र U(n, q2) आदेश है q + 1 और उन अदिश आव्यूहों से मिलकर बना है जो एकात्मक हैं, जो कि वे आव्यूह cI हैंVसाथ . विशेष एकात्मक समूह के केंद्र में आदेश है gcd(n, q + 1) और उन एकात्मक अदिशों से युक्त होता है जिनमें n को विभाजित करने का क्रम भी होता है। इसके केंद्र द्वारा एकात्मक समूह के भागफल को 'प्रक्षेपी एकात्मक समूह' कहा जाता है, PU(n, q2), और इसके केंद्र द्वारा विशेष एकात्मक समूह का भाग प्रक्षेपी विशेष एकात्मक समूह है PSU(n, q2). अधिकतर मामलों में (n > 1 और (n, q2) ∉ {(2, 22), (2, 32), (3, 22)}), SU(n, q2) एक आदर्श समूह है और PSU(n, q2) एक परिमित सरल समूह है, (Grove 2002, Thm. 11.22 and 11.26).
डिग्री-2 वियोज्य बीजगणित
सामान्यतः एक क्षेत्र k और एक डिग्री -2 वियोज्य k-बीजगणित K दिया जाता है (जो एक क्षेत्र विस्तार हो सकता है लेकिन इसकी आवश्यकता नहीं है), कोई इस विस्तार के संबंध में एकात्मक समूहों को परिभाषित कर सकता है।
सबसे पहले, K का एक अद्वितीय k-ऑटोमॉर्फिज़्म है जो एक इनवोल्यूशन है और ठीक k ( अगर और केवल अगर a ∈ k).[5] यह जटिल संयुग्मन और डिग्री 2 परिमित क्षेत्र एक्सटेंशन के संयुग्मन को सामान्यीकृत करता है, और ऊपर के रूप में हर्मिटियन रूपों और एकात्मक समूहों को परिभाषित करने की अनुमति देता है।
बीजगणितीय समूह
एकात्मक समूह को परिभाषित करने वाले समीकरण k पर बहुपद समीकरण हैं (लेकिन K से अधिक नहीं): मानक रूप के लिए Φ = I, मैट्रिक्स के रूप में समीकरण दिए गए हैं A∗A = I, कहां संयुग्म स्थानान्तरण है। एक अलग रूप में यह दिया, वे हैं A∗ΦA = Φ. एकात्मक समूह इस प्रकार एक बीजगणितीय समूह है, जिसके अंक k-बीजगणित R के द्वारा दिए गए हैं:
क्षेत्र विस्तार सी/आर और मानक (सकारात्मक निश्चित) हर्मिटियन रूप के लिए, ये वास्तविक और जटिल बिंदुओं के साथ एक बीजगणितीय समूह उत्पन्न करते हैं:
वास्तव में, एकात्मक समूह एक रेखीय बीजगणितीय समूह है।
द्विघात मॉड्यूल का एकात्मक समूह
एक द्विघात मॉड्यूल का एकात्मक समूह रैखिक बीजगणितीय समूह यू का एक सामान्यीकरण है जिसे अभी परिभाषित किया गया है, जिसमें विशेष मामलों के रूप में कई अलग-अलग उत्कृष्ट समूह शामिल हैं। परिभाषा एंथोनी बाक की थीसिस पर वापस जाती है।[6]इसे परिभाषित करने के लिए, पहले द्विघात मॉड्यूल को परिभाषित करना होगा:
आर को एंटी-ऑटोमोर्फिज्म जे के साथ एक अंगूठी होने दें, ऐसा है कि आर में सभी आर के लिए और . परिभाषित करना
होने देना Λ ⊆ R R का एक योज्य उपसमूह हो, तो Λ को फॉर्म पैरामीटर कहा जाता है यदि और . एक जोड़ा (R, Λ) जैसे कि R एक रिंग है और Λ एक फॉर्म पैरामीटर को फॉर्म रिंग कहा जाता है।
एम को एक आर-मॉड्यूल होने दें और एम पर एफ जे-सेस्क्विलिनियर फॉर्म (यानी, किसी के लिए और ). परिभाषित करना और , तब f को Λ-द्विघात रूप परिभाषित करने के लिए कहा जाता है (h, q) एम पर। एक द्विघात मॉड्यूल खत्म (R, Λ) एक ट्रिपल है (M, h, q) ऐसा है कि एम एक आर-मॉड्यूल है और (h, q) एक Λ-द्विघात रूप है।
किसी भी द्विघात मॉड्यूल के लिए (M, h, q) फॉर्म रिंग के ऊपर एम पर जे-सेस्क्विलिनियर फॉर्म एफ द्वारा परिभाषित (R, Λ) कोई एकात्मक समूह को संबद्ध कर सकता है
विशेष मामला जहां Λ = Λmax, J के साथ कोई गैर-तुच्छ निवेश (यानी, और ε = −1 शास्त्रीय एकात्मक समूह (एक बीजगणितीय समूह के रूप में) वापस देता है।
बहुपद अपरिवर्तनीय
एकात्मक समूह वास्तविक गैर-विनिमेय चर में दो बहुपदों के ऑटोमोर्फिज़्म हैं:
इन्हें जटिल रूप के वास्तविक और काल्पनिक भाग के रूप में आसानी से देखा जा सकता है . अलग-अलग दो अपरिवर्तनीय O(2n) और Sp(2n) परस्पर अपरिवर्तनीय हैं। संयुक्त रूप से वे U(n) के अपरिवर्तक बनाते हैं जो इन दोनों समूहों का एक उपसमूह है। इन अपरिवर्तनीयों में चर गैर-कम्यूटेटिव होना चाहिए अन्यथा दूसरा बहुपद समान रूप से शून्य है।
अंतरिक्ष का वर्गीकरण
यू(एन) के लिए वर्गीकरण स्थान यू(एन) के लिए वर्गीकरण स्थान लेख में वर्णित है। यू(एन) के लिए वर्गीकरण स्थान।
यह भी देखें
- विशेष एकात्मक समूह
- प्रोजेक्टिव एकात्मक समूह
- ऑर्थोगोनल समूह
- सहानुभूति समूह
टिप्पणियाँ
- ↑ Hall 2015 Proposition 13.11
- ↑ Hall 2015 Proposition 13.11
- ↑ Arnold, V.I. (1989). शास्त्रीय यांत्रिकी के गणितीय तरीके (Second ed.). Springer. p. 225.
- ↑ Baez, John. "सहानुभूतिपूर्ण, क्वाटरनियोनिक, फर्मियोनिक". Retrieved 1 February 2012.
- ↑ Milne, Algebraic Groups and Arithmetic Groups, p. 103
- ↑ Bak, Anthony (1969), "On modules with quadratic forms", Algebraic K-Theory and its Geometric Applications (editors—Moss R. M. F., Thomas C. B.) Lecture Notes in Mathematics, Vol. 108, pp. 55-66, Springer. doi:10.1007/BFb0059990
संदर्भ
- Grove, Larry C. (2002), Classical groups and geometric algebra, Graduate Studies in Mathematics, vol. 39, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2019-3, MR 1859189
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666