वेइल समूह

From Vigyanwiki

गणित में विशेष रूप से लाई बीजगणित का सिद्धांत, मूल प्रक्रिया Φ का वेइल समूह (हरमन वेइल के नाम पर) उस रूट प्रणाली के आइसोमेट्री समूह का एक उपसमूह है। विशेष रूप से यह उपसमूह है, जो जड़ों के लिए हाइपरप्लेन ओर्थोगोनल के माध्यम से प्रतिबिंबों द्वारा उत्पन्न होता है, और जैसे कि एक परिमित प्रतिबिंब समूह है। वस्तुतः यह जानकारी प्राप्त हुई है कि अधिकांशतः परिमित प्रतिबिंब समूह वेइल समूह होते हैं।[1] संक्षेप में वेइल समूह परिमित कॉक्सेटर समूह हैं और इनके महत्वपूर्ण उदाहरण हैं।

अर्ध-सरल झूठ समूह का वेइल ग्रुप, सेमीसिम्पल लाई बीजगणित, सेमीसिंपल लीनियर बीजगणितीय ग्रुप आदि सेमी-सिंपल लाई बीजगणित के रूट प्रणाली का वेइल ग्रुप है। अर्ध-सरल लाई समूह का वेइल समूह, सेमीसिम्पल लाई बीजगणित, सेमीसिम्पल लीनियर बीजगणितीय समूह आदि उस समूह या सेमी-सिम्पल लाई बीजगणित की रूट प्रणाली का वेइल समूह है।

परिभाषा और उदाहरण

वेइल समूह का मूल तंत्र एक समबाहु त्रिभुज का सममिति समूह है।

माना कि यूक्लिडियन स्पेस में एक रूट प्रणाली हो। प्रत्येक रूट के लिए , माना कि हाइपरप्लेन के लंब के में प्रतिबिंब को निरूपित करें। जो स्पष्ट रूप से दिया गया है-

,

जहाँ आंतरिक उत्पाद है। सभी द्वारा उत्पन्न वेइल समूह का ऑर्थोगोनल समूह का उपसमूह O(V) है। रूट प्रणाली की परिभाषा के अनुसार प्रत्येक , को संरक्षित रखता है। जिससे यह अनुसरण करता है कि एक फाइनाइट समूह है।

रूट प्रणाली की स्थिति में, उदाहरण के लिए, रूट्स के लंबवत हाइपरप्लेन केवल रेखाएं होती हैं और वेइल समूह एक समबाहु त्रिभुज का समरूपता समूह है। जैसा कि चित्र में दिखाया गया है। एक समूह के रूप में, तीन तत्वों पर क्रमचय समूह के लिए समरूपी है। जिसे त्रिभुज के शीर्ष के रूप में माना जा सकता हैं। ध्यान दें कि इस स्थिति में रूट प्रणाली का पूर्ण सिमिट्रिक समूह नहीं है। एक 60 डिग्री का रोटेशन संरक्षित करता है। किन्तु का भाग नहीं है।

हम मूल प्रणाली पर विचार कर सकते हैं। इस स्थिति में, में सभी सदिशों का स्थान है। जिनकी प्रविष्टियों का योग शून्य है। रूट्स में फॉर्म के वैक्टर होते हैं। जहाँ , वें मानक आधार तत्व के लिए है। ऐसी रूट से जुड़ा प्रतिबिंब का परिवर्तन है। जिसे और प्रत्येक सदिश की प्रविष्टियों के परिवर्तन बाद प्राप्त किया। वेइल समूह के लिए तब क्रमचय समूह तत्व प्रारम्भ है।

वेइल चेंबर्स

छायांकित क्षेत्र आधार के लिए मौलिक वेइल कक्ष है।

यदि एक रूट प्रणाली है। जिससे हम हाइपरप्लेन को प्रत्येक रूट के लंबवत मान सकते हैं। याद रखें कि हाइपरप्लेन के विषय में प्रतिबिंब को प्रदर्शित कर सकते हैं और सभी द्वारा उत्पन्न वेइल समूह के परिवर्तनों का समूह है। हाइपरप्लेन के समूह का पूरक डिस्कनेक्ट हो जाता है और प्रत्येक जुड़े घटक को वेइल कक्ष कहते हैं। यदि हम सरल रूट्स का एक विशेष समुच्चय Δ निर्धारित करते हैं। जिससे हम Δ से जुड़े मुख्य वेइल कक्ष को बिंदुओं के समुच्चय के रूप में परिभाषित कर सकते हैं। ऐसा है कि सभी वेइल समूह के लिए निर्धारित है।

प्रतिबिंब के बाद से को संरक्षित करना, वे रूट्स के लंबवत हाइपरप्लेन के समूहों को भी संरक्षित करते हैं। इस प्रकार प्रत्येक वेइल समूह तत्व वेइल कक्षों को अनुमति है।

यह फीगर A2 रूट प्रणाली के स्थिति को प्रदर्शित करता है। रूट्स के लिए हाइपरप्लेन (इस स्थिति में एक आयामी) ऑर्थोगोनल को डैस्ड रेखाओं के द्वारा निर्देशित किया जाता है। छह 60-डिग्री क्षेत्र वाले वेइल कक्ष हैं और छायांकित क्षेत्र संकेतित आधार से जुड़ा हुआ मौलिक वेइल कक्ष है।

वेइल चेम्बर्स के बारे में एक मूलभूत सामान्य प्रमेय यह है कि:[2]

प्रमेय: वेइल समूह वेइल कक्षों पर स्वतंत्र रूप से और सक्रिय रूप से कार्य करता है। इस प्रकार वेइल समूह का क्रम वेइल कक्षों की संख्या के बराबर होता है।

एक संबंधित परिणाम यह है:[3]

प्रमेय: एक वेइल कक्ष को ठीक करें। फिर सभी के लिए की वेइल-ऑर्बिट बंद होने में बिल्कुल एक बिंदु का होता है।

कॉक्सेटर समूह संरचना

जनरेटिंग सेट-

वेइल समूह के बारे में एक महत्वपूर्ण परिणाम यह है:[4]

प्रमेय: यदि के लिए आधार है, तब वेइल समूह साथ में प्रतिबिंबों द्वारा उत्पन्न होता है।

अर्थात् प्रतिबिम्बों से उत्पन्न समूह प्रतिबिंबों द्वारा उत्पन्न समूह के समान है।

संबंध

इस बीच यदि और में हैं। फिर डायनकिन आरेख के लिए आधार के सापेक्ष के बारे में हमें कुछ बताता है कि कैसे जोड़ी व्यवहार करता है। विशेष रूप से माना कि और डायनकिन आरेख में संगत शीर्ष हैं। तब हमारे पास निम्नलिखित परिणाम होते हैं:

  • यदि और के बीच में एक बंधन नहीं है। तब और परिवर्तित करते हैं। तब और प्रत्येक के पास दो क्रम हैं। तब हम कह सकते हैं कि दिया गया निम्न संबंध बराबर है-
  • यदि और के बीच में एक बंधन है। तब .
  • यदि और के बीच में दो बंधन हैं। तब .
  • यदि और के बीच में तीन बंधन हैं। तब .

पूर्ववर्ती प्रमाण को सत्यापित करना कठिन नहीं है। यदि हम याद रखें कि डायनकिन आरेख हमें रूट्स की प्रत्येक जोड़ी के बीच के कोण के विषय में क्या दर्शाता है। उदाहरण के लिए यदि दो शीर्षों के बीच कोई बंधन नहीं है। तब और ऑर्थोगोनल हैं। जिससे यह सरलता से अनुसरण करता है कि संबंधित प्रतिबिंब कम्यूट करते हैं। सामान्यतः बांड की संख्या रूट्स के बीच कोण को निर्धारित करती है। दो प्रतिबिंबों का उत्पाद तब कोण द्वारा फैलाए गए सतह में और द्वारा घूर्णन होता है। जैसा कि पढने वाला यह सत्यापित कर सकते हैं, जिससे उपरोक्त प्रमाण का सरलता से अनुसरण हो सके।

एक कॉक्सेटर समूह के रूप में

वेइल समूह परिमित प्रतिबिंब समूहों के उदाहरण को दर्शाते हैं क्योंकि वे प्रतिबिंबों द्वारा उत्पन्न होते हैं। एब्सट्रैक्ट समूह (एक रेखीय समूह के उपसमूह के रूप में नहीं माना जाता है) क्रमशः कॉक्सेटर समूह हैं। जो उन्हें उनके कॉक्सेटर-डाइनकिन आरेख द्वारा वर्गीकृत करने की अनुमति प्रदान करता है। एक कॉक्सेटर समूह होने का अर्थ यह है कि एक वेइल समूह में समूह की एक विशेष प्रकार की प्रस्तुति होती है। जिसमें प्रत्येक जनरेटर xi क्रम दो का है और तब xi2=1 के अतिरिक्त अन्य संबंध (xixj)mij=1 रूप के हैं। जनरेटर सरल रूट्स द्वारा दिए गए प्रतिबिंब हैं और mij is 2, 3, 4, या 6 है। जो इस विषय पर निर्भर करता है कि रूट्स i और j 90, 120, 135, या 150 डिग्री का कोण निर्मित करती हैं। अर्थात् क्या डायनकिन आरेख में वे असंबद्ध हैं, एक साधारण किनारे से जुड़े हुए हैं, एक डबल एज से जुड़े हुए हैं या ट्रिपल एज से जुड़ा हुआ है। इन संबंधों को हम पहले ही ऊपर बुलेट बिंदुओं में नोट कर चुके हैं। किन्तु हम कह सकते हैं कि एक कॉक्सेटर समूह है। हम जानते हैं कि वे ही में एकमात्र संबंध हैं।

इस प्रस्तुति के संदर्भ में वेइल समूहों में ब्रुहट ऑर्डर और लम्बाई का फलन है। वेइल समूह तत्व की लंबाई इन मानक जेनरेटर के संदर्भ में उस तत्व का प्रतिनिधित्व करने वाले सबसे छोटे शब्द की लंबाई है। कॉक्सेटर समूह का एक प्रमुख सबसे लंबा तत्व है। जो ब्रुहट क्रम में पहचानने के विपरीत है।

बीजगणितीय, समूह-सैद्धांतिक और ज्यामितीय सेटिंग्स में वेइल समूह

ऊपरोक्त, वेइल समूह को रूट प्रणाली के आइसोमेट्री समूह के उपसमूह के रूप में परिभाषित किया गया था। विभिन्न समूह-सैद्धांतिक और ज्यामितीय संदर्भों (लाई बीजगणित, लाइ समूह, सममित स्थान, आदि) के लिए विशिष्ट वेइल समूहों की विभिन्न परिभाषाएँ भी दी गयी हैं। वेइल समूहों को परिभाषित करने के इन प्रकारों में से प्रत्येक के लिए यह एक (सामान्यतः नॉन-ट्रिवियल) प्रमेय है कि यह इस आलेख के शीर्ष पर परिभाषा के अर्थ में एक वेइल समूह है। अर्थात् ऑब्जेक्ट से जुड़े कुछ रूट प्रणाली का वेइल समूह होते हैं। ऐसे वेइल समूह का एक ठोस अनुभूति सामान्यतः एक विकल्प पर निर्भर करता है। लाई बीजगणित के लिए यह सबलजेब्रा परीक्षण का लाई समूह के लिए अधिकतम टोरस का उदाहरण है।[5]


कनेक्टेड कॉम्पैक्ट लाइ ग्रुप का वेइल समूह-

माना कि कनेक्टेड कॉम्पैक्ट लाइ ग्रुप हो और में एक अधिकतम टोरस हो। इसके बाद हम नॉर्मलाइज़र में का परिचय देते हैं। निरूपित और निम्नलिखित रूप में परिभाषित किया गया है-

.

निरूपित में हम में के केंद्रक को भी परिभाषित करते हैं और निम्नलिखित रूप में परिभाषित किया गया है।

.

वेइल समूह का (दिए गए अधिकतम टोरस के सापेक्ष ) है। जिसे प्रारंभ में परिभाषित किया गया है।

.

अन्त में यह प्रमाणित होता है कि[6] किस बिंदु पर वेइल समूह का एक वैकल्पिक विवरण उपस्थित है।

.

अब कोई रूट प्रणाली को परिभाषित कर सकते हैं। जो कि जोड़ी से जुड़ा हुआ है। रूट्स गैर-शून्य भार (प्रतिनिधित्व सिद्धांत) की लाई बीजगणित पर आसन्न क्रिया हैं। प्रत्येक के लिए कोई एक तत्व का बना सकता है। जिसकी क्रिया निरंतर जारी है और प्रतिबिंब का रूप है।[7] थोड़े और प्रयास के साथ यह प्रदर्शित कर सकता है कि ये प्रतिबिंब सभी को उत्पन्न करते हैं।[6] इस प्रकार अंत में वेइल समूह या के रूप में परिभाषित किया गया। जो कि रूट प्रणाली के वेइल समूह के लिए आइसोमोर्फिक है।

अन्य सेटिंग्स में

एक जटिल सेमी-सिम्पल लाई बीजगणित के लिए वेइल समूह को केवल रूट्स में प्रतिबिंबों द्वारा उत्पन्न प्रतिबिंब समूह के रूप में परिभाषित किया जाता है। मूल प्रणाली का विशिष्ट अनुभव सेमीसिंपल लाई बीजगणित कार्टन सबलजेब्रस और रूट प्रणाली के संबंध पर निर्भर करता है।

कुछ लाई समूह G के नियमों को पूरा करने वाले [note 1] एक टोरस T < G (जो अधिकतम होने की आवश्यकता नहीं है), उस टोरस के संबंध में वेइल समूह को टोरस N = N(T) = NG(T) के नॉर्मलाइज़र के भागफल के रूप में Z = Z(T) = ZG(T) के केंद्रीकरण द्वारा परिभाषित किया गया है।

समूह W परिमित है और Z, N में परिमित सूचकांक है। यदि T = T0 एक अधिकतम टोरस है (इसलिए यह अपने स्वयं के केंद्रक के बराबर है।) तब परिणामी भागफल N/Z = N/T को G का मैक्सिमल टोरस वेइल समूह कहा जाता है और W(G) के रूप में निरूपित किया जाता है। ध्यान रखें कि विशिष्ट भागफल समुच्चय अधिकतम टोरस की पसंद पर निर्भर करता है। किन्तु परिणामी समूह सभी आइसोमोर्फिक (G के एक आंतरिक ऑटोमोर्फिज्म द्वारा) होते हैं क्योंकि अधिकतम टोरी एक-दूसरे से संयुग्मित होते हैं।

यदि G कॉम्पैक्ट और जुड़ा हुआ है और T एक अधिकतम टोरस है। जिससे G का वेइल समूह अपने लाइ बीजगणित के वेइल ग्रुप के लिए आइसोमॉर्फिक है। जैसा कि ऊपर जानकारी की गई है।

उदाहरण के लिए सामान्य रैखिक समूह GL के लिए, एक अधिकतम टोरस व्युत्क्रमणीय विकर्ण आव्यूहों का उपसमूह D है। जिसका नॉर्मलाइज़र सामान्यीकृत क्रमचय मेट्रिसेस है (क्रमचय मैट्रिक्स के रूप में मैट्रिक्स, लेकिन '1' के स्थान पर किसी भी गैर-शून्य संख्या के साथ) और जिसका वेइल समूह सिमिट्रिक समूह है। इस स्थिति में भागफल मानचित्र N → N/T विभाजित होता है (क्रमपरिवर्तन मैट्रिसेस के माध्यम से), (क्रमपरिवर्तन मेट्रिसेस के माध्यम से)। इसलिए नॉर्मलाइज़र N टोरस और वेइल समूह का एक सेमी-डायरेक्ट उत्पाद है और वेइल समूह और वीइल समूह को G के उपसमूह के रूप में व्यक्त किया जा सकता है। सामान्यतः यह सदैव स्थिति नहीं होता है कि भागफल सदैव विभाजित नहीं होता है, सामान्य N सदैव W और Z का सेमी-डायरेक्ट प्रोडक्ट नहीं होता है और वेइल समूह को सदैव G के उपसमूह के रूप में रियलाइज नहीं किया जा सकता है।[5]


ब्रुहत अपघटन

यदि B, G का एक बोरेल उपसमूह है। अर्थात् एक अधिकतम जुड़ा हुआ स्थान हल करने योग्य उपसमूह और एक अधिकतम टोरस T = T0 को B में स्थित होने के लिए चुना जाता है। जिससे हमें ब्रुहत अपघटन प्राप्त होता है।

जो फ्लैग वैराइटी G/B के 'शुबर्ट कोशिकाओं' में अपघटन को उत्पन्न करता है (ग्रासमानियन देखें)।

समूह के हैसे आरेख की संरचना ज्यामितीय रूप से कई गुना (बल्कि समूह के यथार्थ और जटिल रूपों) के कोहोलॉजी से संबंधित है। जो पोंकारे द्वैत से निर्मित है। इस प्रकार वेइल समूह के बीजगणितीय गुण मैनिफोल्ड्स के सामान्य टोपोलॉजिकल गुणों के समान हैं। उदाहरण के लिए पोंकारे द्वैत आयाम k और आयाम n-k में कोशिकाओं के बीच एक युग्मन प्रदान करता है (जहाँ n कई गुना का आयाम है): निचला (0) आयामी सेल वेइल समूह के आइडेन्टिटी एलीमेंन्ट से मिलता है और दोहरी शीर्ष-आयामी कोशिका कॉक्सेटर समूह के सबसे लंबे तत्व से मिलती है।

बीजगणितीय समूहों के साथ सादृश्य

बीजगणितीय समूहों और वेइल समूहों के बीच कई समानताएँ हैं। उदाहरण के लिए सिमिट्रिक समूह के तत्वों की संख्या n! है और एक परिमित क्षेत्र पर सामान्य रैखिक समूह के तत्वों की संख्या q-फैक्टोरियल से संबंधित है। इस प्रकार सिमिट्रिक समूह व्यवहार करता है। जैसे कि यह एक तत्व के साथ क्षेत्र पर एक रैखिक समूह था। यह क्षेत्र द्वारा एक तत्व के साथ औपचारिक रूप दिया गया है, जो वेइल समूहों को एक तत्व के साथ क्षेत्र पर सरल बीजगणितीय समूह का निर्माण करता है।

कोहोलॉजी

एक गैर-अबेलियन कनेक्टेड कॉम्पैक्ट लाई ग्रुप G के लिए वेइल ग्रुप W का पहला समूह कॉहोलॉजी अधिकतम टोरस T में गुणांक के साथ इसे परिभाषित करता था[note 2] और यह नॉर्मलाइज़र के बाहरी ऑटोमोर्फिज़्म समूह से संबंधित है। जैसे:[8]

समूह Out(G) के बाहरी ऑटोमोर्फिज़्म अनिवार्य रूप से डायनकिन आरेख के आरेख ऑटोमोर्फिज़्म हैं। जबकि समूह कोहोलॉजी की गणना हैमरली, मैथे और सटर 2004 में की गई है और एक परिमित प्राथमिक एबेलियन 2-समूह है। साधारण लाई समूहों के लिए इसका क्रम 1, 2, या 4 है। 0वें और दूसरे समूह के कोहोलॉजी भी नॉर्मलाइज़र से निकटता से संबंधित हैं।[8]


यह भी देखें

  • अफीन वेइल समूह
  • सेमीसिंपल लाई बीजगणित कार्टन सबलजेब्रस और रूट प्रणाली
  • अधिकतम टोरस
  • एक सेमी-सिम्पल बीजगणित की रूट प्रणाली
  • हैसे आरेख

फुटनोट्स

टिप्पणियाँ

  1. Different conditions are sufficient – most simply if G is connected and either compact, or an affine algebraic group. The definition is simpler for a semisimple (or more generally reductive) Lie group over an algebraically closed field, but a relative Weyl group can be defined for a split Lie group.
  2. W acts on T – that is how it is defined – and the group means "with respect to this action".


उद्धरण

  1. Humphreys 1992, p. 6.
  2. Hall 2015 Propositions 8.23 and 8.27
  3. Hall 2015 Proposition 8.29
  4. Hall 2015 Propositions 8.24
  5. 5.0 5.1 Popov & Fedenko 2001
  6. 6.0 6.1 Hall 2015 Theorem 11.36
  7. Hall 2015 Propositions 11.35
  8. 8.0 8.1 Hämmerli, Matthey & Suter 2004


संदर्भ

  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3-319-13466-6
  • Knapp, Anthony W. (2002), Lie Groups: Beyond an Introduction, Progress in Mathematics, vol. 140 (2nd ed.), Birkhaeuser, ISBN 978-0-8176-4259-4
  • Popov, V.L.; Fedenko, A.S. (2001) [1994], "Weyl group", Encyclopedia of Mathematics, EMS Press
  • Hämmerli, J.-F.; Matthey, M.; Suter, U. (2004), "Automorphisms of Normalizers of Maximal Tori and First Cohomology of Weyl Groups" (PDF), Journal of Lie Theory, Heldermann Verlag, 14: 583–617, Zbl 1092.22004


अग्रिम पठन


बाहरी संबंध