परिमित समूह: Difference between revisions

From Vigyanwiki
m (12 revisions imported from alpha:परिमित_समूह)
No edit summary
 
Line 283: Line 283:




==बाहरी संबंध==
* {{OEIS el|1=A000001|2=Number of groups of order n}}
* {{OEIS el|1=A000688|2=Number of Abelian groups of order ''n''|formalname=Number of Abelian groups of order n; number of factorizations of n into prime powers}}
* {{OEIS el|1=A060689|2=Number of non-Abelian groups of order n}}
* Small groups on [http://groupnames.org GroupNames]
* A [http://www.bluetulip.org/programs/finitegroups.html classifier] for groups of small order
{{Authority control}}


[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Articles with short description]]
[[Category:Created On 29/11/2022]]
[[Category:Created On 29/11/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Mathematics sidebar templates]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Physics sidebar templates]]
Line 294: Line 317:
[[Category:Sidebars with styles needing conversion]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
 
[[Category:Templates that add a tracking category]]
==बाहरी संबंध==
[[Category:Templates using TemplateData]]
* {{OEIS el|1=A000001|2=Number of groups of order n}}
[[Category:Templates using under-protected Lua modules]]
* {{OEIS el|1=A000688|2=Number of Abelian groups of order ''n''|formalname=Number of Abelian groups of order n; number of factorizations of n into prime powers}}
[[Category:Wikipedia fully protected templates|Div col]]
* {{OEIS el|1=A060689|2=Number of non-Abelian groups of order n}}
* Small groups on [http://groupnames.org GroupNames]
* A [http://www.bluetulip.org/programs/finitegroups.html classifier] for groups of small order
 
{{Authority control}}
[[Category:परिमित समूह| ]]
[[Category:परिमित समूह| ]]
[[Category: समूहों के गुण]]
[[Category:समूहों के गुण]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 29/11/2022]]
[[Category:Vigyan Ready]]

Latest revision as of 15:54, 29 December 2022

अमूर्त बीजगणित में, एक परिमित समूह एक ऐसा समूह (गणित) है जिसका अंतर्निहित समुच्चय परिमित है। परिमित समूह अक्सर गणितीय या भौतिक वस्तुओं की समरूपता पर विचार करते समय उत्पन्न होते हैं, जब वे वस्तुएँ संरचना-संरक्षण परिवर्तनों की एक सीमित संख्या को स्वीकार करती हैं। परिमित समूहों के महत्वपूर्ण उदाहरणों में चक्रीय समूह और क्रमचय समूह सम्मिलित हैं।

परिमित समूहों का अध्ययन समूह सिद्धांत का एक अभिन्न अंग रहा है क्योंकि यह 19वीं शताब्दी में उत्पन्न हुआ था। अध्ययन का एक प्रमुख क्षेत्र वर्गीकरण किया गया है: परिमित सरल समूहों का वर्गीकरण (जिनमें कोई गैर-तुच्छ सामान्य उपसमूह नहीं है) 2004 में पूरा किया गया था।

इतिहास

बीसवीं शताब्दी के दौरान, गणितज्ञों ने परिमित समूहों के सिद्धांत के कुछ गुणओं की बहुत गहराई से जाँच की, विशेष रूप से परिमित समूहों के स्थानीय विश्लेषण और हल करने योग्य समूह और निलपोटेंट समूहों के सिद्धांत की।[1][2] परिणामस्वरूप, परिमित सरल समूहों का पूर्ण वर्गीकरण प्राप्त किया गया, जिसका अर्थ है कि वे सभी सरल समूह जिनसे सभी परिमित समूह बनाए जा सकते हैं, अब ज्ञात हैं।

बीसवीं शताब्दी के उत्तरार्ध के दौरान, क्लाउड चेवेली और रॉबर्ट स्टाइनबर्ग जैसे गणितज्ञों ने पारम्परिक समूहों और अन्य संबंधित समूहों के परिमित अनुरूप की हमारी समझ को भी बढ़ाया। समूहों का ऐसा ही एक परिवार परिमित क्षेत्रों पर सामान्य रेखीय समूहों का परिवार है।

परिमित समूह अधिकांश गणितीय या भौतिक वस्तुओं की समरूपता पर विचार करते समय होते हैं, जब वे वस्तुएँ संरचना-संरक्षण परिवर्तनों की एक सीमित संख्या को स्वीकार करती हैं। लाई समूहों का सिद्धांत, जिसे निरंतर समरूपता से निपटने के रूप में देखा जा सकता है, संबंधित वेइल समूहों से काफी प्रभावित है। ये परिमित समूह हैं जो प्रतिबिंबों द्वारा उत्पन्न होते हैं जो परिमित-आयामी यूक्लिडियन अंतरिक्ष पर कार्य करते हैं। परिमित समूहों के गुण इस प्रकार सैद्धांतिक भौतिकी और रसायन विज्ञान जैसे विषयों में भूमिका निभा सकते हैं।[3]


उदाहरण

क्रमपरिवर्तन समूह

S का एक केली आरेख4

n प्रतीकों के परिमित समुच्चय पर सममित समूह Sn वह समूह है जिसके तत्व n प्रतीकों के सभी क्रमपरिवर्तन हैं, और जिसका समूह संचालन ऐसे क्रमपरिवर्तन की संरचना है, जिन्हें प्रतीकों के समुच्चय से स्वयं के लिए विशेषण कार्यों के रूप में माना जाता है।[4] चूंकि n! है (n भाज्य) प्रतीकों के एक समुच्चय के संभावित क्रमपरिवर्तन, यह इस प्रकार है कि सममित समूह Sn का क्रम (तत्वों की संख्या) n! है।

चक्रीय समूह

चक्रीय समूह Zn एक ऐसा समूह है जिसके सभी तत्व किसी विशेष तत्व a की शक्तियाँ हैं जहाँ an = a0 = e, पहचान। इस समूह का एक विशिष्ट बोध एकता की जटिल nवीं मूलों के रूप में है। a को एकता के आदिम रूट पर भेजने से दोनों के बीच एक समरूपता मिलती है। यह किसी परिमित चक्रीय समूह के साथ किया जा सकता है।

परिमित विनिमेय समूह

विनिमेय समूह, जिसे एक क्रमविनिमेय समूह भी कहा जाता है, एक समूह (गणित) है जिसमें समूह संचालन (गणित) को दो समूह तत्वों पर लागू करने का परिणाम उनके क्रम (क्रमविनिमेयता के स्वयंसिद्ध) पर निर्भर नहीं करता है। उनका नाम नील्स हेनरिक एबेल के नाम पर रखा गया है।[5]

एक स्वेच्छ परिमित विनिमेय समूह प्रमुख शक्ति क्रम के परिमित चक्रीय समूहों के प्रत्यक्ष योग के लिए समरूप है, और इन क्रमों को विशिष्ट रूप से निर्धारित किया जाता है, जो अपरिवर्तनीयों की एक पूरी प्रणाली बनाते हैं। एक परिमित विनिमेय समूह के स्वसमाकृतिकता समूह को इन अपरिवर्तनीयों के संदर्भ में सीधे वर्णित किया जा सकता है। इस सिद्धांत को पहली बार जॉर्ज फ्रोबेनियस और लुडविग स्टिकेलबर्गर के 1879 के पेपर में विकसित किया गया था और बाद में रैखिक बीजगणित का एक महत्वपूर्ण अध्याय बनाते हुए, एक प्रमुख आदर्श डोमेन पर सूक्ष्म रूप से उत्पन्न अनुखंड के लिए सरल और सामान्यीकृत दोनों किया गया था।

लाई प्रकार के समूह

लाई प्रकार का एक समूह एक ऐसा समूह है जो क्षेत्र (गणित) k में मानों के साथ एक रिडक्टिव रैखिक बीजगणितीय समूह G के परिमेय बिंदुओं के समूह G(k) से निकटता से संबंधित है। लाई प्रकार के परिमित समूह नॉनबेलियन परिमित सरल समूहों के थोक देते हैं। विशेष मामलों में पारंपरिक समूह, शेवाली समूह, स्टाइनबर्ग समूह और सुज़ुकी-री समूह सम्मिलित हैं

लाई प्रकार के परिमित समूह गणित में विचार किए जाने वाले पहले समूहों में से थे, चक्रीय, सममित समूह और वैकल्पिक समूह के बाद, प्रमुख परिमित क्षेत्रों पर प्रक्षेपी विशेष रैखिक समूहों के साथ, PSL(2, p) का निर्माण 1830 के दशक मेंइवरिस्ट गैलोइस द्वारा किया जा रहा था। लाइ प्रकार के परिमित समूहों की व्यवस्थित खोज केमिली जॉर्डन के प्रमेय के साथ शुरू हुई कि प्रक्षेपी विशेष रैखिक समूह PSL(2, q) q ≠ 2, 3 के लिए सरल है। यह प्रमेय उच्च आयामों के प्रक्षेपी समूहों के लिए सामान्यीकरण करता है और परिमित सरल समूहों का एक महत्वपूर्ण अनंत परिवार PSL(n, q) देता है। 20वीं सदी की शुरुआत में लियोनार्ड डिक्सन डिक्सन द्वारा अन्य पारंपरिक समूहों का अध्ययन किया गया था। 1950 के दशक में क्लॉड चेवेली ने महसूस किया कि एक उपयुक्त सुधार के बाद, अर्ध-सरल लाई समूहों के बारे में कई प्रमेय बीजगणितीय समूहों के लिए एक मनमाना क्षेत्र k पर एनालॉग्स को स्वीकार करते हैं, जो कि अब चेवेली समूह कहे जाने वाले निर्माण के लिए अग्रणी है। इसके अतिरिक्त, कॉम्पैक्ट सरल लाई समूहों के स्थितियों में, संबंधित समूह सार समूहों (स्तन सादगी प्रमेय) के रूप में लगभग सरल हो गए। चूंकि यह 19वीं शताब्दी से ज्ञात था कि अन्य परिमित सरल समूह मौजूद हैं (उदाहरण के लिए, मैथ्यू समूह), धीरे-धीरे एक धारणा बनी कि लगभग सभी परिमित सरल समूहों को चक्रीय और वैकल्पिक समूहों के साथ-साथ चेवेली के निर्माण के उपयुक्त विस्तार द्वारा हिसाब किया जा सकता है। इसके अतिरिक्त, अपवाद, विकीर्ण समूह, लाई प्रकार के परिमित समूहों के साथ कई गुणों को साझा करते हैं, और विशेष रूप से, स्तन के अर्थ में उनके ज्यामिति के आधार पर निर्मित और चित्रित किए जा सकते हैं।

विश्वास परिमित सरल समूहों का वर्गीकरण अब एक प्रमेय बन गया है। परिमित सरल समूहों की सूची के निरीक्षण से पता चलता है कि एक परिमित क्षेत्र पर लाई के समूह में चक्रीय समूहों, वैकल्पिक समूहों, स्तन समूह और 26 विकीर्ण सरल समूहों के अलावा सभी परिमित सरल समूह सम्मिलित हैं।

मुख्य प्रमेय

लैग्रेंज का प्रमेय

किसी भी परिमित समूह G के लिए, G के प्रत्येक उपसमूह H का क्रम (समूह सिद्धांत) (तत्वों की संख्या) G के क्रम को विभाजित करता है। इस प्रमेय का नाम जोसेफ-लुई लाग्रेंज के नाम पर रखा गया है।

साइलो प्रमेय

यह लग्रेंज के प्रमेय का एक आंशिक विलोम प्रदान करता है जो इस बात की जानकारी देता है कि G में दिए गए क्रम के कितने उपसमूह निहित हैं।

केली प्रमेय

केली की प्रमेय, जिसका नाम आर्थर केली के नाम पर रखा गया है, बताती है कि प्रत्येक समूह (गणित) G, G पर कार्य करने वाले सममित समूह के एक उपसमूह के लिए समूह समरूपता है।[6] इसे G के तत्वों पर G की समूह क्रिया (गणित) के उदाहरण के रूप में समझा जा सकता है।[7]


बर्नसाइड प्रमेय

समूह सिद्धांत में बर्नसाइड के प्रमेय में कहा गया है कि यदि G क्रम (समूह सिद्धांत) paqb का एक परिमित समूह है, जहाँ p और q अभाज्य संख्याएँ हैं, और a और b गैर-ऋणात्मक पूर्णांक हैं, तो G हल करने योग्य है। इसलिए प्रत्येक

गैर-विनिमेय परिमित सरल समूह में कम से कम तीन अलग-अलग अभाज्यों से विभाज्य क्रम होता है।

फीट-थॉम्पसन प्रमेय

फ़ीट-थॉम्पसन प्रमेय, या विषम क्रम प्रमेय, कहता है कि विषम क्रम (समूह सिद्धांत) का प्रत्येक परिमित समूह हल करने योग्य है। यह (वाल्टर फीट & जॉन ग्रिग्स थॉम्पसन 1962, 1963) द्वारा सिद्ध किया गया था


परिमित सरल समूहों का वर्गीकरण

परिमित सरल समूहों का वर्गीकरण एक प्रमेय है जिसमें कहा गया है कि प्रत्येक परिमित सरल समूह निम्नलिखित परिवारों में से एक है:

परिमित सरल समूहों को सभी परिमित समूहों के मूलभूत निर्माण खंडों के रूप में देखा जा सकता है, एक तरह से यह याद दिलाता है कि अभाज्य संख्याएँ प्राकृतिक संख्याओं के मूल निर्माण खंड हैं। जॉर्डन-होल्डर प्रमेय परिमित समूहों के बारे में इस तथ्य को बताने का एक अधिक सटीक तरीका है। चूंकि, पूर्णांक गुणनखंडन के मामले के संबंध में एक महत्वपूर्ण अंतर यह है कि ऐसे "बिल्डिंग ब्लॉक्स" आवश्यक रूप से एक समूह को विशिष्ट रूप से निर्धारित नहीं करते हैं, क्योंकि समान संरचना श्रृंखला वाले कई गैर-समरूपी समूह हो सकते हैं या, दूसरे तरीके से रख सकते हैं। विस्तार की समस्या का कोई अद्भुत समाधान नहीं है।

प्रमेय के प्रमाण में लगभग 100 लेखकों द्वारा लिखे गए कई सौ जर्नल लेखों में हजारों पृष्ठ सम्मिलित हैं, जो अधिकांश 1955 और 2004 के बीच प्रकाशित हुए थे। डेनियल गोरेंस्टीन (d.1992), रिचर्ड लियोन (गणितज्ञ), और रोनाल्ड सोलोमन धीरे-धीरे प्रमाण का एक सरलीकृत और संशोधित संस्करण प्रकाशित कर रहे हैं।

दिए गए क्रम के समूहों की संख्या

घनात्मक पूर्णांक n दिया गया है, यह निर्धारित करने के लिए निश्चय ही नियमित स्थिति नहीं है कि क्रम n के कितने समरूपता प्रकार के समूह हैं। अभाज्य संख्या क्रम का प्रत्येक समूह चक्रीय समूह है, क्योंकि लैग्रेंज के प्रमेय का तात्पर्य है कि इसके किसी भी गैर-पहचान वाले तत्वों द्वारा उत्पन्न चक्रीय उपसमूह संपूर्ण समूह है।

यदि n एक अभाज्य का वर्ग है, तो क्रम n के समूह के वास्तविक में दो संभावित समरूपता प्रकार हैं, जो दोनों विनिमेय हैं। यदि n एक प्रमुख की एक उच्च घात है, तो ग्राहम हिगमैन और चार्ल्स सिम्स (गणितज्ञ) के परिणाम क्रम n के समरूपता प्रकार के समूहों की संख्या के लिए स्पर्शोन्मुख रूप से सही अनुमान देते हैं, और घात बढ़ने पर संख्या बहुत तेज़ी से बढ़ती है।

n के प्रमुख गुणनखंड के आधार पर, क्रम n के समूहों की संरचना पर कुछ प्रतिबंध लगाए जा सकते हैं, उदाहरण के लिए, सिलो प्रमेय जैसे परिणाम। उदाहरण के लिए, क्रम pq का प्रत्येक समूह चक्रीय होता है जब q <p अभाज्य संख्याएँ होती हैं जिनमें p − 1 q से विभाज्य नहीं होता। आवश्यक और पर्याप्त स्थिति के लिए, चक्रीय संख्या (समूह सिद्धांत) देखें।

यदि n वर्ग रहित पूर्णांक है, तो क्रम n का कोई भी समूह हल करने योग्य है। बर्नसाइड के प्रमेय, कैरेक्टर्स सिद्धांत का उपयोग करके सिद्ध किया गया है, जिसमें कहा गया है कि क्रम n का प्रत्येक समूह हल करने योग्य है, जब n तीन अलग-अलग अभाज्यों से कम से विभाज्य है, अर्थात यदि n = paqb, जहाँ p और q अभाज्य संख्याएँ हैं, और a और b गैर-ऋणात्मक पूर्णांक हैं। फीट-थॉम्पसन प्रमेय द्वारा, जिसका एक लंबा और जटिल प्रमाण है, क्रम n का प्रत्येक समूह हल करने योग्य होता है जब n विषम होता है।

प्रत्येक धनात्मक पूर्णांक n के लिए, क्रम n के अधिकांश समूह हल करने योग्य समूह हैं। किसी विशेष क्रम के लिए इसे देखना सामान्यतः मुश्किल नहीं होता है(उदाहरण के लिए, समरूपता तक, एक गैर-विलायक समूह और क्रम 60 के 12 विलायक समूह हैं) लेकिन सभी ऑर्डर के लिए इसका प्रमाण परिमित सरल समूहों के वर्गीकरण का उपयोग करता है . किसी भी धनात्मक पूर्णांक n के लिए क्रम n के अधिक से अधिक दो सरल समूह होते हैं, और असीम रूप से कई धनात्मक पूर्णांक n होते हैं जिनके लिए क्रम n के दो गैर-समरूपी सरल समूह होते हैं।

अनुक्रम n  के अलग-अलग समूहों की तालिका

n क्रम # समूहों[8] विनिमेय गैर-विनिमेय
0 0 0 0
1 1 1 0
2 1 1 0
3 1 1 0
4 2 2 0
5 1 1 0
6 2 1 1
7 1 1 0
8 5 3 2
9 2 2 0
10 2 1 1
11 1 1 0
12 5 2 3
13 1 1 0
14 2 1 1
15 1 1 0
16 14 5 9
17 1 1 0
18 5 2 3
19 1 1 0
20 5 2 3
21 2 1 1
22 2 1 1
23 1 1 0
24 15 3 12
25 2 2 0
26 2 1 1
27 5 3 2
28 4 2 2
29 1 1 0
30 4 1 3


यह भी देखें


संदर्भ

  1. Aschbacher, Michael (2004). "परिमित सरल समूहों के वर्गीकरण की स्थिति" (PDF). Notices of the American Mathematical Society. Vol. 51, no. 7. pp. 736–740.
  2. Daniel Gorenstein (1985), "The Enormous Theorem", Scientific American, December 1, 1985, vol. 253, no. 6, pp. 104–115.
  3. Group Theory and its Application to Chemistry The Chemistry LibreTexts library
  4. Jacobson 2009, p. 31
  5. Jacobson 2009, p. 41
  6. Jacobson 2009, p. 38
  7. Jacobson 2009, p. 72, ex. 1
  8. Humphreys, John F. (1996). A Course in Group Theory. Oxford University Press. pp. 238–242. ISBN 0198534590. Zbl 0843.20001.


अग्रिम पठन









बाहरी संबंध