समुच्चयों का बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:
[[गणित]] में, समुच्चयों का बीजगणित, [[समुच्चयों के बीजगणित]] की [[गणितीय संरचना]] के साथ भ्रमित नहीं होने के लिए, [[समुच्चय]] के गुणों और नियमों को परिभाषित करता है, [[संघ (सेट सिद्धांत)|समुच्च (समुच्चय सिद्धांत)]], [[प्रतिच्छेदन]] (समुच्चय सिद्धांत), और [[पूरक (सेट सिद्धांत)|पूरकीकरण]] के समुच्चय-सैद्धांतिक प्रचालन, और [[समानता]] और [[संबंधों]] को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।
[[गणित]] में, समुच्चयों का बीजगणित, [[समुच्चयों के बीजगणित]] की [[गणितीय संरचना]] के साथ भ्रमित नहीं होने के लिए, [[समुच्चय]] के गुणों और नियमों को परिभाषित करता है, [[संघ (सेट सिद्धांत)|समुच्च (समुच्चय सिद्धांत)]], [[प्रतिच्छेदन]] (समुच्चय सिद्धांत), और [[पूरक (सेट सिद्धांत)|पूरकीकरण]] के समुच्चय-सैद्धांतिक प्रचालन, और [[समानता]] और [[संबंधों]] को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।


समुच्चय सिद्धांतपरक प्रचालन के तहत बंद समुच्चय का कोई भी समुच्चय एक [[बूलियन बीजगणित (संरचना)|बूलीय बीजगणित]] बनाता है, जिसमें सम्मिलित होने वाला प्रचालक 'समुच्च' होता है, अवसंधि संकारक 'प्रतिच्छेदन' होता है, पूरक प्रचालक 'समुच्चय पूरक' होता है, '''निचला होना''' <math>\varnothing</math> '''और सबसे ऊपर''' [[ब्रह्मांड (गणित)|समष्टीय (गणित)]] '''विचाराधीन''' '''है।'''
समुच्चय सिद्धांतपरक प्रचालन के तहत बंद समुच्चय का कोई भी समुच्चय एक [[बूलियन बीजगणित (संरचना)|बूलीय बीजगणित]] बनाता है, जिसमें सम्मिलित होने वाला प्रचालक 'समुच्च' होता है, अवसंधि संकारक 'प्रतिच्छेदन' होता है, पूरक प्रचालक 'समुच्चय पूरक' होता है, आधार <math>\varnothing</math> और सबसे ऊपर [[ब्रह्मांड (गणित)|समष्टीय]] समुच्चय विचाराधीन है।


== मूलभूत ==
== मूलभूत ==

Revision as of 14:17, 22 February 2023

गणित में, समुच्चयों का बीजगणित, समुच्चयों के बीजगणित की गणितीय संरचना के साथ भ्रमित नहीं होने के लिए, समुच्चय के गुणों और नियमों को परिभाषित करता है, समुच्च (समुच्चय सिद्धांत), प्रतिच्छेदन (समुच्चय सिद्धांत), और पूरकीकरण के समुच्चय-सैद्धांतिक प्रचालन, और समानता और संबंधों को स्थापित करता है। यह इन परिचालनों और संबंधों को सम्मिलित करने वाले व्यंजको के मूल्यांकन और गणना के लिए व्यवस्थित प्रक्रियाएं भी प्रदान करता है।

समुच्चय सिद्धांतपरक प्रचालन के तहत बंद समुच्चय का कोई भी समुच्चय एक बूलीय बीजगणित बनाता है, जिसमें सम्मिलित होने वाला प्रचालक 'समुच्च' होता है, अवसंधि संकारक 'प्रतिच्छेदन' होता है, पूरक प्रचालक 'समुच्चय पूरक' होता है, आधार और सबसे ऊपर समष्टीय समुच्चय विचाराधीन है।

मूलभूत

समुच्चयों का बीजगणित संख्याओं के बीजगणित का समुच्चय-सैद्धांतिक अनुरूप है। जिस प्रकार अंकगणितीय योग और गुणन साहचर्यता और क्रमविनिमेयता हैं, उसी प्रकार समुच्चय समुच्च और प्रतिच्छेदन हैं, जिस तरह अंकगणितीय संबंध "इससे कम या बराबर" समतुल्य, प्रतिसममित और संक्रामक होता है, उसी तरह उपसमुच्चय का समुच्चय संबंध भी होता है।

यह समुच्च, प्रतिच्छेदन और पूरकता, और समानता और समावेश संबंधों के समुच्चय-सैद्धांतिक संचालन का बीजगणित है। समुच्चयों के मूल परिचय के लिए समुच्चयों पर लेख देखें, संपूर्ण विवरण के लिए सहज समुच्चय सिद्धांत देखें, और पूर्ण कठोर स्वयंसिद्ध उपचार के लिए स्वयंसिद्ध समुच्चय सिद्धांत देखें।

समुच्चय बीजगणित के मौलिक गुण

समुच्चय समुच्च के द्विआधारी संक्रिया () और प्रतिच्छेदन (समुच्चय सिद्धांत) () कई सर्वसमिकाओं को संतुष्ट करते हैं। इनमें से कई सर्वसमिकाओं या नियमो के प्रमाणित नाम हैं।

क्रमचयी गुणधर्म,
साहचर्य गुणधर्म,
व्यष्टि गुणधर्म,

समुच्चयों के समुच्च और प्रतिच्छेदन को संख्याओं के योग और गुणन के अनुरूप देखा जा सकता है। योग और गुणा की तरह, समुच्च और प्रतिच्छेदन के संचालन क्रमविनिमेय और साहचर्य होते हैं, और प्रतिच्छेदन समुच्च पर वितरित होते हैं। हालाँकि, योग और गुणा के विपरीत, समुच्च भी प्रतिच्छेदन पर वितरित करता है।

गुणों के दो अतिरिक्त जोड़े में विशिष्ट समुच्चय सम्मिलित होते हैं जिन्हें रिक्त समुच्चय Ø और समष्टीय समुच्चय कहा जाता है, पूरक सकारक के साथ (, के पूरक को दर्शाता है। इसे के रूप में भी लिखा जा सकता है, और अभाज्य के रूप में पढ़ा जा सकता है)। खाली समुच्चय में कोई सदस्य नहीं है, और समष्टीय समुच्चय में सभी संभावित सदस्य हैं (एक विशेष संदर्भ में)।

सर्वसमिका,
पूरक ,

सर्वसमिका व्यंजक (क्रम विनिमय व्यंजकों के साथ) निर्देशित करते हैं कि, जैसे 0 और 1 जोड़ और गुणा के लिए, Ø और क्रमशः समुच्च और प्रतिच्छेदन के लिए तत्समक अवयव होते हैं।

जोड़ और गुणा के विपरीत, समुच्च और प्रतिच्छेदन में प्रतिलोम अवयव नहीं होते हैं। हालांकि पूरक नियम समुच्चय पूरकता के एकाधारी संक्रिया के कुछ व्युत्क्रम- जैसे मौलिक गुण प्रदान करते हैं।

सूत्रों के पूर्ववर्ती पांच जोड़े - क्रमविनिमेय, साहचर्य, वितरण, सर्वसमिका और पूरक सूत्र - सभी समुच्चय बीजगणित को सम्मिलित करते हैं, इस अर्थ में कि समुच्चय बीजगणित में प्रत्येक वैध कथन उनसे प्राप्त किया जा सकता है।

ध्यान दें कि यदि नियम द्वारा पूरक सूत्रों को कमजोर किया जाता है, तो यह बिल्कुल प्रस्तावात्मक रैखिक तर्क का बीजगणित है[clarification needed].

द्वैतता का सिद्धांत

ऊपर दि गई प्रत्येक सर्वसमिका, सर्वसमिकाओं की एक जोड़ी में से एक है, जैसे कि प्रत्येक को ∪ और ∩, और Ø और U को परस्पर बदलकर दूसरे में रूपांतरित किया जा सकता है।

ये समुच्चय बीजगणित की एक अत्यंत महत्वपूर्ण और घातीय गुण के उदाहरण हैं, अर्थात्, समुच्चय के लिए द्वैतता का सिद्धांत, जो दावा करता है कि एक समुच्चय के बारे में किसी भी सच्चे कथन के लिए, समुच्च और प्रतिच्छेदन को बदलने, U और Ø को बदलने और समावेशन को उलटने से प्राप्त होने वाला दोहरा बयान भी सच है। एक कथन को स्व-द्वैत कहा जाता है यदि यह अपने स्वयं के द्वैत के बराबर है।

समुच्च और प्रतिच्छेदन के लिए कुछ अतिरिक्त नियम

निम्नलिखित प्रस्ताव समुच्च और प्रतिच्छेदन सहित बीजगणित के छह और महत्वपूर्ण नियमो को निर्धारित करता है।

प्रस्ताव 3, समष्टीय समुच्चय U के किसी भी उपसमुच्चय A और B के लिए, निम्नलिखित सर्वसमिकाएं मान्य हैं,

वर्गसम नियम,
प्रभाविता का नियम,
अवशोषण नियम,

जैसा कि ऊपर उल्लेख किया गया है, कि प्रस्ताव 3 में वर्णित प्रत्येक नियम ऊपर वर्णित नियमो के पांच मौलिक जोड़े से प्राप्त किया जा सकता है। उदाहरण के तौर पर, समुच्च के लिए वर्गसम नियम के लिए एक प्रमाण नीचे दिया गया है।

प्रमाण,

प्रतिच्छेदन के तत्समक नियम द्वारा
समुच्च के पूरक नियम द्वारा
प्रतिच्छेदन पर समुच्च के वितरण के नियम द्वारा
प्रतिच्छेदन के लिए पूरक नियम द्वारा
समुच्च के लिए तत्समक नियम द्वारा

निम्नलिखित प्रमाण यह दर्शाता है कि उपरोक्त प्रमाण का द्वैत समुच्च के लिए वर्गसम नियम के द्वैत का प्रमाण है, अर्थात् प्रतिच्छेदन के लिए वर्गसम नियम।

प्रमाण,

समुच्च के लिए तत्समक नियम द्वारा
प्रतिच्छेदन के लिए पूरक नियम द्वारा
समुच्च पर प्रतिच्छेदन के वितरण नियम द्वारा
समुच्च के लिए पूरक नियम द्वारा
प्रतिच्छेदन के लिए तत्समक नियम द्वारा

प्रतिच्छेदन को समुच्चय अंतर के रूप में व्यक्त किया जा सकता है,

पूरक के लिए कुछ अतिरिक्त नियम

निम्नलिखित प्रस्ताव समुच्चय बीजगणित के पांच और महत्वपूर्ण नियमों को बताता है, जिसमें पूरक भी सम्मिलित हैं।

प्रस्ताव 4, मान लीजिए कि A और B समष्टीय U के उपसमुच्चय हैं, तो,

डी मॉर्गन के नियम,
दोहरा पूरक या अंतर्वलन नियम,
समष्टीय समुच्चय और रिक्त समुच्चय के लिए पूरक नियम,

ध्यान दें कि दोहरा पूरक नियम स्व-द्वैत है।

अगला प्रस्ताव, स्व-द्वैत भी है,बताता है कि एक समुच्चय का पूरक ही एकमात्र ऐसा समुच्चय है जो पूरक नियमों को संतुष्ट करता है। दूसरे शब्दों में, पूरकता की विशेषता पूरक नियमों द्वारा होती है।

प्रस्ताव 5, मान लीजिए A और B समष्टीय U के उपसमुच्चय हैं, तो,

पूरक की विशिष्टता,
  • अगर , और , तब

समावेशन का बीजगणित

निम्नलिखित प्रस्ताव में कहा गया है कि समावेशन, जो कि एक समुच्चय का दूसरे का उपसमुच्चय होने का द्विआधारी संबंध है, एक आंशिक क्रम है।

प्रस्ताव 6, यदि A, B और C समुच्चय हैं तो निम्नलिखित सर्वसमिका मान्य है,

प्रतिवर्त संबंध,
विषम संबंध,
  • और तो केवल
सकर्मक संबंध:
  • अगर और , तब

निम्नलिखित प्रस्ताव में कहा गया है कि किसी भी समुच्चय S के लिए, समावेश द्वारा सुव्यवस्थित S का घात समुच्चय, एक परिबद्ध नियम है, और इसलिए उपरोक्त वितरक और पूरक नियमों के साथ, यह दर्शाता है कि यह एक बूलियन बीजगणित है।

'प्रस्ताव 7', यदि A, B और C एक समुच्चय S के उपसमुच्चय हैं तो निम्नलिखित सर्वसमिका मान्य है,

एक न्यूनतम अवयव और एक महत्तम अवयव का अस्तित्व,
जुड़ने का अस्तित्व,
  • अगर और , तब
जाली का अस्तित्व (आदेश):
  • अगर और , तब

निम्नलिखित प्रस्ताव कहता है कि कथन समुच्चो, प्रतिच्छेदनो और पूरक से जुड़े कई अन्य कथनो के बराबर है।

प्रस्ताव 8, किसी भी दो समुच्चय A और B के लिए, निम्नलिखित समतुल्य हैं,

उपरोक्त प्रस्ताव से पता चलता है कि समुच्चय समावेशन के संबंध को समुच्चय समुच्च या समुच्चय प्रतिच्छेदन के संचालन द्वारा वर्णित किया जा सकता है, जिसका अर्थ है कि समुच्चय समावेशन की धारणा स्वयंसिद्ध रूप से अनावश्यक है।

सापेक्ष पूरक का बीजगणित

निम्नलिखित प्रस्ताव सापेक्ष पूरक और समुच्चय-सैद्धांतिक अंतर से संबंधित कई सर्वसमिकाओ को सूचीबद्ध करता है।

प्रस्ताव 9, किसी भी समष्टीय U और U के उपसमुच्चय A, B और C के लिए, निम्नलिखित सर्वसमिकाएँ मान्य हैं,

यह भी देखें

संदर्भ

  • Stoll, Robert R.; Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4. "The Algebra of Sets", pp 16—23.
  • Courant, Richard, Herbert Robbins, Ian Stewart, What is mathematics?: An Elementary Approach to Ideas and Methods, Oxford University Press US, 1996. ISBN 978-0-19-510519-3. "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS".


बाहरी संबंध