क्रमसूचक संख्या

From Vigyanwiki
ωω तक क्रमिक संख्याओं का प्रतिनिधित्व। सर्पिल का एक मोड़ मानचित्रण f (a)=w(1+a) के समान है। क्योंकि f का ωω न्यूनतम निश्चित बिंदु है, बड़ी क्रमिक संख्याओं का प्रतिनिधित्व नहीं किया जा सकता है।

समुच्चय सिद्धांत में, क्रमसूचक संख्या, या क्रमसूचक, क्रमसूचक अंकों (प्रथम, द्वितीय, nवें, आदि) का एक सामान्यीकरण है जिसका उद्देश्य अनंत समुच्चयों तक गणना का विस्तार करना है।[1]

प्रत्येक अवयव को कम से कम प्राकृतिक संख्या के साथ क्रमिक रूप से लेबलिंग करके एक परिमित समुच्चय की गणना की जा सकती है जिसका पहले उपयोग नहीं किया गया है। इस प्रक्रिया को विभिन्न अनंत समुच्चयों तक विस्तारित करने के लिए, क्रमिक संख्याओं को सामान्यतः रैखिक रूप से आदेशित लेबल के रूप में परिभाषित किया जाता है जिसमें प्राकृतिक संख्याएं सम्मिलित होती हैं और गुण है कि प्रत्येक समुच्चय के क्रमांक में कम से कम अवयव होते है ("कम से कम अप्रयुक्त अवयव" का अर्थ देना आवश्यक है)।[2] यह अधिक सामान्य परिभाषा हमें एक क्रमिक संख्या (ओमेगा) को परिभाषित करने की अनुमति देता है जो क्रमिक संख्याओं ,, आदि के साथ प्रत्येक प्राकृतिक संख्या के समान है। जो कि से भी अधिक हैं।

एक रेखीय क्रम जैसे कि प्रत्येक उपसमुच्चय में कम से कम अवयव होता है उसे एक अच्छा-क्रम कहा जाता है। चयन के अभिगृहीत का तात्पर्य है कि प्रत्येक समुच्चय को सुनियोजित किया जा सकता है, और दो सुनियोजित समुच्चय दिए गए हैं, एक दूसरे के प्रारंभिक खंड के लिए समरूपी है। तो क्रमिक संख्याओ का अस्तित्व हैं और अनिवार्य रूप से अद्वितीय हैं।

क्रमिक संख्याएँ गणन संख्याओं से भिन्न होती हैं, जो समुच्चय के आकार को मापती हैं। यद्यपि क्रमसूचक और गणन के मध्य अंतर हमेशा परिमित समुच्चयों पर स्पष्ट नहीं होते है (कोई एक से दूसरे में सिर्फ लेबल की गणना करके जा सकता है), वे अनंत प्रकरण में बहुत भिन्न होते हैं, जहां भिन्न अनंत क्रमसूचक एक ही गणन वाले समुच्चय के अनुरूप हो सकते हैं। अन्य प्रकार की संख्याओं के समान, क्रमसूचकों को जोड़ा, गुणा और घातांक किया जा सकता है, यद्यपि इनमें से कोई भी संक्रिया क्रमविनिमेय नहीं है।

अनंत अनुक्रमों को समायोजित करने और व्युत्पन्न समुच्चय को वर्गीकृत करने के लिए 1883 में जॉर्ज कैंटर द्वारा क्रमसूचक प्रस्तावित किए गए थे[3], जिसे उन्होंने पहले 1872 में त्रिकोणमितीय श्रृंखला की विशिष्टता का अध्ययन करते हुए प्रस्तावित किया था।[4]

क्रमसूचक प्राकृतिक संख्याओं का विस्तार करते हैं

एक प्राकृतिक संख्या (जिसमें, इस संदर्भ में, संख्या 0 सम्मिलित है) का उपयोग दो उद्देश्यों के लिए किया जा सकता है: एक समुच्चय के आकार का वर्णन करने के लिए, या अनुक्रम में किसी अवयव की स्थिति का वर्णन करने के लिए। परिमित समुच्चय तक सीमित होने पर, ये दो अवधारणाएं अनुरूप हैं, क्योंकि परिमित समुच्चय के सभी रैखिक क्रम समरूपी होते हैं।

तथापि, अनंत समुच्चयों के साथ वितरण करते समय, किसी को आकार की धारणा के मध्य अंतर करना पड़ता है, जो मुख्य संख्याओं को निर्देशन करता है, और स्थिति की धारणा, जो यहां वर्णित क्रमिक संख्याओं को निर्देशन की जाती है। ऐसा इसलिए है क्योंकि किसी भी समुच्चय का केवल एक ही आकार (इसकी प्रमुखता) होता है, किसी भी अनंत समुच्चय के कई गैर-समरूपी क्रम होते हैं, जैसा कि नीचे बताया गया है।

अतः गणन संख्या की धारणा एक समुच्चय के साथ जुड़ी हुई है, जिस पर कोई विशेष संरचना नहीं है, क्रमसूचक विशेष प्रकार के समुच्चयों से घनिष्ठ रूप से जुड़े हुए हैं जिन्हें सुनियोजित कहा जाता है। एक सुनियोजित समुच्चय एक पूरी तरह से क्रम किया गया समुच्चय होता है जिसमें प्रत्येक अरिक्‍त उपसमुच्चय में कम से कम अवयव होते है (एक पूरी तरह से क्रम किया गया समुच्चय एक आंशिक क्रम समुच्चय होता है, जिसमें दो विशिष्ट अवयव दिए जाते हैं, एक दूसरे से कम होते है)। समान रूप से, आश्रित चयन के अभिगृहीत को मानते हुए, यह बिना किसी अनंत ह्रासमान क्रम के पूरी तरह से क्रमबद्ध समुच्चय है - - यद्यपि अनंत वर्धमान क्रम हो सकते हैं। क्रमसूचक का उपयोग किसी दिए गए सुनियोजित समुच्चय के अवयवों को लेबल करने के लिए किया जा सकता है (सबसे छोटा अवयव 0 लेबल किया जा रहा है, उसके बाद वाला 1, अगला वाला 2, "और इसी तरह"), और कम से कम क्रमसूचक द्वारा पूरे समुच्चय की "लंबाई" को मापने के लिए जो समुच्चय के किसी अवयव के लिए लेबल नहीं है। इस लंबाई को समुच्चय का क्रम प्रकार कहा जाता है।

किसी भी क्रमवाचक को उसके पहले आने वाले क्रमवाचको के समुच्चय द्वारा परिभाषित किया जाता है। वास्तव में, क्रमवाचक की सबसे सामान्य परिभाषा प्रत्येक क्रमवाचक की पहचान करती है, जो कि इससे पहले के क्रमवाचक के समुच्चय के रूप में होती है। उदाहरण के लिए, क्रमिक 42 को सामान्यतः समुच्चय के रूप में {0, 1, 2, …, 41} पहचाना जाता है। इसके विपरीत, क्रमसूचक का कोई भी समुच्चय जो नीचे की ओर बंद है - जिसका अर्थ है कि S में किसी भी क्रमिक α के लिए और कोई भी क्रमिक β <α, β भी S में है - (या इसके साथ पहचाना जा सकता है) एक क्रमसूचक है।

समुच्चय के संदर्भ में क्रमसूचक की यह परिभाषा अनंत क्रमसूचक की अनुमति देती है। सबसे छोटा अनंत क्रमसूचक है, जिसे प्राकृतिक संख्याओं के समुच्चय से पहचाना जा सकता है (जिसके वजह से प्रत्येक प्राकृतिक संख्या से जुड़ा क्रमांक से पहले आए)। वास्तव में, प्राकृतिक संख्याओं का समुच्चय सुनियोजित है - जैसा कि किसी भी क्रमांक का समुच्चय है - और क्योंकि यह नीचे की ओर बंद है, इसे इसके साथ जुड़े क्रमसूचक के साथ पहचाना जा सकता है।

क्रमसूचक ω² का एक आलेखीय ''माचिस की तीलियाँ'' का प्रतिनिधित्व है। प्रत्येक छड़ी ω·m+n के रूप के एक क्रमसूचक के समान होती है जहाँ m और n प्राकृतिक संख्याएँ हैं।

संभवतः उनमें से पहले कुछ की जांच करके क्रमवाचक का एक स्पष्ट अंतर्ज्ञान बनाया जा सकता है: जैसा कि ऊपर उल्लेख किया गया है, वे प्राकृतिक संख्याओं से आरंभ होते हैं, 0, 1, 2, 3, 4, 5, … सभी प्राकृतिक संख्याओं के बाद पहला अनंत क्रमिक ω आता है, और उसके बाद ω+1, ω+2, ω+3, इत्यादि आते हैं। (जोड़ने का वास्तव में क्या अर्थ है यह बाद में परिभाषित किया जाएगा: केवल उन्हें नाम के रूप में मानें।) इन सबके बाद ω·2 (जो कि ω+ω है), ω·2+1, ω·2+2, और इसी तरह आगे, फिर ω·3, और फिर बाद में ω·4 आते हैं। अब इस तरह से निर्मित क्रमसूचकों का समुच्चय (ω·m+n, जहाँ m और n प्राकृतिक संख्याएँ हैं) स्वयं इसके साथ एक क्रमसूचक जुड़ा होना चाहिए: और वह ω2 है। इसके अतिरिक्त, ω3, फिर ω4, और इसी तरह, और ωω, फिर ωωω, फिर बाद में ωωωω, और बाद में भी ε0 (एप्सिलॉन शून्य) (सापेक्षतः छोटे-गणनीय-क्रमसूचक के कुछ उदाहरण देने के लिए) होंगे। इसे अनिश्चित काल तक निरंतर रखा जा सकता है (जैसा कि हर बार जब कोई कहता है "और इसी तरह" क्रमवाचक की गणना करते समय, यह एक बड़ा क्रमवाचक परिभाषित करता है)। सबसे छोटा अगणनीय क्रमसूचक सभी गणनीय क्रमसूचकों का समुच्चय है, जिसे ω1 या के रूप में व्यक्त किया जाता है।[5][6]

परिभाषाएँ

सुनियोजित समुच्चय

एक सुनियोजित समुच्चय में, प्रत्येक गैर-रिक्त उपसमुच्चय में एक भिन्न सबसे छोटा अवयव होता है। आश्रित चयन के अभिगृहीत को देखते हुए, यह कहने के समान है कि समुच्चय पूरी तरह से आदेशित है और कोई अनंत क्रम घटता नहीं है (उत्तरार्द्ध की कल्पना करना आसान है)। व्यावहारिक रूप से, अच्छी तरह से आदेश देने के महत्व को परिमितातीत प्रेरण को आवेदन करने की संभावना से उचित है, जो कहता है, अनिवार्य रूप से, कोई भी गुण जो किसी अवयव के पूर्ववर्तियों से उस अवयव तक जाती है, सभी अवयवों (दिए गए में से) के लिए सुनियोजित समुच्चय सही होना चाहिए)। यदि एक संगणना (अभिकलित्र क्रमादेश या खेल) की अवस्थाओं को सुनियोजित किया जा सकता है - इस तरह से कि प्रत्येक चरण के बाद एक ''निचला'' चरण आता है - तो गणना समाप्त हो जाती है।

दो सुनियोजित समुच्चयों के मध्य अंतर करना अनुचित है यदि वे केवल "उनके अवयवों की लेबलिंग" में भिन्न होते हैं, या अधिक औपचारिक रूप से: यदि पहले समुच्चय के अवयवों को दूसरे समुच्चय के अवयवों के साथ युग्मित किया जा सकता है जैसे कि यदि पहले समुच्चय में एक अवयव दूसरे से छोटा है, तो पहले अवयव का साझेदार दूसरे समुच्चय के साझेदार से छोटा है, और इसके विपरीत है। इस तरह के एक-से-एक पत्राचार को क्रम समरूपता कहा जाता है, और दो सुनियोजित समुच्चयों को क्रम समरूपी या समान कहा जाता है (समझ के साथ कि यह एक तुल्यता सम्बन्ध है)।

औपचारिक रूप से, यदि एक आंशिक क्रम ≤ समुच्चय S पर परिभाषित है, और एक आंशिक क्रम ≤' समुच्चय S' पर परिभाषित है, तो आंशिक (S,≤) और (S',≤') क्रम समरूपी हैं यदि कोई आक्षेप f है जो क्रम को संरक्षित करता है। अर्थात्, f(a) ≤' f(b) यदि और केवल यदि a ≤ b है। बशर्ते दो सुनियोजित समुच्चयों के मध्य एक क्रम समरूपता अस्तित्व हो, क्रम समरूपता अद्वितीय है: यह दो समुच्चयों को अनिवार्य रूप से समान मानने के लिए, और समरूपता प्रकार (वर्ग) के ''विहित'' प्रतिनिधि की खोज करने के लिए इसे काफी न्यायसंगत बनाता है। यह वही है जो क्रमसूचक प्रदान करते हैं, और यह किसी भी सुनियोजित समुच्चय के अवयवों की एक विहित लेबलिंग भी प्रदान करता है। प्रत्येक सुनियोजित समुच्चय (S,<) क्रम-समरूपी है जो उनके प्राकृतिक क्रम के अंतर्गत एक विशिष्ट क्रमिक संख्या से कम क्रमसूचक के समुच्चय के लिए है। यह विहित समुच्चय (S,<) का क्रम प्रकार है।

अनिवार्य रूप से, एक क्रमसूचक को सुनियोजित समुच्चयों के समरूपता वर्ग के रूप में परिभाषित करने का अभिप्रेत है: अर्थात, क्रम-समरूपी होने के तुल्यता संबंध के लिए एक तुल्यता वर्ग के रूप में है। इसमें एक तकनीकी कठिनाई सम्मिलित है, यद्यपि, इस तथ्य में समानता वर्ग समुच्चय सिद्धांत के सामान्य ज़र्मेलो-फ्रेंकेल (जेडएफ) औपचारिकता में एक समुच्चय होने के लिए बहुत बड़ा है। लेकिन यह कोई गंभीर समस्या नहीं है। क्रमसूचक को वर्ग में किसी भी समुच्चय का क्रम प्रकार कहा जा सकता है।

एक तुल्यता वर्ग के रूप में एक क्रमसूचक की परिभाषा

क्रमिक संख्याओं की मूल परिभाषा, उदाहरण के लिए गणितीय सिद्धांत में आधारित है, किसी क्रमीकरण के क्रम प्रकार को उस क्रमीकरण के समान (आदेश-समरूपी) सभी क्रमीकरण के समुच्चय के रूप में परिभाषित करता है: दूसरे शब्दों में, एक क्रमसूचक संख्या वास्तव में सुनियोजित समुच्चयों का एक तुल्यता वर्ग है। इस परिभाषा को ZF और अभिगृहीत समुच्चय सिद्धांत की संबंधित प्रणालियों में छोड़ दिया जाना चाहिए क्योंकि ये तुल्यता वर्ग एक समुच्चय बनाने के लिए बहुत बड़े हैं। यद्यपि, इस परिभाषा का उपयोग अभी भी प्रकार के सिद्धांत में और क्वीन के अभिगृहीत समुच्चय सिद्धांत में नई नींव और संबंधित प्रणालियों में किया जा सकता है (जहां यह सबसे बड़े क्रमवाचक के बुराली-फोर्टी विरोधाभास के बदले एक आश्चर्यजनक वैकल्पिक समाधान प्रदान करता है)।

क्रमसूचक की वॉन न्यूमैन परिभाषा

पहले कई वॉन नॉयमान क्रमसूचक
0 = {} =
1 = {0} = {∅}
2 = {0,1} = {∅,{∅}}
3 = {0,1,2} = {∅,{∅},{∅,{∅}}}
4 = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}}

सुनियोजित समुच्चयों के समानता वर्ग के रूप में एक क्रमसूचक को परिभाषित करने के बदले, इसे एक विशेष सुनियोजित समुच्चय के रूप में परिभाषित किया जाएगा जो (कैनोनिक रूप से) वर्ग का प्रतिनिधित्व करता है। इस प्रकार, एक क्रमसूचक संख्या एक सुनियोजित समुच्चय होगी; और हर सुनियोजित समुच्चय क्रम-समरूपी होगा यथार्थतः एक क्रमिक संख्या के लिए है।

प्रत्येक सुनियोजित समुच्चय के लिए, , और के सभी उपसमुच्चयों का समुच्चय के मध्य एक क्रम समरूपता को परिभाषित करता है, जिसमें सम्मिलित किए जाने का क्रम दिया गया है। यह 19 वर्ष की आयु में जॉन वॉन न्यूमैन द्वारा सुझाव दी गई मानक परिभाषा को प्रेरित करता है, जिसे अब वॉन न्यूमैन क्रमसूचक की परिभाषा कहा जाता है: प्रत्येक क्रमांक सभी छोटे क्रमवाचक का सुनियोजित समुच्चय है। प्रतीकों में, [7][8] औपचारिक रूप से:

एक समुच्चय S एक क्रमसूचक है अगर और केवल अगर S समुच्चय सदस्यता के संबंध में दृढता से सुनियोजित है और S का प्रत्येक अवयव भी S का एक उपसमुच्चय है।

इस परिभाषा के अनुसार प्राकृतिक संख्याएँ इस प्रकार क्रमसूचक हैं। उदाहरण के लिए, 2, 4 = {0, 1, 2, 3} का एक अवयव है, और 2, {0, 1} के समान है और इसलिए यह {0, 1, 2, 3} का उपसमुच्चय है।

यह परिमितातीत आगमन द्वारा दिखाया जा सकता है कि प्रत्येक सुनियोजित समुच्चय क्रम-समरूपी है जो इन क्रमसूचक में से एक के लिए है, अर्थात, उनके मध्य विशेषण कार्य को संरक्षित करने का एक क्रम है।

इसके अतिरिक्त, प्रत्येक क्रमवाचक के अवयव स्वयं क्रमवाचक हैं। दो क्रमवाचक S और T को देखते हुए, S, T का एक अवयव है यदि और केवल यदि S, T का एक उचित उपसमुच्चय है। इसके अलावा, या तो S, T का एक अवयव है, या T, S का एक अवयव है, या वे समान हैं। तो क्रमवाचक का हर समुच्चय पूरी तरह से क्रमित है। इसके अलावा, क्रमवाचक का हर समुच्चय सुनियोजित है। यह इस तथ्य को सामान्य करता है कि प्राकृतिक संख्याओं का प्रत्येक समुच्चय सुनियोजित है।

नतीजतन, प्रत्येक क्रमसूचक S एक ऐसा समुच्चय है, जिसमें अवयव ठीक S से छोटे क्रमवाचक होते हैं। उदाहरण के लिए, क्रमसूचकों के प्रत्येक समुच्चय में एक सर्वोच्चता होती है, वह क्रमसूचक जो समुच्चय में सभी क्रमवाचकों के संघ से प्राप्त होता है। संघ के अभिगृहीत द्वारा समुच्चय के आकार पर ध्यान दिए बिना यह संघ सम्मिलित है।

सभी क्रमवाचक का वर्ग एक समुच्चय नहीं है। यदि यह एक समुच्चय होता, तो कोई यह दिखा सकता था कि यह एक क्रमसूचक था और इस प्रकार स्वयं का एक सदस्य था, जो सदस्यता द्वारा इसके यथार्थ क्रमीकरण का खंडन करेगा। यह बुराली-फोर्टी विरोधाभास है। सभी क्रमवाचक के वर्ग को विभिन्न प्रकार से Ord, ON, या ∞ कहा जाता है।

एक क्रमसूचक परिमित समुच्चय है अगर और केवल अगर विपरीत क्रम भी सुनियोजित है, जो कि प्रकरण है अगर और केवल अगर इसके प्रत्येक गैर-रिक्त उपसमुच्चय में अधिकतम है।

अन्य परिभाषाएं

क्रमसूचक की परिभाषा के अन्य आधुनिक सूत्र हैं। उदाहरण के लिए, नियमितता के अभिगृहीत को मानते हुए, समुच्चय x के लिए निम्नलिखित समतुल्य हैं:

  • x एक (वॉन न्यूमैन) क्रमसूचक है,
  • x एक सकर्मक समुच्चय है, और समुच्चय सदस्यता x पर त्रिविभाजित है,
  • x एक सकर्मक समुच्चय है जो समुच्चय समावेशन द्वारा पूरी तरह से आदेशित है,
  • x सकर्मक समुच्चय का सकर्मक समुच्चय है।

इन परिभाषाओं का उपयोग गैर-सुस्थापित समुच्चय सिद्धांतों में नहीं किया जा सकता है। यूरेलेमेंट्स के साथ समुच्चय सिद्धांतों में, किसी को यह सुनिश्चित करना होगा कि परिभाषा में यूरेलेमेंट्स को क्रमसूचक में प्रदर्शित होने से बहिष्कृत रखा गया है।

परिमितातीत अनुक्रम

यदि α कोई क्रमवाचक है और X एक समुच्चय है, तो X के अवयवों का α-अनुक्रमित अनुक्रम α से X तक का एक फलन है। यह अवधारणा, एक 'परिमितातीत अनुक्रम' (यदि α अनंत है) या क्रमिक-अनुक्रमित अनुक्रम, एक अनुक्रम की अवधारणा का एक सामान्यीकरण है। एक साधारण अनुक्रम प्रकरण α = ω के समान है, जबकि एक परिमित α एक टपल, अन्य स्ट्रिंग के समान है।

परिमितातीत आगमन

किसी भी सुनियोजित समुच्चय में परिमितातीत आगमन होता है, लेकिन क्रमसूचक के संबंध में यह इतना महत्वपूर्ण है कि यह यहां पर ध्यान देने योग्य है।

कोई भी गुण जो दिए गए क्रमसूचक α से छोटे क्रमवाचकों के समुच्चय से स्वयं α तक जाता है, सभी क्रमसूचकों के लिए सत्य है।

अर्थात्, यदि P(α) सत्य है जब भी P(β) सभी β < α के लिए सत्य है, तो P(α) सभी α के लिए सत्य है। या, अधिक व्यावहारिक रूप से: सभी क्रमांक α के लिए एक गुण P को सिद्ध करने के लिए, कोई यह मान सकता है कि यह पहले से ही सभी छोटे β < α के लिए जाना जाता है।

परिमितातीत प्रतिवर्तन

परिमितातीत आगमन का उपयोग न केवल वस्तुओ को सिद्ध करने के लिए किया जा सकता है, लेकिन उन्हें परिभाषित करने के लिए भी किया जा सकता है। इस तरह की परिभाषा को सामान्यतः परिमितातीत प्रतिवर्तन द्वारा कहा जाता है - प्रमाण है कि परिणाम अच्छी तरह से परिभाषित है, जो परिमितातीत आगमन का उपयोग करता है। मान लो F एक (वर्ग) फलन F को क्रमसूचक पर परिभाषित करने के लिए दर्शाता है। अब विचार यह है कि, एक अनिर्दिष्ट क्रमिक α के लिए F(α) को परिभाषित करने में, कोई यह मान सकता है कि F(β) पहले से ही सभी β < α के लिए परिभाषित है और इस प्रकार इन F(β) के संदर्भ में F(α) के लिए एक सूत्र देता है। इसके बाद परिमितातीत आगमन द्वारा अनुसरण किया जाता है कि एक और केवल एक फलन है जो प्रतिवर्तन सूत्र को α सहित संतुष्ट करता है।

यहाँ क्रमवाचक पर परिमित प्रतिवर्तन द्वारा परिभाषा का एक उदाहरण दिया गया है (अधिक बाद में दिया जाएगा): F(α) को समुच्चय {F(β) | β < α} में सबसे छोटा क्रमसूचक नहीं होने देकर फलन F को परिभाषित करें, अर्थात्, β < α के लिए सभी F(β) से मिलकर बना समुच्चय है। यह परिभाषा F को परिभाषित करने की प्रक्रिया में ज्ञात F(β) मानती है; यह स्पष्ट दुष्चक्र ठीक वैसा ही है जैसा परिमितातीत प्रतिवर्तन प्रवेश द्वारा परिभाषित किया गया है। वास्तव में, F(0) समझ में आता है क्योंकि कोई क्रमसूचक β < 0 नहीं है, और समुच्चय {F(β) | β < 0} खाली है। तो F(0) 0 के समान है (सभी का सबसे छोटा क्रम)। अब वह F(0) ज्ञात है, F(1) पर आवेदन परिभाषा समझ में आता है (यह एकल समुच्चय {F(0)} = {0} में सबसे छोटा क्रमसूचक नहीं है), (और इसी तरह बिल्कुल परिमितातीत आगमन है)। यह पता चला है कि यह उदाहरण बहुत उत्तेजक नहीं है, क्योंकि सिद्ध रूप से F(α) = α सभी क्रमवाचक α के लिए, जो दिखाया जा सकता है, निश्चित रूप से, परिमितातीत आगमन द्वारा है।

उत्तराधिकारी और सीमा आदेश

किसी भी अशून्य क्रमसूचक में न्यूनतम अवयव, शून्य होता है। इसमें अधिकतम अवयव हो भी सकता है और नहीं भी। उदाहरण के लिए, 42 में अधिकतम 41 और ω+6 में अधिकतम ω+5 है। दूसरी ओर, ω का अधिकतम नहीं है क्योंकि कोई सबसे बड़ी प्राकृतिक संख्या नहीं है। यदि किसी क्रमवाचक में अधिकतम α है, तो यह α के बाद अगला क्रमसूचक है, और इसे उत्तराधिकारी क्रमसूचक कहा जाता है, अर्थात् α का उत्तराधिकारी, α+1 लिखित है। क्रमसूचक की वॉन न्यूमैन परिभाषा में, α का उत्तराधिकारी है क्योंकि इसके अवयव α और α के ही हैं।[7]

एक अशून्य क्रमसूचक जो उत्तराधिकारी नहीं है उसे सीमा क्रमसूचक कहा जाता है। इस शब्द के लिए एक औचित्य यह है कि एक सीमा क्रमसूचक सभी छोटे क्रमवाचक (क्रम सांस्थिति के अंतर्गत) के एक सांस्थितिक अर्थ में सीमा है।

कब एक क्रमसूचक-अनुक्रमित अनुक्रम है, एक सीमा द्वारा अनुक्रमित और अनुक्रम बढ़ रहा है, अर्थात पर जब भी इसकी सीमा को समुच्चय की न्यूनतम ऊपरी सीमा के रूप में परिभाषित किया गया है, अर्थात्, सबसे छोटा क्रमसूचक (यह हमेशा अस्तित्व होता है) अनुक्रम के किसी भी पद से बड़ा होता है। इस अर्थ में, एक सीमा क्रमसूचक सभी छोटे क्रमवाचक की सीमा है (स्वयं द्वारा अनुक्रमित)। अधिक प्रत्यक्ष शब्दों में कहें तो यह छोटे क्रमवाचक के समुच्चय का सर्वोच्च है।

एक सीमा क्रमसूचक को परिभाषित करने का दूसरा प्रकार यह कहना है कि α एक सीमा क्रमसूचक है यदि और केवल यदि:

α से कम एक क्रमसूचक होता है और जब भी ζ α से कम एक क्रमवाचक होता है, तब एक क्रमसूचक ξ होता है जैसे कि ζ < ξ < α।

तो निम्नलिखित क्रम में:

0, 1, 2, …, ω, ω+1

ω एक सीमा क्रमसूचक है क्योंकि किसी भी छोटे क्रमसूचक (इस उदाहरण में, एक प्राकृतिक संख्या) के लिए इससे बड़ा एक अन्य क्रमसूचक (प्राकृतिक संख्या) है, लेकिन फिर भी ω से कम है।

इस प्रकार, प्रत्येक क्रमसूचक या तो शून्य है, या एक उत्तराधिकारी (एक अच्छी तरह से परिभाषित पूर्ववर्ती का), या एक सीमा है। यह भेद महत्वपूर्ण है, क्योंकि परिमितातीत प्रतिवर्तन द्वारा कई परिभाषाएं इस पर विश्वास करती हैं। प्राय:, जब सभी क्रमसूचक पर परिमितातीत प्रतिवर्तन द्वारा फलन F को परिभाषित करते हैं, तो F(0) को परिभाषित करता है, और F(α+1) को F(α) गृहीत परिभाषित किया जाता है, और फिर, सीमा क्रमवाचक के लिए δ एक F(δ) को सभी β<δ के लिए F(β) की सीमा के रूप में परिभाषित करता है (या तो क्रमिक सीमाओं के अर्थ में, जैसा कि पहले समझाया गया है, या सीमा की किसी अन्य धारणा के लिए यदि F क्रमसूचक मान नहीं लेता है)। इस प्रकार, परिभाषा में रोचक कदम उत्तराधिकारी कदम है, सीमा क्रमसूचक नहीं है। इस तरह के कार्यों (विशेष रूप से F गैर-घटते और क्रमिक मूल्यों को लेने के लिए) को निरंतर कहा जाता है। क्रमिक योग, गुणन और घातांक उनके दूसरे तर्क के फलन के रूप में निरंतर हैं (लेकिन गैर-पुनरावर्ती रूप से परिभाषित किए जा सकते हैं)।

क्रमसूचक की अनुक्रमण वर्ग

कोई भी सुनियोजित समुच्चय एक अद्वितीय क्रमिक संख्या के समान (क्रम-समरूपी) है; दूसरे शब्दों में, इसके अवयवों को से बढ़ते क्रम में अनुक्रम किया जा सकता है। यह विशेष रूप से, क्रमवाचक के किसी भी समुच्चय पर आवेदन होता है: क्रमवाचक के किसी भी समुच्चय को स्वाभाविक रूप से कुछ से कम क्रमवाचक द्वारा अनुक्रम किया जाता है। मामूली संशोधन के साथ, क्रमसूचक की वर्गओं के लिए (क्रमसूचक का एक संग्रह, संभवतः एक समुच्चय बनाने के लिए बहुत बड़ा, कुछ संपत्ति द्वारा परिभाषित): क्रमसूचक के किसी भी वर्ग को क्रमसूचक द्वारा अनुक्रम किया जा सकता है (और, जब वर्ग अनाबद्ध है सभी क्रमवाचक की वर्ग में, यह इसे सभी क्रमवाचक के वर्ग के साथ वर्ग-आपत्ति में डाल देता है)। वर्ग के -वाँ अवयव (सम्मेलन के साथ कि 0-वाँ सबसे छोटा है, 1-वाँ अगला सबसे छोटा है, और इसी तरह) स्वतंत्र रूप से बोला जा सकता है। औपचारिक रूप से, परिभाषा परिमितातीत आगमन द्वारा है: वर्ग के -वें अवयव को परिभाषित किया गया है (बशर्ते यह पहले से ही सभी के लिए परिभाषित किया गया हो), सभी के लिए -वाँ अवयव से छोटे अवयव के रूप में।

यह आवेदन किया जा सकता है, उदाहरण के लिए, सीमा क्रमवाचक के वर्ग के लिए: -वाँ क्रमसूचक, जो या तो एक सीमा है या शून्य है है (क्रमसूचक के गुणन की परिभाषा के लिए क्रमसूचक अंकगणित देखें)। इसी तरह, कोई भी योगात्मक रूप से अपरिवर्तनीय क्रमवाचक पर विचार कर सकता है (जिसका अर्थ है एक गैर-क्रमिक क्रम जो दो दृढ़ता से छोटे क्रमवाचक का योग नहीं है): -वें योगात्मक रूप से अविघटनीय क्रमसूचक के रूप में अनुक्रम किया जाता है। क्रमसूचक वर्गों की अनुक्रमणिका की तकनीक प्रायः निश्चित बिंदुओं के संदर्भ में उपयोगी होती है: उदाहरण के लिए, -वें क्रमिक ऐसा है कि को लिखा है। इन्हें एप्सिलॉन संख्या (गणित) कहा जाता है।

बंद असीमित समुच्चय और वर्ग

क्रमसूचक के एक वर्ग को अनाबद्ध या कॉफ़ाइनल कहा जाता है, जब कोई क्रमसूचक दिया जाता है, तो में एक होता है जैसे कि (तब वर्ग एक उचित वर्ग होना चाहिए, अर्थात यह एक समुच्चय नहीं हो सकता)। इसे बंद कहा जाता है जब वर्ग में क्रमवाचकों के अनुक्रम की सीमा फिर से वर्ग में हो: या, समकक्ष रूप से, जब सूचीकरण (वर्ग-) फलन इस अर्थ में निरंतर है कि, एक सीमा क्रमसूचक के लिए, (-वें क्रमवाचक वर्ग में) के लिए सभी की सीमा है; यह भी बंद होने के समान है, सांस्थितिक अर्थों में, क्रम सांस्थितिक के लिए (उचित वर्गों पर सांस्थिति की बात करने से बचने के लिए, कोई यह मांग कर सकता है कि किसी भी क्रमसूचक के साथ वर्ग का प्रतिच्छेदन उस क्रमसूचक पर क्रम सांस्थिति के लिए बंद है, क्रमसूचक, यह फिर से समतुल्य है)।

विशेष महत्व के क्रमसूचक के वे वर्ग हैं जो जो बंद और असीमित हैं, जिन्हें कभी-कभी क्लब कहा जाता है। उदाहरण के लिए, सभी सीमा क्रमसूचक का वर्ग बंद और असीमित है: यह इस तथ्य का अनुवाद करता है कि किसी दिए गए क्रमसूचक की तुलना में हमेशा एक सीमा क्रमसूचक अधिक होता है, और यह कि सीमा क्रमसूचकों की एक सीमा क्रमसूचक होती है (एक भाग्यशाली तथ्य यदि शब्दावली का कोई अर्थ है!)। योगात्मक रूप से अविघटनीय क्रमवाचक का वर्ग, या का वर्ग। क्रमसूचक, या क्रमसूचक का वर्ग, सभी असीमित रूप से बंद हैं; नियमित क्रमसूचक का समुच्चय, तथापि, अनाबद्ध है, लेकिन बंद नहीं है, और क्रमसूचक का कोई भी परिमित समुच्चय बंद है, लेकिन अनाबद्ध नहीं है।

एक वर्ग स्थिर है यदि इसमें प्रत्येक बंद असीमित वर्ग के साथ एक गैर-रिक्त चौराहा है। बंद असीमित वर्गों के सभी अधिवर्ग स्थिर हैं, और स्थिर वर्ग असीमित हैं, लेकिन ऐसे स्थिर वर्ग हैं जो बंद नहीं हैं और स्थिर वर्ग हैं जिनके पास कोई असीमित उपवर्ग नहीं है (जैसे कि गणनीय कोफिनलिटी वाले सभी सीमा क्रमों का वर्ग)। क्योंकि दो बंद असीमित वर्गों का प्रतिच्छेदन बंद और असीमित है, एक स्थिर वर्ग और एक बंद असीमित वर्ग का प्रतिच्छेदन स्थिर है। लेकिन दो स्थिर वर्गों का प्रतिच्छेदन खाली हो सकता है, उदाहरणार्थ। कोफिनलिटी के साथ क्रमसूचक का वर्ग ω अगणनीय कॉफिनलिटी वाले क्रमसूचक के वर्ग के साथ है।

क्रमवाचक की (उचित) वर्गओं के लिए इन परिभाषाओं को तैयार करने के बदले, उन्हें दिए गए क्रमसूचक के नीचे दिए गए क्रमवाचकों के समुच्चय के लिए तैयार किया जा सकता है: एक सीमा क्रमसूचक के एक उपसमुच्चय को के अंतर्गत अनाबद्ध (या कोफ़ाइनल) कहा जाता है, बशर्ते कि से कम कोई भी क्रमसूचक समुच्चय में कुछ क्रमसूचक से कम है। अधिक सामान्यतः, में किसी भी क्रमसूचक कॉफ़ाइनल के उपसमुच्चय को कॉल कर सकते हैं, बशर्ते से कम प्रत्येक क्रमसूचक समुच्चय में कुछ क्रमसूचक से कम या समान है। उपसमुच्चय को के अंतर्गत बंद कहा जाता है बशर्ते यह में क्रम सांस्थिति के लिए बंद हो, अर्थात समुच्चय में क्रम की सीमा या तो समुच्चय में या के समान है।

क्रमसूचकों का अंकगणित

क्रमवाचक पर तीन सामान्य संक्रिया होते हैं: जोड़, गुणा और (क्रमिक) घातांक। प्रत्येक को अनिवार्य रूप से दो भिन्न-भिन्न तरीकों से परिभाषित किया जा सकता है: या तो एक स्पष्ट सुनियोजित समुच्चय का निर्माण करके जो संक्रिया का प्रतिनिधित्व करता है या परिमितातीत प्रतिवर्तन का उपयोग करके। कैंटर सामान्य रूप से क्रमवाचक लिखने का एक मानकीकृत प्रकार प्रदान करता है। यह विशिष्ट रूप से प्रत्येक क्रमिक को ω की क्रमिक शक्तियों के परिमित योग के रूप में दर्शाता है। यद्यपि, यह ε0 = ωε0 जैसे स्व-संदर्भित अभ्यावेदन के कारण एक सार्वभौमिक क्रमिक संकेतन का आधार नहीं बना सकता है। तथाकथित "प्राकृतिक" अंकगणितीय संचालन निरंतरता की कीमत पर क्रमविनिमेयता बनाए रखते हैं।

संख्या के रूप में व्याख्या की गई (संख्याओं का एक खेल-सैद्धांतिक रूप), क्रमांक भी संख्या अंकगणितीय संचालन के अधीन हैं।

क्रमसूचक और गणन्स

एक गणन का प्रारंभिक क्रम

प्रत्येक क्रमवाचक एक गणन संख्या, इसकी गणनांक के साथ संबद्ध होता है। यदि दो क्रमवाचक (जैसे ω = 1 + ω और ω + 1 > ω) के मध्य एक गणन है, तो वे एक ही गणन के साथ जुड़ जाते हैं। किसी भी सुनियोजित समुच्चय में एक क्रमसूचक होता है क्योंकि उसके क्रम-प्रकार में उस क्रमसूचक के समान ही गणनांक होती है। किसी दिए गए गणन से जुड़े कम से कम क्रमसूचक को उस गणन का प्रारंभिक क्रमसूचक कहा जाता है। प्रत्येक परिमित क्रमवाचक (प्राकृतिक संख्या) प्रारंभिक है, और कोई अन्य क्रमसूचक इसके गणन के साथ संबद्ध नहीं है। लेकिन अधिकांश अनंत क्रमवाचक प्रारंभिक नहीं होते हैं, क्योंकि कई अनंत क्रमवाचक एक ही गणन से जुड़े होते हैं। चयन का स्वयंसिद्ध कथन के समान है कि प्रत्येक समुच्चय को अच्छी तरह से सुव्यवस्थित दिया जा सकता है, अर्थात प्रत्येक गणन के पास एक प्रारंभिक क्रमसूचक है। चयन के अभिगृहीत सिद्धांतों में, किसी भी समुच्चय की गणन संख्या में एक प्रारंभिक क्रमसूचक होता है, और गणन के प्रतिनिधित्व के रूप में वॉन न्यूमैन गणन नियतन को नियोजित कर सकता है। (तथापि, हमें गणन अंकगणित और क्रमिक अंकगणित के मध्य अंतर करने के लिए सावधान रहना चाहिए।) चयन के अभिगृहीत के बिना समुच्चय सिद्धांतों में, एक गणन को उस समुच्चय के समुच्चय द्वारा दर्शाया जा सकता है जिसमें गणनांक न्यूनतम श्रेणी है (स्कॉट की चाल देखें)।

स्कॉट की चाल के साथ एक समस्या यह है कि यह मुख्य संख्या की पहचान करता है के साथ , जो कुछ योगों में क्रमिक संख्या है। प्रकरण को सीमित करने के लिए वॉन न्यूमैन गणन नियतन को आवेदन करना और समुच्चय के लिए स्कॉट की चाल का उपयोग करना स्पष्ट हो सकता है जो अनंत हैं या अच्छी तरह से क्रमण स्वीकार नहीं करते हैं। ध्यान दें कि गणन और क्रमसूचक अंकगणित परिमित संख्याओं के लिए सहमत हैं।

α-th अनंत प्रारंभिक क्रमसूचक को लिखा जाता है, यह हमेशा एक सीमा क्रमसूचक होता है। इसका गणनांक लिखा गया है। उदाहरण के लिए, ω0 = ω की गणनांक है, जो ω2 या ε0 की गणनांक भी है (सभी गणनीय क्रमांक हैं)। इसलिए ω को से पहचाना जा सकता है, इसके अतिरिक्त कि संकेतन का उपयोग गणन्स लिखते समय किया जाता है, और ω जब क्रमसूचक लिखते हैं (यह महत्वपूर्ण है, उदाहरण के लिए, = जबकि )। इसके अतिरिक्त, सबसे छोटा अगणनीय क्रमसूचक है (यह देखने के लिए कि यह अस्तित्व है, प्राकृतिक संख्याओं के अच्छी तरह से तुल्यता वर्गों के समुच्चय पर विचार करें: इस तरह का प्रत्येक अच्छी तरह से एक गणनीय क्रमसूचक को परिभाषित करता है, और उस समुच्चय का क्रम प्रकार है), सबसे छोटा क्रमांक है जिसकी गणनांक से अधिक है, और इसी तरह, और प्राकृतिक संख्या n के लिए की सीमा है (गणन की कोई भी सीमा एक गणन है, इसलिए यह सीमा वास्तव में सभी के बाद पहला गणन है)।

कॉफिनलिटी

क्रमवाचक की कॉफ़िनलिटी सबसे छोटी क्रमसूचक है जो कि के कोफ़ाइनल उपसमुच्चय का क्रम प्रकार है। ध्यान दें कि कई लेखक कॉफ़िनिटी को परिभाषित करते हैं या इसे केवल सीमित क्रमवाचक के लिए उपयोग करते हैं। क्रमसूचक या किसी अन्य सुनियोजित समुच्चय के समुच्चय की कॉफ़िनलिटी उस समुच्चय के क्रम प्रकार की कॉफ़िनलिटी है।

इस प्रकार एक सीमा क्रमसूचक के लिए, सीमा के साथ दृढ़ता से बढ़ते क्रम में एक - नुक्रमित अस्तित्व है। उदाहरण के लिए, ω2 की कॉफ़िनिटी ω है, क्योंकि अनुक्रम ω·m (जहाँ m की सीमा प्राकृतिक संख्याओं से अधिक होती है) ω2 की ओर प्रवृत्त होता है; लेकिन, अधिक सामान्यतः, किसी भी गणनीय सीमा क्रमसूचक की कॉफ़िनिटी ω होती है। एक अगणनीय सीमा क्रमसूचक में या तो कॉफ़िनिटी ω हो सकती है जैसा कि या एक अगणनीय कॉफ़िनिटी है।

0 की कॉफ़िनिटी 0 है। और किसी भी उत्तराधिकारी क्रमसूचक की कॉफ़िनिटी 1 है। किसी भी सीमा क्रमसूचक की कॉफ़िनिटी कम से कम है।

एक क्रमसूचक जो इसकी कॉफ़िनिटी के समान होता है उसे नियमित कहा जाता है और यह हमेशा एक प्रारंभिक क्रमसूचक होता है। नियमित क्रमवाचक की कोई भी सीमा प्रारंभिक क्रमवाचक की एक सीमा है और इस प्रकार यह भी प्रारंभिक है, भले ही यह नियमित न हो, जो सामान्यतः नहीं होता है। यदि चयन का अभिगृहीत है, तो प्रत्येक α के लिए नियमित है। इस प्रकरण में, क्रमवाचक 0, 1, , , और नियमित हैं, जबकि 2, 3, , और ωω·2 प्रारंभिक क्रमवाचक हैं जो नियमित नहीं हैं।

किसी भी क्रमसूचक α की कॉफ़िनलिटी एक नियमित क्रमसूचक है, अर्थात α की कॉफ़िनलिटी की कॉफ़िनलिटी α की कॉफ़िनलिटी के समान है। तो कॉफिनलिटी संक्रिया निर्बल है।

कुछ बड़े गणनीय क्रमवाचक

जैसा कि ऊपर उल्लेख किया गया है (कैंटर सामान्य रूप देखें), क्रमसूचक ε0 सबसे छोटा समीकरण है जो समीकरण को संतुष्ट करता है, इसलिए यह अनुक्रम 0, 1, , , , आदि की सीमा है। कई क्रमवाचक को इस तरह से परिभाषित किया जा सकता है जैसे कि कुछ क्रमसूचक फलन के निश्चित बिंदु ( -वाँ क्रमवाचक ऐसा है कि को कहा जाता है, फिर कोई -वाँ क्रमांक को खोजने का प्रयास कर सकता है जैसे कि , "और इसी तरह", लेकिन सभी सूक्ष्मता "और इसी तरह" में निहित है)। कोई इसे व्यवस्थित रूप से करने का प्रयास कर सकता है, लेकिन क्रमसूचक को परिभाषित करने और बनाने के लिए किसी भी पद्धति का उपयोग नहीं किया जाता है, हमेशा एक क्रमसूचक होता है जो पद्धति द्वारा बनाए गए सभी क्रमसूचक के ठीक ऊपर होता है। संभवतः सबसे महत्वपूर्ण क्रमसूचक जो इस तरह से निर्माण की एक प्रणाली को सीमित करता है वह चर्च-क्लीन क्रमसूचक है, (नाम में नाम में, यह क्रमवाचक गणनीय है), जो कि सबसे छोटा क्रमसूचक है जिसे किसी भी तरह से एक संगणनीय कार्य द्वारा प्रदर्शित नहीं किया जा सकता है (इसे निश्चित रूप से दृढ़ बनाया जा सकता है)। उल्लेखनीय रूप से बड़े क्रमवाचक को के नीचे परिभाषित किया जा सकता है, तथापि, जो कुछ औपचारिक प्रणालियों की प्रमाण-सैद्धांतिक शक्ति को मापते हैं (उदाहरण के लिए, पीनो अंकगणित की शक्ति को मापता है)। बड़े गणनीय क्रमवाचक जैसे गणनीय स्वीकार्य क्रमवाचक भी चर्च-क्लीन क्रमवाचक के ऊपर परिभाषित किए जा सकते हैं, जो तर्क के विभिन्न भागों में रुचि रखते हैं।[citation needed]

सांस्थिति और क्रमसूचक

क्रम सांस्थिति के साथ इसे समाप्त करके किसी भी क्रमिक संख्या को एक सांस्थितिक समष्टि में बनाया जा सकता है; यह सांस्थिति असतत है अगर और केवल अगर क्रमवाचक एक गणनीय गणन है, अर्थात अधिकतम ω पर हैं। ω + 1 का एक उपसमुच्चय क्रम सांस्थिति में खुला है अगर और केवल अगर यह सहमित है या इसमें एक अवयव के रूप में ω सम्मिलित नहीं है।

''क्रम सांस्थिति'' आलेख के सांस्थिति और क्रमसूचक अनुभाग देखें।

इतिहास

1883 में पहली बार दिखाई देने वाली परिमितातीत क्रमिक संख्याएं,[9] व्युत्पन्न समुच्चय के साथ कैंटर के काम में उत्पन्न हुईं। यदि P वास्तविक संख्याओं का एक समुच्चय है, तो व्युत्पन्न समुच्चय P', P के सीमा बिंदुओं का समुच्चय है। 1872 में, कैंटर ने व्युत्पन्न समुच्चय संक्रिया को P के लिए n बार आवेदन करके P(n) उत्पन्न किया। 1880 में, उन्होंने इंगित किया कि ये समुच्चय अनुक्रम P' ⊇ ··· ⊇ P(n)P(n + 1) ⊇ ···, बनाते हैं, और उन्होंने P(∞) को परिभाषित करके व्युत्पत्ति प्रक्रिया जारी रखी इन समुच्चयों के प्रतिच्छेदन के रूप में। फिर उन्होंने समुच्चय के अपने अनुक्रम को अनंत में विस्तारित करने के लिए व्युत्पन्न समुच्चय संक्रिया और चौराहों को दोहराया: P(∞)P(∞ + 1)P(∞ + 2) ⊇ ··· ⊇ P(2∞) ⊇ ··· ⊇ P(∞2) ⊇ ···।[10] ∞ वाले अधिलेख सिर्फ व्युत्पत्ति प्रक्रिया द्वारा परिभाषित सूचकांक हैं।[11]

कैंटर ने प्रमेय में इन समुच्चयों का उपयोग किया: (1) यदि कुछ सूचकांक α के लिए, P(α) = ∅, तो P' गणनीय है; (2) इसके विपरीत, यदि P' गणनीय है, तो एक सूचकांक α ऐसा है कि P(α) = ∅ है। इन प्रमेयों को P' को जोड़ीदार असंयुक्त समुच्चयों में विभाजित करके सिद्ध किया जाता है: P' = (P'P(2)) ∪ (P(2)P(3)) ∪ ··· ∪ (P(∞)P(∞ + 1)) ∪ ··· ∪ P(α)। β < α के लिए: क्योंकि P(β + 1) में P(β) के सीमा बिंदु सम्मिलित हैं, समुच्चय P(β)P(β + 1) की कोई सीमा बिंदु नहीं है। इसलिए, वे असतत समुच्चय हैं, इसलिए वे गणनीय हैं। प्रथम प्रमेय की उपपत्ति: यदि किसी सूचकांक α के लिए P(α) = ∅ तो P' गणनीय समुच्चयों का गणनीय संघ है। इसलिए, P' गणनीय है।[12]

दूसरे प्रमेय के लिए एक α के अस्तित्व को प्रमाणन करने की आवश्यकता x जैसे कि P(α) = ∅ है। यह प्रमाणन करने के लिए, कैंटर ने सभी α के समुच्चय पर विचार किया जिसमें कई पूर्ववर्तियों की संख्या थी। इस समुच्चय को परिभाषित करने के लिए, उन्होंने परासीमित क्रमसूचक संख्याओं को परिभाषित किया और ∞ को ω से प्रतिस्थापित करके अनंत सूचकों को क्रमसूचकों में रूपांतरित किया, जो कि प्रथम परासीमित क्रमसूचक संख्या है। कैंटर ने परिमित क्रमसूचकों के समुच्चय को प्रथम संख्या वर्ग कहा है। दूसरी संख्या वर्ग क्रमसूचकों का समुच्चय है, जिनके पूर्ववर्ती एक गणनीय रूप से अनंत समुच्चय बनाते हैं। सभी α का समुच्चय जिसमें कई पूर्ववर्तियों की गिनती होती है - अर्थात, गणनीय क्रमवाचक का समुच्चय - इन दो संख्या वर्गों का मिलन है। कैंटर ने प्रमाणन किया कि दूसरे नंबर वर्ग की गणनांक पहली अगणनीय गणनांक है।[13]

कैंटर का दूसरा प्रमेय बन जाता है: यदि P' गणनीय है, तो एक गणनीय क्रमसूचक α है जैसे कि P(α) = ∅। इसका प्रमाण विरोधाभास द्वारा प्रमाण का उपयोग करता है। P' को गणनीय होने दें, और मान लें कि ऐसा कोई α नहीं है। यह धारणा दो मामलों का उत्पादन करती है।

  • स्थिति 1: P(β) ∖ P(β + 1) सभी गणनीय β के लिए रिक्त नहीं है। क्योंकि इनमें से कई जोड़ो में अलग-अलग समुच्चय हैं, इसलिए उनका संघ अगणनीय है। यह संघ P' का उपसमुच्चय है, इसलिए P' अगणनीय है।

स्थिति 2: P(β) ∖ P(β + 1) कुछ गणनीय β के लिए खाली है। क्योंकि P(β + 1) ⊆ P(β), इसका अर्थ है P< sup>(β + 1) = P(β). इस प्रकार, P(β) एक सही सेट है, इसलिए यह अगणनीय है।[14] क्योंकि P(β) ⊆ P, समुच्चय P की गणना नहीं की जा सकती।

दोनों ही प्रकरण में, P' अगणनीय है, जो P' के गणनीय होने का खंडन करता है। इसलिए, एक गणनीय क्रमिक α है जैसे कि P(α) = ∅। व्युत्पन्न समुच्चयों और क्रमिक संख्याओं के साथ कैंटर के कार्य ने कैंटर-बेंडिक्सन प्रमेय का नेतृत्व किया।[15]

उत्तराधिकारियों, सीमाओं और गणनांक का उपयोग करते हुए, कैंटर ने क्रमिक संख्याओं और संख्या वर्गों का एक असीमित अनुक्रम उत्पन्न किया।[16] (α + 1)-वां संख्या वर्ग क्रमसूचक का समुच्चय है जिनके पूर्ववर्ती α-वें संख्या वर्ग के समान गणनांक का एक समुच्चय बनाते हैं। (α + 1)-वें संख्या वर्ग की गणनांक, α-वें संख्या वर्ग के तुरंत बाद की गणनांक है।[17] एक सीमा क्रमसूचक α के लिए, α-वें संख्या वर्ग β < α के लिए β-वें संख्या वर्गों का संघ है।[18] इसकी गणनांक इन संख्या वर्गों की गणनांक की सीमा है।

यदि n परिमित है, तो n-वें संख्या वर्ग में गणनांक है। यदि α ≥ ω, α-वें संख्या वर्ग में प्रमुखता है। [19] इसलिए, संख्या वर्गों की गणनांक एलेफ संख्याओं के साथ एक-से-एक के अनुरूप होती है। साथ ही, α-वें संख्या वर्ग में पूर्ववर्ती संख्या वर्गों में उन लोगों से भिन्न क्रम होते हैं यदि और केवल यदि α एक गैर-सीमा क्रमसूचक है। इसलिए, गैर-सीमा संख्या वर्ग क्रमवाचकों को युग्‍मानूसार असंयुक्त समुच्चयों में विभाजित करते हैं।

यह भी देखें

टिप्पणियाँ

  1. "Ordinal Number - Examples and Definition of Ordinal Number". Literary Devices (in English). 2017-05-21. Retrieved 2021-08-31.
  2. Sterling, Kristin (2007-09-01). Ordinal Numbers (in English). LernerClassroom. ISBN 978-0-8225-8846-7.
  3. Thorough introductions are given by (Levy 1979) and (Jech 2003).
  4. Hallett, Michael (1979), "Towards a theory of mathematical research programmes. I", The British Journal for the Philosophy of Science, 30 (1): 1–25, doi:10.1093/bjps/30.1.1, MR 0532548. See the footnote on p. 12.
  5. "Ordinal Numbers | Brilliant Math & Science Wiki". brilliant.org (in English). Retrieved 2020-08-12.
  6. Weisstein, Eric W. "Ordinal Number". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
  7. 7.0 7.1 von Neumann 1923
  8. (Levy 1979, p. 52) attributes the idea to unpublished work of Zermelo in 1916 and several papers by von Neumann the 1920s.
  9. Cantor 1883. English translation: Ewald 1996, pp. 881–920
  10. Ferreirós 1995, pp. 34–35; Ferreirós 2007, pp. 159, 204–5
  11. Ferreirós 2007, p. 269
  12. Ferreirós 1995, pp. 35–36; Ferreirós 2007, p. 207
  13. Ferreirós 1995, pp. 36–37; Ferreirós 2007, p. 271
  14. Dauben 1979, p. 111
  15. Ferreirós 2007, pp. 207–8
  16. Dauben 1979, pp. 97–98
  17. Hallett 1986, pp. 61–62
  18. Tait 1997, p. 5 footnote
  19. The first number class has cardinality . Mathematical induction proves that the n-th number class has cardinality . Since the ω-th number class is the union of the n-th number classes, its cardinality is , the limit of the . Transfinite induction proves that if α ≥ ω, the α-th number class has cardinality .


संदर्भ


बाहरी कड़ियाँ