कोणीय विस्थापन: Difference between revisions
No edit summary |
No edit summary |
||
| Line 35: | Line 35: | ||
{{further | {{further | ||
|यूलर का घूर्णन प्रमेय घूर्णन के जनक {{!}}घूर्णन के जनक | |यूलर का घूर्णन प्रमेय घूर्णन के जनक {{!}}घूर्णन के जनक | ||
|घूर्णन आव्यूह | |घूर्णन आव्यूह अनंत घूर्णन{{!}}अनंत घूर्णन|अनंत स्ट्रेन सिद्वांत अनंत घूर्णन टेन्सर{{!}}अनंत घूर्णन टेन्सर | ||
|परिक्रमण समूह SO(3) अत्यंत सूक्ष्म आवर्तन}} | |परिक्रमण समूह SO(3) अत्यंत सूक्ष्म आवर्तन}} | ||
अनंत कोणीय विस्थापन तिरछा-सममित आव्यूह है अनंत घूर्णन आव्यूह: | |||
* जैसा कि किसी भी घूर्णन आव्यूह में एकल वास्तविक ईजेनवेल्यू होता है, जो +1 है, यह ईजेनवेल्यू घूर्णन अक्ष को दर्शाता है। | * जैसा कि किसी भी घूर्णन आव्यूह में एकल वास्तविक ईजेनवेल्यू होता है, जो +1 है, यह ईजेनवेल्यू घूर्णन अक्ष को दर्शाता है। | ||
* इसके मॉड्यूल को | * इसके मॉड्यूल को अनंत घूर्णन के मूल्य से घटाया जा सकता है। | ||
* आव्यूह का आकार इस तरह है: <math display="block"> | * आव्यूह का आकार इस तरह है: <math display="block"> | ||
A = \begin{pmatrix} | A = \begin{pmatrix} | ||
| Line 63: | Line 64: | ||
|घूर्णन आव्यूह SO(3)|असीम परिवर्तन}} | |घूर्णन आव्यूह SO(3)|असीम परिवर्तन}} | ||
मान लीजिए कि हम यूनिट सदिश [x, y, z] द्वारा घूर्णन की एक धुरी निर्दिष्ट करते हैं, और मान लीजिए कि हमारे पास उस वेक्टर के बारे में कोण Δθ का | मान लीजिए कि हम यूनिट सदिश [x, y, z] द्वारा घूर्णन की एक धुरी निर्दिष्ट करते हैं, और मान लीजिए कि हमारे पास उस वेक्टर के बारे में कोण Δθ का अनंत घूर्णन है। अनंत जोड़ के रूप में घूर्णन आव्यूह का विस्तार करना, और पहला ऑर्डर दृष्टिकोण लेना, घूर्णन आव्यूह ΔR के रूप में दर्शाया गया है: | ||
: <math>\Delta R = | : <math>\Delta R = | ||
| Line 114: | Line 115: | ||
जहाँ {{math|''dθ''}} गायब है और छोटा है {{math|''A'' ∈ '''so'''(n)}} उदाहरण के लिए {{math|1=''A'' = ''L''<sub>''x''</sub>}}, | जहाँ {{math|''dθ''}} गायब है और छोटा है {{math|''A'' ∈ '''so'''(n)}} उदाहरण के लिए {{math|1=''A'' = ''L''<sub>''x''</sub>}}, | ||
:<math> dL_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\theta \\ 0 & d\theta & 1 \end{bmatrix}. </math> | :<math> dL_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\theta \\ 0 & d\theta & 1 \end{bmatrix}. </math> | ||
संगणना के नियम के जैसे दूसरे क्रम के इनफिनिटिमल्स नियमित रूप से गिराए जाते हैं। इन नियमों के साथ, ये आव्यूह उन सभी गुणों को संतुष्ट नहीं करते हैं, जो इनफिनिटिमल्स के सामान्य उपचार के अंतर्गत सामान्य परिमित घूर्णन आव्यूह के रूप में होते हैं। <ref>{{Harv|Goldstein|Poole|Safko|2002|loc=§4.8}}</ref> यह पता चला है कि जिस क्रम में | संगणना के नियम के जैसे दूसरे क्रम के इनफिनिटिमल्स नियमित रूप से गिराए जाते हैं। इन नियमों के साथ, ये आव्यूह उन सभी गुणों को संतुष्ट नहीं करते हैं, जो इनफिनिटिमल्स के सामान्य उपचार के अंतर्गत सामान्य परिमित घूर्णन आव्यूह के रूप में होते हैं। <ref>{{Harv|Goldstein|Poole|Safko|2002|loc=§4.8}}</ref> यह पता चला है कि जिस क्रम में अनंत घूर्णन लागू होते हैं वह अप्रासंगिक है। इस उदाहरण को देखने के लिए, अत्यल्प परिक्रमण SO(3) की सलाह लें। | ||
=== घातीय मानचित्र === | === घातीय मानचित्र === | ||
Revision as of 09:43, 3 February 2023
| Part of a series on |
| चिरसम्मत यांत्रिकी |
|---|
किसी पिंड का कोणीय विस्थापन वह कोण है जो (कांति, डिग्री (कोण) या परिभ्रमण (ज्यामिति) में) जिसके माध्यम से बिंदु निर्दिष्ट अर्थ में केंद्र या निर्दिष्ट अक्ष के चारों ओर घूमता है। जब कोई पिंड अपनी धुरी के चारों ओर घूमती है, तो गति को केवल कण के रूप में विश्लेषण नहीं किया जा सकता है, क्योंकि वृत्ताकार गति में यह किसी भी समय परिवर्तित वेग और त्वरण से गुजरता है (t)। किसी पिंड के घूर्णन से यापन के समय, पिंड को ही कठोर मानना सरल हो जाता है। पिंड को सामान्यतः कठोर माना जाता है जब सभी कणों के मध्य विभिन्नता पूर्ण पिंड की गति में स्थिर रहता है, उदाहरण के लिए इसके द्रव्यमान के भाग विस्थापित नहीं हो रहे है। यथार्थवादी अर्थ में, सभी वस्तु विकृत हो सकती हैं, चूँकि यह प्रभाव न्यूनतम और नगण्य है। इस प्रकार स्थिर अक्ष पर दृढ़ पिंड के घूमने को घूर्णी गति कहा जाता है।
उदाहरण
उदाहरण में दाईं ओर (या कुछ मोबाइल संस्करणों में), कण या पिंड P मूल, O, घूर्णन वामावर्त से निश्चित दूरी r पर है। तब यह महत्वपूर्ण हो जाता है कि इसके ध्रुवीय निर्देशांक (r,θ) के संदर्भ में कण P की स्थिति का प्रतिनिधित्व करें। इस विशेष उदाहरण में, θ का मूल्य परिवर्तित हो रहा है, जबकि त्रिज्या का मूल्य समान है। (आयताकार निर्देशांक (x, y) में x और y दोनों समय के साथ भिन्न होते हैं)। जैसे-जैसे कण वृत्त के साथ चलता है, यह चाप (ज्यामिति) s की यात्रा करता है, जो संबंध के माध्यम से कोणीय स्थिति से संबंधित हो जाता है:-
माप
कोणीय विस्थापन को रेडियन या डिग्री में मापा जा सकता है। रेडियन का उपयोग करना वृत्त के चारों ओर यात्रा की गई दूरी और केंद्र से दूरी r के मध्य अधिक सरल संबंध प्रदान करता है।
उदाहरण के लिए, यदि कोई पिंड त्रिज्या r के वृत्त के चारों ओर 360 ° घूमता है, तो कोणीय विस्थापन परिधि के चारों ओर यात्रा की गई दूरी द्वारा दिया जाता है - जो कि 2πr-त्रिज्या द्वारा विभाजित है: जो सरल हो जाता है:
इसलिए, 1 क्रांति है रेडियन है।
जब कण बिंदु P से बिंदु Q पर यात्रा करता है , जैसा कि यह बाईं ओर चित्रण में करता है, वृत्त की त्रिज्या कोण में परिवर्तन के माध्यम से जाती है जो कोणीय विस्थापन के समतल है।
तीन आयाम
तीन आयामों में, कोणीय विस्थापन दिशा और परिमाण के साथ इकाई होती है। दिशा नियमित आवर्तन की धुरी को निर्दिष्ट करती है, जो सदैव यूलर के घूर्णन प्रमेय के आधार पर उपस्तिथ होती है; परिमाण उस अक्ष के बारे में रेडियन में नियमित आवर्तन को निर्दिष्ट करता है (दिशा निर्धारित करने के लिए दाहिने हाथ के नियम का उपयोग करके)। इसे इकाई को अक्ष-कोण कहा जाता है।
दिशा और परिमाण होने के अतिरिक्त, कोणीय विस्थापन सदिश (ज्यामिति) नहीं है क्योंकि यह इसके अतिरिक्तविनिमेय कानून का पालन नहीं करता है।[1] फिर भी, जब अनंत घूर्णन से व्यवहार करते हैं, तो दूसरे क्रम के अतिसूक्ष्म को त्याग दिया जा सकता है और इस विषय में क्रम-विनिमेयता दिखाई देती है।
कोणीय विस्थापन का वर्णन करने के कई उपाय उपस्तिथ हैं, जैसे घूर्णन आव्यूह या यूलर कोण दूसरों के लिए SO (3) पर चार्ट देखें।
आव्यूह अंकन
यह देखते हुए कि अंतरिक्ष में किसी भी सीमा को घूर्णन आव्यूह द्वारा वर्णित किया जा सकता है, उनमें से विस्थापन को घूर्णन आव्यूह द्वारा भी वर्णित किया जा सकता है। और दो आव्यूह, उनके मध्य के कोणीय विस्थापन आव्यूह को प्राप्त किया जा सकता है जब इस उत्पाद को दोनों सीमा के मध्य अधिक अल्प अंतर किया जाता है, तो हम पहचान के निकट आव्यूह प्राप्त करेंगे।
सीमा में, हमारे पास अनंत घूर्णन आव्यूह होगा।
घूर्णन आव्यूह
अनंत कोणीय विस्थापन तिरछा-सममित आव्यूह है अनंत घूर्णन आव्यूह:
- जैसा कि किसी भी घूर्णन आव्यूह में एकल वास्तविक ईजेनवेल्यू होता है, जो +1 है, यह ईजेनवेल्यू घूर्णन अक्ष को दर्शाता है।
- इसके मॉड्यूल को अनंत घूर्णन के मूल्य से घटाया जा सकता है।
- आव्यूह का आकार इस तरह है:
हम यहां अतिसूक्ष्म एंगुलर विस्थापन टेंसर या घूर्णन जनरेटर से जुड़े हो सकते हैं:
ऐसा है कि इसका संबद्ध घूर्णन आव्यूह है। जब इसे समय तक विभाजित किया जाता है, तो यह कोणीय वेग सदिश का उत्पादन करेगा।
रोटेशन के जनरेटर
मान लीजिए कि हम यूनिट सदिश [x, y, z] द्वारा घूर्णन की एक धुरी निर्दिष्ट करते हैं, और मान लीजिए कि हमारे पास उस वेक्टर के बारे में कोण Δθ का अनंत घूर्णन है। अनंत जोड़ के रूप में घूर्णन आव्यूह का विस्तार करना, और पहला ऑर्डर दृष्टिकोण लेना, घूर्णन आव्यूह ΔR के रूप में दर्शाया गया है:
इस अक्ष के बारे में कोण θ के माध्यम से परिमित आव्यूह को एक ही अक्ष के बारे में छोटे घूर्णन के उत्तराधिकार के रूप में देखा जा सकता है। θ के रूप में θ/n जहां n बड़ी संख्या है, अक्ष के बारे में θ का एक घूर्णन का प्रतिनिधित्व किया जा सकता है:
यह देखा जा सकता है कि यूलर के प्रमेय में अनिवार्य रूप से कहा गया है कि सभी घूर्णन को इस रूप में दर्शाया जा सकता है। उत्पाद आव्यूह A के साथ जुड़े सदिश (x, y, z) के रूप में विशेष घूर्णन का जनरेटर है, यह दर्शाता है कि घूर्णन आव्यूह और एक्सिस-कोण प्रारूप घातीय फ़ंक्शन द्वारा संबंधित हैं।
जनरेटर G के लिए सरल अभिव्यक्ति प्राप्त कर सकता है। स्वेच्छा से सतह के साथ प्रारम्भ होता है[2] लंबवत इकाई सदिश a और b की एक जोड़ी द्वारा परिभाषित किया गया है। इस सतह में लंबवत y के साथ स्वेच्छा से सदिश x चुन सकता है। x के संदर्भ में y के लिए हल करता है और सतह में घूर्णन के लिए अभिव्यक्ति में प्रतिस्थापित करता है, जिसमें घूर्णन आव्यूह R होता है जिसमें जनरेटर G = baT − abT सम्मलित है ।
घूर्णन में सतह के बाहर सदिश को सम्मलित करने के लिए किसी को दो प्रक्षेपण (रैखिक बीजगणित) को सम्मलित करके R के लिए उपरोक्त अभिव्यक्ति को संशोधित करने की आवश्यकता होती है जो अंतरिक्ष को विभाजित करता है। इस संशोधित घूर्णन आव्यूह को आव्यूह एक्सपोनेंशियल घूर्णन केस के रूप में फिर से लिखा जा सकता है।
पूर्ण घूर्णन आव्यूह के अतिरिक्त इन जनरेटर के संदर्भ में विश्लेषण प्रायः आसान होता है। जनरेटर के संदर्भ में विश्लेषण को घूर्णन समूह के लाई बीजगणित के रूप में जाना जाता है।
लाई बीजगणित के साथ संबंध
लाई बीजगणित में मैट्रिसेस स्वयं घूर्णन नहीं हैं; तिरछा-सममितीय आव्यूह डेरिवेटिव, घूर्णन के आनुपातिक अंतर हैं। वास्तविक अंतर घूर्णन, या इनफिनिटिमल घूर्णन आव्यूह का रूप है
जहाँ dθ गायब है और छोटा है A ∈ so(n) उदाहरण के लिए A = Lx,
संगणना के नियम के जैसे दूसरे क्रम के इनफिनिटिमल्स नियमित रूप से गिराए जाते हैं। इन नियमों के साथ, ये आव्यूह उन सभी गुणों को संतुष्ट नहीं करते हैं, जो इनफिनिटिमल्स के सामान्य उपचार के अंतर्गत सामान्य परिमित घूर्णन आव्यूह के रूप में होते हैं। [3] यह पता चला है कि जिस क्रम में अनंत घूर्णन लागू होते हैं वह अप्रासंगिक है। इस उदाहरण को देखने के लिए, अत्यल्प परिक्रमण SO(3) की सलाह लें।
घातीय मानचित्र
लाई बीजगणित को लाई समूह से जोड़ना घातीय मानचित्र (लाई सिद्धांत) है, जिसे मानक आव्यूह घातीय सीरीज़ eA के लिए परिभाषित किया गया है [4] किसी भी तिरछी-सममित आव्यूह के लिए A, exp(A) सदैव घूर्णन आव्यूह होता है।[nb 1] महत्वपूर्ण व्यावहारिक उदाहरण 3 × 3 है । घूर्णन समूह में SO(3) में, यह दिखाया गया है कि प्रत्येक A ∈ so(3) को यूलर सदिश ω = θ u, पहचाना जा सकता है, जहाँ u = (x,y,z) इकाई परिमाण सदिश है।
पहचान के गुणों से su(2) ≅ R3, u के शून्य स्थान में है A। इस प्रकार, u द्वारा अपरिवर्तित छोड़ दिया जाता है exp(A) और इसलिए घूर्णन अक्ष है।
रोड्रिग्स के घूर्णन फॉर्मूला आव्यूह नोटेशन का उपयोग करना | रोड्रिग्स के साथ आव्यूह फॉर्म पर घूर्णन फॉर्मूला θ = θ⁄2 + θ⁄2, त्रिकोणमितीय पहचान की मानक सूची के साथ मल्टीपल-कोण और आधा-कोण फॉर्मूला प्राप्त करता है,
यह अर्ध-कोण रूप में कोण θ द्वारा अक्ष u के चारों ओर घूर्णन के लिए आव्यूह है। पूर्ण विवरण के लिए, घातीय मानचित्र SO(3) देखें
ध्यान दें कि अतिसूक्ष्म कोणों के लिए दूसरे क्रम की शर्तों को अनदेखा किया जा सकता है और exp(A) = I + A बना रहता है
यह भी देखें
- कोणीय दूरी
- कोणीय स्थिति
- कोणीय वेग
- अत्यल्प घूर्णन
- रैखिक लोच
- क्षेत्र का दूसरा क्षण
टिप्पणियाँ
- ↑ Note that this exponential map of skew-symmetric matrices to rotation matrices is quite different from the Cayley transform discussed earlier, differing to 3rd order,
Conversely, a skew-symmetric matrix A specifying a rotation matrix through the Cayley map specifies the same rotation matrix through the map exp(2 artanh A).
संदर्भ
- ↑ Kleppner, Daniel; Kolenkow, Robert (1973). An Introduction to Mechanics. McGraw-Hill. pp. 288–89. ISBN 9780070350489.
- ↑ in Euclidean space
- ↑ (Goldstein, Poole & Safko 2002, §4.8)
- ↑ (Wedderburn 1934, §8.02)
स्रोत
- Goldstein, Herbert; Poole, Charles P.; Safko, John L. (2002), Classical Mechanics (third ed.), Addison Wesley, ISBN 978-0-201-65702-9
- Wedderburn, Joseph H. M. (1934), Lectures on Matrices, AMS, ISBN 978-0-8218-3204-2