टेंसर बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Universal construction in multilinear algebra}}
{{Short description|Universal construction in multilinear algebra}}
गणित में,[[ सदिश स्थल | सदिश समष्टि]] '' v '' के टेंसर बीजगणित, जिसे ''T(V)'' या '''T•(V)''<nowiki/>'  के रूप में निरूपित किया, ''V'' (किसी भी  श्रेणी के) पर [[ टेन्सर ]] के [[ एक क्षेत्र पर बीजगणित ]] है, जिसमें गुणन [[ टेंसर उत्पाद | टेंसर गुणनफल]] होता है। यह ''V'' पर [[ मुक्त बीजगणित ]] है, बीजगणित से वेक्टर रिक्त स्थान के लिए [[ भुलक्कड़ फंक्टर | विस्मरण  प्रकार्यक]] के समीप  छोड़ने के अर्थ में: यह संबंधित [[ सार्वभौमिक संपत्ति | सार्वभौमिक गुण]] (नीचे देखें) के अर्थ में "सबसे सामान्य" बीजगणित है जिसमें ''V'' सम्मिलित है।
गणित में,[[ सदिश स्थल | सदिश समष्टि]] '' v '' के टेंसर बीजगणित, जिसे ''T(V)'' या '''T•(V)''<nowiki/>'  के रूप में निरूपित किया, ''V'' (किसी भी  श्रेणी के) पर [[ टेन्सर ]] के [[ एक क्षेत्र पर बीजगणित ]] है, जिसमें गुणन [[ टेंसर उत्पाद | टेंसर गुणनफल]] होता है। यह ''V'' पर [[ मुक्त बीजगणित ]] है, बीजगणित से सदिश रिक्त स्थान के लिए [[ भुलक्कड़ फंक्टर | विस्मरण  प्रकार्यक]] के समीप  छोड़ने के अर्थ में: यह संबंधित [[ सार्वभौमिक संपत्ति | सार्वभौमिक गुण]] (नीचे देखें) के अर्थ में "सबसे सामान्य" बीजगणित है जिसमें ''V'' सम्मिलित है।


टेंसर बीजगणित महत्वपूर्ण है क्योंकि कई अन्य बीजगणित ''T(V)'' के भागफल साहचर्य बीजगणित के रूप में उत्पन्न होते हैं। इनमें [[ बाहरी बीजगणित | बाह्य बीजगणित]] , सममित बीजगणित, [[ क्लिफोर्ड बीजगणित ]], वेइल बीजगणित और सार्वभौमिक  घेर बीजगणित सम्मिलित हैं।
टेंसर बीजगणित महत्वपूर्ण है क्योंकि कई अन्य बीजगणित ''T(V)'' के भागफल साहचर्य बीजगणित के रूप में उत्पन्न होते हैं। इनमें [[ बाहरी बीजगणित | बाह्य बीजगणित]] , सममित बीजगणित, [[ क्लिफोर्ड बीजगणित ]], वेइल बीजगणित और सार्वभौमिक  घेर बीजगणित सम्मिलित हैं।
Line 22: Line 22:


== सहायक और सार्वभौमिक संपत्ति ==
== सहायक और सार्वभौमिक संपत्ति ==
टेंसर बीजगणित {{math|''T''(''V'')}} को सदिश समष्टि  {{math|''V''}} पर मुक्त बीजगणित भी कहा जाता है, और क्रियात्मक है; इसका मतलब है कि प्रतिचित्र <math>V\mapsto T(V)</math> की [[ श्रेणी (गणित) ]] से एक फ़ंक्टर बनाने के लिए रैखिक मानचित्रों तक फैली हुई है {{mvar|K}}-वेक्टर स्पेस को सहयोगी बीजगणित की श्रेणी में ले जाता है।इसी तरह अन्य [[ मुक्त वस्तु ]] के साथ,  प्रकार्यक {{math|''T''}} प्रत्येक सहयोगी को भेजने वाले विस्मरण फंक्शनर के समीप  छोड़ दिया जाता है {{math|''K''}}अपने अंतर्निहित वेक्टर स्थान के लिए -ALGEBRA।
टेंसर बीजगणित {{math|''T''(''V'')}} को सदिश समष्टि  {{math|''V''}} पर मुक्त बीजगणित भी कहा जाता है, और क्रियात्मक है; इसका मतलब है कि प्रतिचित्र <math>V\mapsto T(V)</math> {{mvar|K}} -सदिश स्थान की [[ श्रेणी (गणित) ]] से साहचर्य बीजगणित की  श्रेणी के लिए एक प्रकार्यक बनाने के लिए रैखिक मानचित्रों तक फैली हुई है। इसी तरह अन्य [[ मुक्त वस्तु | मुक्त निर्माणों]] के साथ,  प्रकार्यक {{math|''T''}} को विस्मरण प्रकार्यक  के समीप  छोड़ दिया जाता है जो प्रत्येक सहयोगी {{math|''K''}}- बीजगणित को अपने अंतर्निहित सदिश स्थान में भेजता है।


स्पष्ट रूप से, टेंसर बीजगणित निम्नलिखित सार्वभौमिक गुणको संतुष्ट करता है, जो औपचारिक रूप से इस कथन को व्यक्त करता है कि यह सबसे सामान्य बीजगणित है जिसमें V:
स्पष्ट रूप से, टेंसर बीजगणित निम्नलिखित सार्वभौमिक गुण को संतुष्ट करता है, जो औपचारिक रूप से इस कथन को व्यक्त करता है कि यह ''V'' युक्त सबसे सामान्य बीजगणित है:
: कोई रैखिक मानचित्र <math>f:V \to A</math> से {{math|''V''}} एक साहचर्य बीजगणित के लिए {{math|''A''}} ऊपर {{math|''K''}} से एक बीजगणित समरूपता के लिए विशिष्ट रूप से विस्तारित किया जा सकता है {{math|''T''(''V'')}} को {{math|''A''}} जैसा कि निम्नलिखित कम्यूटेटिव आरेख द्वारा इंगित किया गया है:
: कोई रैखिक मानचित्र {{math|''V''}} से एक साहचर्य बीजगणित {{math|''A''}} पर {{math|''K''}} पर  <math>f:V \to A</math>  विशिष्ट रूप से {{math|''T''(''V'')}} से {{math|''A''}} तक बीजगणित समरूपता के लिए विस्तारित किया जा सकता है जैसा कि निम्नलिखित क्रम विनिमेय आरेख द्वारा इंगित किया गया है:


[[Image:TensorAlgebra-01.png|center|टेंसर बीजगणित की सार्वभौमिक संपत्ति]]यहां {{math|''i''}} का समावेश का प्रतिचित्र है {{math|''V''}} में {{math|''T''(''V'')}}।अन्य सार्वभौमिक गुणों के लिए, टेंसर बीजगणित {{math|''T''(''V'')}} इस गुणको संतुष्ट करने वाले अद्वितीय बीजगणित के रूप में परिभाषित किया जा सकता है (विशेष रूप से, यह एक अद्वितीय समरूपता के लिए अद्वितीय है), परन्तु इस परिभाषा को यह साबित करने की आवश्यकता है कि इस गुणको संतुष्ट करने वाली वस्तु मौजूद है।
[[Image:TensorAlgebra-01.png|center|टेंसर बीजगणित की सार्वभौमिक संपत्ति]]यहां {{math|''i''}} का समावेश का प्रतिचित्र है {{math|''V''}} में {{math|''T''(''V'')}}।अन्य सार्वभौमिक गुणों के लिए, टेंसर बीजगणित {{math|''T''(''V'')}} इस गुणको संतुष्ट करने वाले अद्वितीय बीजगणित के रूप में परिभाषित किया जा सकता है (विशेष रूप से, यह एक अद्वितीय समरूपता के लिए अद्वितीय है), परन्तु इस परिभाषा को यह साबित करने की आवश्यकता है कि इस गुणको संतुष्ट करने वाली वस्तु मौजूद है।


उपरोक्त सार्वभौमिक गुणका अर्थ है कि  {{mvar|''T''}} वेक्टर रिक्त स्थान की श्रेणी से एक फ़ंक्टर है {{math|''K''}}की श्रेणी में {{math|''K''}}-लगेब्रस।इसका मतलब है कि किसी भी रैखिक मानचित्र के बीच {{math|''K''}}-वेक्टर रिक्त स्थान {{math|''U''}} और {{math|''W''}} विशिष्ट रूप से एक तक फैली हुई है {{math|''K''}}-लजबरा होमोमोर्फिज्म से {{math|''T''(''U'')}} को {{math|''T''(''W'')}}।
उपरोक्त सार्वभौमिक गुणका अर्थ है कि  {{mvar|''T''}} सदिश रिक्त स्थान की श्रेणी से एक प्रकार्यकहै {{math|''K''}}की श्रेणी में {{math|''K''}}-लगेब्रस।इसका मतलब है कि किसी भी रैखिक मानचित्र के बीच {{math|''K''}}-सदिश रिक्त स्थान {{math|''U''}} और {{math|''W''}} विशिष्ट रूप से एक तक फैली हुई है {{math|''K''}}-लजबरा होमोमोर्फिज्म से {{math|''T''(''U'')}} को {{math|''T''(''W'')}}।


== गैर-कम्यूटेटिव बहुपद ==
== गैर- क्रम विनिमेय बहुपद ==
यदि v में परिमित आयाम n है, तो टेंसर बीजगणित को देखने का एक और तरीका n गैर-कम्यूटिंग चर में k पर बहुपद के बीजगणित के रूप में है।यदि हम V के लिए आधार वैक्टर लेते हैं, तो वे गैर-कम्यूटिंग चर (या अनिश्चित (चर)) बन जाते हैं (v), [[ संबद्धता ]], [[ वितरण विधि | वितरण विधि]] और के-रैखिकता से परे कोई बाधा नहीं।
यदि v में परिमित आयाम n है, तो टेंसर बीजगणित को देखने का एक और तरीका n गैर-कम्यूटिंग चर में k पर बहुपद के बीजगणित के रूप में है।यदि हम V के लिए आधार वैक्टर लेते हैं, तो वे गैर-कम्यूटिंग चर (या अनिश्चित (चर)) बन जाते हैं (v), [[ संबद्धता ]], [[ वितरण विधि | वितरण विधि]] और के-रैखिकता से परे कोई बाधा नहीं।


ध्यान दें कि V पर बहुपद का बीजगणित नहीं है <math>T(V)</math>, बल्कि <math>T(V^*)</math>: v पर एक (सजातीय) रैखिक कार्य एक तत्व है <math>V^*,</math> उदाहरण के लिए निर्देशांक <math>x^1,\dots,x^n</math> एक वेक्टर स्थान पर [[ सहसंयोजक वेक्टर ]] होते हैं, क्योंकि वे एक वेक्टर में लेते हैं और एक स्केलर (वेक्टर का दिया गया समन्वय) देते हैं।
ध्यान दें कि V पर बहुपद का बीजगणित नहीं है <math>T(V)</math>, बल्कि <math>T(V^*)</math>: v पर एक (सजातीय) रैखिक कार्य एक तत्व है <math>V^*,</math> उदाहरण के लिए निर्देशांक <math>x^1,\dots,x^n</math> एक सदिश स्थान पर [[ सहसंयोजक वेक्टर | सहसंयोजक सदिश]] होते हैं, क्योंकि वे एक सदिश में लेते हैं और एक स्केलर (सदिश का दिया गया समन्वय) देते हैं।


== उद्धरण ==
== उद्धरण ==
Line 48: Line 48:
प्रत्येक मामले में, यह संभव है क्योंकि वैकल्पिक उत्पाद <math>\wedge</math> और सममित उत्पाद <math>\otimes_\mathrm{Sym}</math> एक द्विबीजगणित  और हॉफ बीजगणित की परिभाषा के लिए आवश्यक स्थिरता स्थितियों का पालन करें;इसे स्पष्ट रूप से नीचे दिए गए विधि से जांचा जा सकता है।जब भी किसी के समीप  इन स्थिरता स्थितियों का पालन करने वाला उत्पाद होता है, तो निर्माणसे गुजरता है;इस तरह के एक उत्पाद के रूप में insofar ने एक भागफल स्थान को जन्म दिया, भागफल स्थान हॉफ बीजगणित निर्माणको विरासत में मिला है।
प्रत्येक मामले में, यह संभव है क्योंकि वैकल्पिक उत्पाद <math>\wedge</math> और सममित उत्पाद <math>\otimes_\mathrm{Sym}</math> एक द्विबीजगणित  और हॉफ बीजगणित की परिभाषा के लिए आवश्यक स्थिरता स्थितियों का पालन करें;इसे स्पष्ट रूप से नीचे दिए गए विधि से जांचा जा सकता है।जब भी किसी के समीप  इन स्थिरता स्थितियों का पालन करने वाला उत्पाद होता है, तो निर्माणसे गुजरता है;इस तरह के एक उत्पाद के रूप में insofar ने एक भागफल स्थान को जन्म दिया, भागफल स्थान हॉफ बीजगणित निर्माणको विरासत में मिला है।


[[ श्रेणी सिद्धांत ]] की भाषा में, कोई कहता है कि एक फंक्शनर है {{math|''T''}} की श्रेणी से {{math|''K''}}-वेक्टर रिक्त स्थान की श्रेणी में {{math|''K''}}-सोसिएट बीजगणित।परन्तु एक  प्रकार्यक भी है {{math|''Λ''}} बाह्य बीजगणित की श्रेणी में वेक्टर रिक्त स्थान ले रहे हैं, और एक फंक्शनल {{math|''Sym''}} वेक्टर रिक्त स्थान को सममित बीजगणित में ले जाना।से एक [[ प्राकृतिक परिवर्तन ]] है {{math|''T''}} इनमें से प्रत्येक के लिए।यह सत्यापित करते हुए कि हॉपफ बीजगणित निर्माणको संरक्षित करता है, यह सत्यापित करने के समान है कि नक्शे वास्तव में स्वाभाविक हैं।
[[ श्रेणी सिद्धांत ]] की भाषा में, कोई कहता है कि एक प्रकार्यक  है {{math|''T''}} की श्रेणी से {{math|''K''}}-सदिश रिक्त स्थान की श्रेणी में {{math|''K''}}-सोसिएट बीजगणित।परन्तु एक  प्रकार्यक भी है {{math|''Λ''}} बाह्य बीजगणित की श्रेणी में सदिश रिक्त स्थान ले रहे हैं, और एक फंक्शनल {{math|''Sym''}} सदिश रिक्त स्थान को सममित बीजगणित में ले जाना।से एक [[ प्राकृतिक परिवर्तन ]] है {{math|''T''}} इनमें से प्रत्येक के लिए।यह सत्यापित करते हुए कि हॉपफ बीजगणित निर्माणको संरक्षित करता है, यह सत्यापित करने के समान है कि नक्शे वास्तव में स्वाभाविक हैं।


=== कोपोडक्ट ===
=== कोपोडक्ट ===
Line 143: Line 143:
सिर्फ एम्बेडिंग है, ताकि
सिर्फ एम्बेडिंग है, ताकि
:<math>\eta: k\mapsto k</math>
:<math>\eta: k\mapsto k</math>
यह इकाई टेंसर उत्पाद के साथ संगत है <math>\otimes</math> तुच्छ है: यह वेक्टर रिक्त स्थान के टेंसर उत्पाद की मानक परिभाषा का हिस्सा है।अर्थात, <math>k\otimes x = kx</math> फील्ड तत्व k और किसी भी के लिए <math>x\in TV.</math> अधिक मौखिक रूप से, एक साहचर्य बीजगणित के लिए स्वयंसिद्धों को दो होमोमोर्फिज्म की आवश्यकता होती है (या आरेखों को कम करने):
यह इकाई टेंसर उत्पाद के साथ संगत है <math>\otimes</math> तुच्छ है: यह सदिश रिक्त स्थान के टेंसर उत्पाद की मानक परिभाषा का हिस्सा है।अर्थात, <math>k\otimes x = kx</math> फील्ड तत्व k और किसी भी के लिए <math>x\in TV.</math> अधिक मौखिक रूप से, एक साहचर्य बीजगणित के लिए स्वयंसिद्धों को दो होमोमोर्फिज्म की आवश्यकता होती है (या आरेखों को कम करने):
:<math>\nabla\circ(\eta \boxtimes\mathrm{id}_{TV}) = \eta\otimes \mathrm{id}_{TV} = \eta\cdot \mathrm{id}_{TV}</math>
:<math>\nabla\circ(\eta \boxtimes\mathrm{id}_{TV}) = \eta\otimes \mathrm{id}_{TV} = \eta\cdot \mathrm{id}_{TV}</math>
पर <math>K\boxtimes TV</math>, और उस सममित रूप से, पर <math>TV\boxtimes K</math>, वह
पर <math>K\boxtimes TV</math>, और उस सममित रूप से, पर <math>TV\boxtimes K</math>, वह
Line 221: Line 221:
यहाँ, पहले की तरह, कोई उल्लेखनीय चाल का उपयोग करता है <math>v_0=v_{k+1}=1\in K</math> (याद करते हुए <math>v\otimes 1=v</math> तुच्छ रूप से)।
यहाँ, पहले की तरह, कोई उल्लेखनीय चाल का उपयोग करता है <math>v_0=v_{k+1}=1\in K</math> (याद करते हुए <math>v\otimes 1=v</math> तुच्छ रूप से)।


यह कॉप्रोडक्ट एक कोयला को जन्म देता है।यह एक कोयला का वर्णन करता है जो T पर बीजगणित निर्माणके लिए [[ द्वंद्व (रैखिक बीजगणित) ]] है<sup>& lowast; </sup>), जहाँ v<sup>& Lowast; </sup> रैखिक मानचित्र v → 'f' के दोहरे वेक्टर स्थान को दर्शाता है।उसी तरह से कि टेंसर बीजगणित एक मुक्त बीजगणित है, इसी कोयला को कोक-फ्री कहा जाता है।सामान्य उत्पाद के साथ यह एक द्विबीजगणित  नहीं है।इसे उत्पाद के साथ एक द्विबीजगणित  में बदल दिया जा सकता है <math>v_i\cdot v_j=(i,j)v_{i+j}</math> जहां (मैं, जे) के लिए द्विपद गुणनंक को दर्शाता है <math>\tbinom{i+j}{i}</math>।इस द्विबीजगणित  को [[ विभाजित शक्ति संरचना | विभाजित शक्ति निर्माण]] के रूप में जाना जाता है।
यह कॉप्रोडक्ट एक कोयला को जन्म देता है।यह एक कोयला का वर्णन करता है जो T पर बीजगणित निर्माणके लिए [[ द्वंद्व (रैखिक बीजगणित) ]] है<sup>& lowast; </sup>), जहाँ v<sup>& Lowast; </sup> रैखिक मानचित्र v → 'f' के दोहरे सदिश स्थान को दर्शाता है।उसी तरह से कि टेंसर बीजगणित एक मुक्त बीजगणित है, इसी कोयला को कोक-फ्री कहा जाता है।सामान्य उत्पाद के साथ यह एक द्विबीजगणित  नहीं है।इसे उत्पाद के साथ एक द्विबीजगणित  में बदल दिया जा सकता है <math>v_i\cdot v_j=(i,j)v_{i+j}</math> जहां (मैं, जे) के लिए द्विपद गुणनंक को दर्शाता है <math>\tbinom{i+j}{i}</math>।इस द्विबीजगणित  को [[ विभाजित शक्ति संरचना | विभाजित शक्ति निर्माण]] के रूप में जाना जाता है।


इसके बीच का अंतर, और अन्य कोलजबरा सबसे आसानी से देखा जाता है <math>T^2V</math> अवधि।यहाँ, एक के समीप  है
इसके बीच का अंतर, और अन्य कोलजबरा सबसे आसानी से देखा जाता है <math>T^2V</math> अवधि।यहाँ, एक के समीप  है
Line 228: Line 228:


== यह भी देखें ==
== यह भी देखें ==
*लट [[ लट वेक्टर स्थान ]]
*लट [[ लट वेक्टर स्थान | लट सदिश स्थान]]
*ब्रेडेड [[ हॉपफ बीजगणित ]]
*ब्रेडेड [[ हॉपफ बीजगणित ]]
*[[ मोनोइडल श्रेणी ]]
*[[ मोनोइडल श्रेणी ]]

Revision as of 20:26, 23 January 2023

गणित में, सदिश समष्टि v के टेंसर बीजगणित, जिसे T(V) या 'T•(V)' के रूप में निरूपित किया, V (किसी भी श्रेणी के) पर टेन्सर के एक क्षेत्र पर बीजगणित है, जिसमें गुणन टेंसर गुणनफल होता है। यह V पर मुक्त बीजगणित है, बीजगणित से सदिश रिक्त स्थान के लिए विस्मरण प्रकार्यक के समीप छोड़ने के अर्थ में: यह संबंधित सार्वभौमिक गुण (नीचे देखें) के अर्थ में "सबसे सामान्य" बीजगणित है जिसमें V सम्मिलित है।

टेंसर बीजगणित महत्वपूर्ण है क्योंकि कई अन्य बीजगणित T(V) के भागफल साहचर्य बीजगणित के रूप में उत्पन्न होते हैं। इनमें बाह्य बीजगणित , सममित बीजगणित, क्लिफोर्ड बीजगणित , वेइल बीजगणित और सार्वभौमिक घेर बीजगणित सम्मिलित हैं।

टेंसर बीजगणित में भी दो कोलजेब्रा संरचनाएं होती हैं; एक साधारण एक, जो इसे एक द्विबीजगणित नहीं बनाता है, परन्तु एक कोफ़्री कोलजेब्रा की अवधारणा की ओर ले जाता है, और एक अधिक जटिल, जो एक द्विबीजगणित की उपज देता है, और एक हॉफ बीजगणित निर्माणबनाने के लिए एक प्रतिध्रुव देकर इसे बढ़ाया जा सकता है।

नोट: इस लेख में, सभी बीजगणितों को इकाई बीजगणित और साहचर्य बीजगणित माना जाता है। इकाई को स्पष्ट रूप से सहउत्पाद को परिभाषित करने के लिए आवश्यक है।

संरचना

मान लीजिए V क्षेत्र (गणित) K पर एक सदिश समष्टि है। किसी भी गैर-नकारात्मक पूर्णांक k के लिए, हम V की k वीं टेंसर शक्ति को V के टेंसर उत्पाद के रूप में परिभाषित करते हैं, जो स्वयं k बार होता है:

अर्थात, TkV में टेंसर क्रम k के V पर सभी टेन्सर होते हैं। परम्परागत के अनुसार T0V मूल(क्षेत्र) K (स्वयं के ऊपर एक आयामी सदिश स्थान के रूप में) है।

फिर हम k = 0,1,2,… के लिए TkV के प्रत्यक्ष योग के रूप में T(V) का निर्माण करते हैं।

T(V) में गुणन टेंसर उत्पाद द्वारा दिए गए विहित समरूपता

द्वारा निर्धारित किया जाता है, जिसे बाद में सभी T(V) तक रैखिकता द्वारा विस्तारित किया जाता है। इस गुणन नियम का अर्थ है कि टेंसर बीजगणित T(V) स्वाभाविक रूप से एक क्रमिक बीजगणित है जिसमें TkV क्रम-k-उपस्थान के रूप में कार्य करता है। उपस्थान जोड़कर इस श्रेणीकरण को 'z' श्रेणीकरण तक बढ़ाया जा सकता है नकारात्मक पूर्णांक k के लिए ।

निर्माण क्रम विनिमेय वलय पर किसी भी मॉड्यूल (गणित) M के टेंसर बीजगणित के लिए एक सरल विधि से सामान्यीकरण करता है। यदि R एक गैर-क्रम विनिमेय वलय है, तो कोई भी किसी भी R-R द्विप्रतिरूपक M के लिए निर्माण कर सकता है। (यह सामान्य R-मॉड्यूल के लिए काम नहीं करता है क्योंकि पुनरावृत्त टेंसर उत्पादों का गठन नहीं किया जा सकता है।)

सहायक और सार्वभौमिक संपत्ति

टेंसर बीजगणित T(V) को सदिश समष्टि V पर मुक्त बीजगणित भी कहा जाता है, और क्रियात्मक है; इसका मतलब है कि प्रतिचित्र K -सदिश स्थान की श्रेणी (गणित) से साहचर्य बीजगणित की श्रेणी के लिए एक प्रकार्यक बनाने के लिए रैखिक मानचित्रों तक फैली हुई है। इसी तरह अन्य मुक्त निर्माणों के साथ, प्रकार्यक T को विस्मरण प्रकार्यक के समीप छोड़ दिया जाता है जो प्रत्येक सहयोगी K- बीजगणित को अपने अंतर्निहित सदिश स्थान में भेजता है।

स्पष्ट रूप से, टेंसर बीजगणित निम्नलिखित सार्वभौमिक गुण को संतुष्ट करता है, जो औपचारिक रूप से इस कथन को व्यक्त करता है कि यह V युक्त सबसे सामान्य बीजगणित है:

कोई रैखिक मानचित्र V से एक साहचर्य बीजगणित A पर K पर विशिष्ट रूप से T(V) से A तक बीजगणित समरूपता के लिए विस्तारित किया जा सकता है जैसा कि निम्नलिखित क्रम विनिमेय आरेख द्वारा इंगित किया गया है:
टेंसर बीजगणित की सार्वभौमिक संपत्ति

यहां i का समावेश का प्रतिचित्र है V में T(V)।अन्य सार्वभौमिक गुणों के लिए, टेंसर बीजगणित T(V) इस गुणको संतुष्ट करने वाले अद्वितीय बीजगणित के रूप में परिभाषित किया जा सकता है (विशेष रूप से, यह एक अद्वितीय समरूपता के लिए अद्वितीय है), परन्तु इस परिभाषा को यह साबित करने की आवश्यकता है कि इस गुणको संतुष्ट करने वाली वस्तु मौजूद है।

उपरोक्त सार्वभौमिक गुणका अर्थ है कि T सदिश रिक्त स्थान की श्रेणी से एक प्रकार्यकहै Kकी श्रेणी में K-लगेब्रस।इसका मतलब है कि किसी भी रैखिक मानचित्र के बीच K-सदिश रिक्त स्थान U और W विशिष्ट रूप से एक तक फैली हुई है K-लजबरा होमोमोर्फिज्म से T(U) को T(W)

गैर- क्रम विनिमेय बहुपद

यदि v में परिमित आयाम n है, तो टेंसर बीजगणित को देखने का एक और तरीका n गैर-कम्यूटिंग चर में k पर बहुपद के बीजगणित के रूप में है।यदि हम V के लिए आधार वैक्टर लेते हैं, तो वे गैर-कम्यूटिंग चर (या अनिश्चित (चर)) बन जाते हैं (v), संबद्धता , वितरण विधि और के-रैखिकता से परे कोई बाधा नहीं।

ध्यान दें कि V पर बहुपद का बीजगणित नहीं है , बल्कि : v पर एक (सजातीय) रैखिक कार्य एक तत्व है उदाहरण के लिए निर्देशांक एक सदिश स्थान पर सहसंयोजक सदिश होते हैं, क्योंकि वे एक सदिश में लेते हैं और एक स्केलर (सदिश का दिया गया समन्वय) देते हैं।

उद्धरण

टेंसर बीजगणित की व्यापकता के कारण, ब्याज के कई अन्य बीजगणितों का निर्माणटेंसर बीजगणित के साथ शुरू करके और फिर जनरेटर पर कुछ संबंधों को लागू करके किया जा सकता है, अर्थात् T(V) के कुछ भागफल सहयोगी बीजगणित का निर्माणकरके।इसके उदाहरण बाह्य बीजगणित, सममित बीजगणित, क्लिफोर्ड बीजगणित, वेइल बीजगणित और सार्वभौमिक घेर बीजगणित हैं।

कोयला

टेंसर बीजगणित में दो अलग -अलग कोयला संरचनाएं हैं।एक टेंसर उत्पाद के साथ संगत है, और इस प्रकार इसे एक बायलजबरा तक बढ़ाया जा सकता है, और इसे आगे एक प्रतिध्रुव के साथ एक हॉपफ बीजगणित निर्माणके लिए बढ़ाया जा सकता है।अन्य संरचना, हालांकि सरल, को एक द्विबीजगणित तक बढ़ाया नहीं जा सकता है।पहली निर्माणको तुरंत नीचे विकसित किया गया है;दूसरी निर्माणकोफ्री कोलजबरा पर अनुभाग में और नीचे दी गई है।

नीचे दिए गए विकास को वेज प्रतीक का उपयोग करके बाह्य बीजगणित पर समान रूप से अच्छी तरह से लागू किया जा सकता है टेंसर प्रतीक के स्थान पर ;बाह्य बीजगणित के तत्वों को अनुमति देते समय एक संकेत को भी ट्रैक किया जाना चाहिए।यह पत्राचार भी द्विबीजगणित की परिभाषा के माध्यम से, और एक हॉफ बीजगणित की परिभाषा पर भी रहता है।अर्थात्, बाह्य बीजगणित को हॉपफ बीजगणित निर्माणभी दी जा सकती है।

इसी तरह, सममित बीजगणित को एक हॉपफ बीजगणित की निर्माणभी दी जा सकती है, ठीक उसी फैशन में, हर जगह टेंसर उत्पाद को बदलकर सममित टेंसर उत्पाद द्वारा , यानी वह उत्पाद जहां प्रत्येक मामले में, यह संभव है क्योंकि वैकल्पिक उत्पाद और सममित उत्पाद एक द्विबीजगणित और हॉफ बीजगणित की परिभाषा के लिए आवश्यक स्थिरता स्थितियों का पालन करें;इसे स्पष्ट रूप से नीचे दिए गए विधि से जांचा जा सकता है।जब भी किसी के समीप इन स्थिरता स्थितियों का पालन करने वाला उत्पाद होता है, तो निर्माणसे गुजरता है;इस तरह के एक उत्पाद के रूप में insofar ने एक भागफल स्थान को जन्म दिया, भागफल स्थान हॉफ बीजगणित निर्माणको विरासत में मिला है।

श्रेणी सिद्धांत की भाषा में, कोई कहता है कि एक प्रकार्यक है T की श्रेणी से K-सदिश रिक्त स्थान की श्रेणी में K-सोसिएट बीजगणित।परन्तु एक प्रकार्यक भी है Λ बाह्य बीजगणित की श्रेणी में सदिश रिक्त स्थान ले रहे हैं, और एक फंक्शनल Sym सदिश रिक्त स्थान को सममित बीजगणित में ले जाना।से एक प्राकृतिक परिवर्तन है T इनमें से प्रत्येक के लिए।यह सत्यापित करते हुए कि हॉपफ बीजगणित निर्माणको संरक्षित करता है, यह सत्यापित करने के समान है कि नक्शे वास्तव में स्वाभाविक हैं।

कोपोडक्ट

कोयलाजबरा एक नक़ली या विकर्ण ऑपरेटर को परिभाषित करके प्राप्त किया जाता है

यहां, के लिए एक छोटे हाथ के रूप में उपयोग किया जाता है कोष्ठक के विस्फोट से बचने के लिए। H> प्रतीक का उपयोग बाह्य टेंसर उत्पाद को निरूपित करने के लिए किया जाता है, जो एक कोयला की परिभाषा के लिए आवश्यक है।इसका उपयोग इसे आंतरिक टेंसर उत्पाद से अलग करने के लिए किया जा रहा है , जो पहले से ही टेंसर बीजगणित में गुणन को निरूपित करने के लिए उपयोग किया जा रहा है (इस मुद्दे पर और स्पष्टीकरण के लिए नीचे, नीचे अनुभाग गुणन देखें)।इन दो प्रतीकों के बीच भ्रम से बचने के लिए, अधिकांश ग्रंथ बदल जाएंगे एक सादे डॉट द्वारा, या यहां तक कि इसे पूरी तरह से छोड़ दें, इस समझ के साथ कि यह संदर्भ से निहित है।यह तब अनुमति देता है के स्थान पर इस्तेमाल किया जाना चिन्ह, प्रतीक।यह नीचे नहीं किया गया है, और दो प्रतीकों का उपयोग स्वतंत्र रूप से और स्पष्ट रूप से किया जाता है, ताकि प्रत्येक के उचित स्थान को दिखाया जा सके।परिणाम थोड़ा अधिक क्रिया है, परन्तु समझना आसान होना चाहिए।

ऑपरेटर की परिभाषा सबसे आसानी से चरणों में बनाया गया है, पहले तत्वों के लिए इसे परिभाषित करके और फिर होमोमोर्फिक रूप से इसे पूरे बीजगणित तक बढ़ाकर।तब कॉप्रोडक्ट के लिए एक उपयुक्त विकल्प है

और

कहां क्षेत्र की इकाई है ।रैखिकता से, एक स्पष्ट रूप से है

सबके लिए यह सत्यापित करना सीधा है कि यह परिभाषा एक कोयला के स्वयंसिद्धों को संतुष्ट करती है: अर्थात्, वह है

कहां पहचान मानचित्र पर है ।वास्तव में, एक हो जाता है

और इसी तरह दूसरी तरफ।इस बिंदु पर, कोई एक लेम्मा को आमंत्रित कर सकता है, और कह सकता है कि तुच्छता से, रैखिकता द्वारा, सभी के लिए , चूंकि एक स्वतंत्र वस्तु है और मुक्त बीजगणित का एक जनरेटर (गणित) है, और एक समरूपता है।हालांकि, स्पष्ट अभिव्यक्तियाँ प्रदान करना व्यावहारिक है।अभीतक के लिए तो , एक (परिभाषा के अनुसार) समरूपता है

विस्तार, एक है

उपरोक्त विस्तार में, कभी भी लिखने की कोई आवश्यकता नहीं है जैसा कि बीजगणित में सिर्फ सादा-पुराना स्केलर गुणन है;यानी, एक तुच्छ रूप से अर्थात ऊपर का विस्तार बीजगणित श्रेणीकरण को संरक्षित करता है।अर्थात,

इस फैशन में जारी रखते हुए, कोई भी ऑर्डर एम के समरूप तत्व पर अभिनय करने वाले कॉप्रोडक्ट के लिए एक स्पष्ट अभिव्यक्ति प्राप्त कर सकता है:

जहां प्रतीक, जिसे ш के रूप में प्रकट होना चाहिए, SHA, फेरबदल उत्पाद को दर्शाता है।यह दूसरे योग में व्यक्त किया गया है, जिसे सभी (p, q) शफल | (p, m-p) -shuffles पर ले लिया गया है।फेरबदल है

परम्परागत द्वारा, कोई उस श (एम, 0) और श (0, एम) को लेता है {आईडी: {1, ..., एम} → → {1, ..., एम <नोबी>}}।शुद्ध टेंसर उत्पादों को लेना भी सुविधाजनक है </nowiki> और क्रमशः पी = 0 और पी = एम के लिए 1 के बराबर )।फेरबदल एक सह-वृद्धि के पहले स्वयंसिद्ध से सीधे अनुसरण करता है: तत्वों का सापेक्ष क्रम राइफल फेरबदल में संरक्षित है: राइफल फेरबदल केवल आदेशित अनुक्रम को दो क्रमबद्ध अनुक्रमों में विभाजित करता है, एक बाईं ओर, और एक दाईं ओर।

समान रूप से,

जहां उत्पाद हैं , और जहां राशि के सभी सबसेट से अधिक है

पहले की तरह, बीजगणित श्रेणीकरण संरक्षित है:


counit

कंसिट बीजगणित से बाहर क्षेत्र घटक के प्रक्षेपण द्वारा दिया जाता है।यह के रूप में लिखा जा सकता है के लिए और के लिए ।टेंसर उत्पाद के तहत समरूपता द्वारा , यह तक फैली हुई है

सबके लिए यह सत्यापित करने के लिए एक सीधा मामला है कि यह परामर्श कोयलाजबरा के लिए आवश्यक स्वयंसिद्ध को संतुष्ट करता है:

यह स्पष्ट रूप से काम करते हुए, एक है

जहां, अंतिम चरण के लिए, एक ने समरूपता का उपयोग किया है , जैसा कि काउंसिट के परिभाषित स्वयंसिद्ध के लिए उपयुक्त है।

द्विबीजगणित

एक द्विबीजगणित गुणन, और comultiplication दोनों को परिभाषित करता है, और उन्हें संगत होने की आवश्यकता होती है।

गुणन

गुणन एक ऑपरेटर द्वारा दिया जाता है

जो, इस मामले में, पहले से ही आंतरिक टेंसर उत्पाद के रूप में दिया गया था।अर्थात,

अर्थात, उपरोक्त को यह स्पष्ट करना चाहिए कि क्यों प्रतीक का उपयोग करने की आवश्यकता है: वास्तव में एक और एक ही चीज थी ;और यहाँ उल्लेखनीय ढलान से अराजकता होगी।इसे मजबूत करने के लिए: टेंसर उत्पाद टेंसर बीजगणित गुणन से मेल खाता है एक बीजगणित की परिभाषा में उपयोग किया जाता है, जबकि टेंसर उत्पाद एक कोयला में comultiplication की परिभाषा में आवश्यक है।ये दो टेंसर उत्पाद एक ही बात नहीं हैं!

इकाई

बीजगणित के लिए इकाई

सिर्फ एम्बेडिंग है, ताकि

यह इकाई टेंसर उत्पाद के साथ संगत है तुच्छ है: यह सदिश रिक्त स्थान के टेंसर उत्पाद की मानक परिभाषा का हिस्सा है।अर्थात, फील्ड तत्व k और किसी भी के लिए अधिक मौखिक रूप से, एक साहचर्य बीजगणित के लिए स्वयंसिद्धों को दो होमोमोर्फिज्म की आवश्यकता होती है (या आरेखों को कम करने):

पर , और उस सममित रूप से, पर , वह

जहां इन समीकरणों के दाहिने हाथ को स्केलर उत्पाद के रूप में समझा जाना चाहिए।

संगतता

इकाई और काउंसिट, और गुणन और comultiplication, सभी को संगतता स्थितियों को संतुष्ट करना होगा।यह देखना सीधा है

इसी तरह, इकाई comultiplication के साथ संगत है:

उपरोक्त को समरूपता के उपयोग की आवश्यकता है काम करने के क्रम में;इसके बिना, एक रैखिकता खो देता है।घटक-वार,

दाहिने हाथ की ओर समरूपता का उपयोग करने के साथ।

गुणन और counit संगत हैं:

जब भी x या y के तत्व नहीं होते हैं , और अन्यथा, एक क्षेत्र पर स्केलर गुणन है: सत्यापित करने के लिए सबसे मुश्किल गुणन और comultiplication की संगतता है:

कहां तत्वों का आदान -प्रदान।संगतता की स्थिति को केवल सत्यापित करने की आवश्यकता है ;पूर्ण संगतता सभी के लिए एक होमोमोर्फिक विस्तार के रूप में अनुसरण करती है सत्यापन क्रिया है परन्तु सीधा है;यह यहां नहीं दिया गया है, अंतिम परिणाम को छोड़कर:

के लिए इसके लिए एक स्पष्ट अभिव्यक्ति कोयलाजबरा अनुभाग में ऊपर दी गई थी।

हॉपफ बीजगणित

हॉफ बीजगणित द्विबीजगणित Axioms में एक प्रतिध्रुव जोड़ता है।प्रतिध्रुव पर द्वारा दिया गया है

इसे कभी-कभी एंटी-आइडेंटिटी कहा जाता है।पर प्रतिध्रुव द्वारा दिया गया है

और इसपर द्वारा

यह होमोमोर्फिक रूप से फैली हुई है


संगतता

गुणन और comultiplication के साथ प्रतिध्रुव की संगतता के लिए आवश्यक है

यह घटक पर सत्यापित करने के लिए सीधा है :

इसी तरह, पर :

याद करें कि

और कि

किसी के लिए वह नहीं है एक समान विधि से आगे बढ़ सकता है, होमोमोर्फिज्म द्वारा, यह सत्यापित करते हुए कि प्रतिध्रुव फेरबदल में उचित रद्द करने वाले संकेतों को सम्मिलित करता है, संगतता स्थिति के साथ शुरू होता है और प्रेरण द्वारा आगे बढ़ना।

कोफ़्री cocomplete Coalgebra

एक टेंसर बीजगणित पर एक अलग कोपोडक्ट को परिभाषित कर सकता है, जो ऊपर दिए गए की तुलना में सरल है।यह द्वारा दिया गया है

यहाँ, पहले की तरह, कोई उल्लेखनीय चाल का उपयोग करता है (याद करते हुए तुच्छ रूप से)।

यह कॉप्रोडक्ट एक कोयला को जन्म देता है।यह एक कोयला का वर्णन करता है जो T पर बीजगणित निर्माणके लिए द्वंद्व (रैखिक बीजगणित) है& lowast; ), जहाँ v& Lowast; रैखिक मानचित्र v → 'f' के दोहरे सदिश स्थान को दर्शाता है।उसी तरह से कि टेंसर बीजगणित एक मुक्त बीजगणित है, इसी कोयला को कोक-फ्री कहा जाता है।सामान्य उत्पाद के साथ यह एक द्विबीजगणित नहीं है।इसे उत्पाद के साथ एक द्विबीजगणित में बदल दिया जा सकता है जहां (मैं, जे) के लिए द्विपद गुणनंक को दर्शाता है ।इस द्विबीजगणित को विभाजित शक्ति निर्माण के रूप में जाना जाता है।

इसके बीच का अंतर, और अन्य कोलजबरा सबसे आसानी से देखा जाता है अवधि।यहाँ, एक के समीप है

के लिए , जो पहले की तुलना में स्पष्ट रूप से एक फेरबदल शब्द को याद कर रहा है।

यह भी देखें


संदर्भ

  • Bourbaki, Nicolas (1989). Algebra I. Chapters 1-3. Elements of Mathematics. Springer-Verlag. ISBN 3-540-64243-9. (See Chapter 3 §5)

{{Navbox | name =बीजगणित | state =

| bodyclass = hlist

| title =बीजगणित | group1 =क्षेत्रों | list1 =

| group2 =बीजगणितीय संरचना | list2 =* समूह   ( सिद्धांत)

| group3 =लीनियर अलजेब्रा | list3 =* मैट्रिक्स और nbsp; (सिद्धांत)

| group4 =मल्टीलिनियर बीजगणित | list4 =* टेंसर बीजगणित

| group5 =विषय सूची | list5 =* सार बीजगणित

| group6 =शब्दावलियों | list6 =* रैखिक बीजगणित

| group7 =संबंधित | list7 =* अंक शास्त्र

| belowस्टाइल = फ़ॉन्ट-वेट: बोल्ड; | below =* श्रेणी

}}

श्रेणी: बीजगणित श्रेणी: मल्टीलिनियर बीजगणित श्रेणी: टेन्सर श्रेणी: हॉपफ अल्जेब्रास