अस्पष्ट समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
== उदाहरण ==
== उदाहरण ==


=== उलटा कार्य ===
=== व्युत्क्रम समीकरण ===
निहित कार्य का एक सामान्य प्रकार एक व्युत्क्रम कार्य है। सभी कार्यों में एक अद्वितीय उलटा कार्य नहीं होता है। यदि {{mvar|g}} का एक कार्य है {{mvar|x}} जिसका एक अनूठा व्युत्क्रम है, फिर का प्रतिलोम कार्य {{mvar|g}}, बुलाया {{math|''g''<sup>−1</sup>}}, समीकरण का हल (गणित) देने वाला अनूठा फलन है
अन्तर्निहित समीकरण का एक सामान्य प्रकार व्युत्क्रम समीकरण है। सभी समीकरणों में अद्वितीय व्युत्क्रम समीकरण नहीं होता है। यदि {{mvar|g}}{{mvar|x}} का एक फलन है जिसका एक अनूठा व्युत्क्रम है, फिर का व्युत्क्रम समीकरण {{mvar|g}} को  {{math|''g''<sup>−1</sup>}} कहा जाता है, समीकरण का हल देने वाला अनूठा फलन है


:<math> y=g(x) </math>
:<math> y=g(x) </math>
के लिये {{mvar|x}} के अनुसार {{mvar|y}}. यह समाधान तब के रूप में लिखा जा सकता है
{{mvar|x}} के लिये के {{mvar|y}} अनुसार | यह समाधान तब इस रूप में लिखा जा सकता है


:<math> x = g^{-1}(y) \,.</math>
:<math> x = g^{-1}(y) \,.</math>
परिभाषित {{math|''g''<sup>−1</sup>}} के विपरीत के रूप में {{mvar|g}} एक निहित परिभाषा है। कुछ कार्यों के लिए {{mvar|g}}, {{math|''g''<sup>−1</sup>(''y'')}} एक [[बंद रूप अभिव्यक्ति]] के रूप में स्पष्ट रूप से लिखा जा सकता है - उदाहरण के लिए, यदि {{math|1=''g''(''x'') = 2''x'' − 1}}, फिर {{math|1=''g''<sup>−1</sup>(''y'') = {{sfrac|1|2}}(''y'' + 1)}}. हालांकि, यह अक्सर संभव नहीं होता है, या केवल एक नया अंकन शुरू करने से होता है (जैसा कि नीचे [[उत्पाद लॉग]] उदाहरण में है)।
{{math|''g''<sup>−1</sup>}} को {{mvar|g}} के व्युत्क्रम रूप में परिभाषित करना अस्पष्ट परिभाषा है। {{mvar|g}} के कुछ समीकरणों के लिए , {{math|''g''<sup>−1</sup>(''y'')}} एक [[बंद रूप अभिव्यक्ति|बंद रूप फलन]] के रूप में स्पष्ट लिखा जा सकता है - उदाहरण के लिए, यदि {{math|1=''g''(''x'') = 2''x'' − 1}}, फिर {{math|1=''g''<sup>−1</sup>(''y'') = {{sfrac|1|2}}(''y'' + 1)}}. हालांकि, यह अक्सर संभव नहीं होता है, या केवल एक नया अंकन शुरू करने से होता है (जैसा कि नीचे [[उत्पाद लॉग|प्रोडक्ट लॉग]] उदाहरण में है)।


सहज रूप से, एक उलटा कार्य प्राप्त किया जाता है {{mvar|g}} आश्रित और स्वतंत्र चरों की भूमिकाओं को आपस में बदलकर।
सहज रूप से, {{mvar|g}} आश्रित और स्वतंत्र चरों की भूमिकाओं को आपस में बदलकर एक व्युत्क्रम समीकरण प्राप्त किया जाता है।


उदाहरण: उत्पाद लॉग एक अंतर्निहित कार्य है जो समाधान देता है {{mvar|x}} समीकरण का {{math|1=''y'' − ''xe''<sup>''x''</sup> = 0}}.
उदाहरण: उत्पाद लॉग एक अंतर्अन्तर्निहित समीकरण है जो समाधान देता है {{mvar|x}} समीकरण का {{math|1=''y'' − ''xe''<sup>''x''</sup> = 0}}.


=== बीजगणितीय कार्य ===
=== बीजगणितीय समीकरण ===
{{main|Algebraic function}}
{{main|Algebraic function}}
एक बीजगणितीय फलन एक ऐसा फलन है जो बहुपद समीकरण को संतुष्ट करता है जिसके गुणांक स्वयं बहुपद होते हैं। उदाहरण के लिए, एक चर में एक बीजगणितीय फ़ंक्शन {{mvar|x}} का समाधान देता है {{mvar|y}} एक समीकरण का
एक बीजगणितीय फलन एक ऐसा फलन है जो बहुपद समीकरण को संतुष्ट करता है जिसके गुणांक स्वयं बहुपद होते हैं। उदाहरण के लिए, एक चर में एक बीजगणितीय फ़ंक्शन {{mvar|x}} का समाधान देता है {{mvar|y}} एक समीकरण का


:<math>a_n(x)y^n+a_{n-1}(x)y^{n-1}+\cdots+a_0(x)=0 \,,</math>
:<math>a_n(x)y^n+a_{n-1}(x)y^{n-1}+\cdots+a_0(x)=0 \,,</math>
जहां गुणांक {{math|''a<sub>i</sub>''(''x'')}} के बहुपद कार्य हैं {{mvar|x}}. इस बीजगणितीय फलन को हल समीकरण के दाहिने पक्ष के रूप में लिखा जा सकता है {{math|1=''y'' = ''f''(''x'')}}. ऐसे लिखा, {{mvar|f}} एक बहु-मूल्यवान कार्य है | बहु-मूल्यवान अंतर्निहित कार्य।
जहां गुणांक {{math|''a<sub>i</sub>''(''x'')}} के बहुपद कार्य हैं {{mvar|x}}. इस बीजगणितीय फलन को हल समीकरण के दाहिने पक्ष के रूप में लिखा जा सकता है {{math|1=''y'' = ''f''(''x'')}}. ऐसे लिखा, {{mvar|f}} एक बहु-मूल्यवान कार्य है | बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण।


बीजगणितीय कार्य [[गणितीय विश्लेषण]] और [[बीजगणितीय ज्यामिति]] में एक महत्वपूर्ण भूमिका निभाते हैं। बीजगणितीय फलन का एक सरल उदाहरण इकाई वृत्त समीकरण के बाईं ओर दिया गया है:
बीजगणितीय कार्य [[गणितीय विश्लेषण]] और [[बीजगणितीय ज्यामिति]] में एक महत्वपूर्ण भूमिका निभाते हैं। बीजगणितीय फलन का एक सरल उदाहरण इकाई वृत्त समीकरण के बाईं ओर दिया गया है:
Line 35: Line 35:


:<math>y=\pm\sqrt{1-x^2} \,. </math>
:<math>y=\pm\sqrt{1-x^2} \,. </math>
लेकिन इस स्पष्ट समाधान को निर्दिष्ट किए बिना भी, यूनिट सर्कल समीकरण के अंतर्निहित समाधान को संदर्भित करना संभव है {{math|1=''y'' = ''f''(''x'')}}, कहाँ पे {{mvar|f}} बहु-मूल्यवान अंतर्निहित कार्य है।
लेकिन इस स्पष्ट समाधान को निर्दिष्ट किए बिना भी, यूनिट सर्कल समीकरण के अंतर्निहित समाधान को संदर्भित करना संभव है {{math|1=''y'' = ''f''(''x'')}}, कहाँ पे {{mvar|f}} बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण है।


जबकि समीकरणों के लिए स्पष्ट समाधान पाया जा सकता है जो द्विघात समीकरण, [[घन समीकरण]] और [[चतुर्थक समीकरण]] हैं {{mvar|y}}, समान रूप से क्विंटिक समीकरण और उच्च डिग्री समीकरणों के लिए सही नहीं है, जैसे
जबकि समीकरणों के लिए स्पष्ट समाधान पाया जा सकता है जो द्विघात समीकरण, [[घन समीकरण]] और [[चतुर्थक समीकरण]] हैं {{mvar|y}}, समान रूप से क्विंटिक समीकरण और उच्च डिग्री समीकरणों के लिए सही नहीं है, जैसे


:<math> y^5 + 2y^4 -7y^3 + 3y^2 -6y - x = 0 \,. </math>
:<math> y^5 + 2y^4 -7y^3 + 3y^2 -6y - x = 0 \,. </math>
फिर भी, कोई अभी भी अंतर्निहित समाधान का उल्लेख कर सकता है {{math|1=''y'' = ''f''(''x'')}} बहु-मूल्यवान अंतर्निहित कार्य शामिल है {{mvar|f}}.
फिर भी, कोई अभी भी अंतर्निहित समाधान का उल्लेख कर सकता है {{math|1=''y'' = ''f''(''x'')}} बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण शामिल है {{mvar|f}}.


==चेतावनी ==
==चेतावनी ==
हर समीकरण नहीं {{math|1=''R''(''x'', ''y'') = 0}} एक एकल-मूल्यवान फ़ंक्शन का एक ग्राफ़ दर्शाता है, सर्कल समीकरण एक प्रमुख उदाहरण है। एक अन्य उदाहरण द्वारा दिया गया एक अंतर्निहित कार्य है {{math|1=''x'' − ''C''(''y'') = 0}} कहाँ पे {{mvar|C}} एक [[घन बहुपद]] है जिसके ग्राफ में एक कूबड़ है। इस प्रकार, एक अंतर्निहित फ़ंक्शन के लिए एक वास्तविक (एकल-मूल्यवान) फ़ंक्शन होने के लिए ग्राफ़ के केवल भाग का उपयोग करना आवश्यक हो सकता है। एक अंतर्निहित फ़ंक्शन को कभी-कभी किसी भाग पर ज़ूम इन करने के बाद ही एक सच्चे फ़ंक्शन के रूप में सफलतापूर्वक परिभाषित किया जा सकता है {{mvar|x}}-अक्ष और कुछ अवांछित कार्यात्मक शाखाओं को काट देना। फिर एक समीकरण व्यक्त करना {{mvar|y}} अन्य चरों के निहित कार्य के रूप में लिखा जा सकता है।
हर समीकरण नहीं {{math|1=''R''(''x'', ''y'') = 0}} एक एकल-मूल्यवान फ़ंक्शन का एक ग्राफ़ दर्शाता है, सर्कल समीकरण एक प्रमुख उदाहरण है। एक अन्य उदाहरण द्वारा दिया गया एक अंतर्अन्तर्निहित समीकरण है {{math|1=''x'' − ''C''(''y'') = 0}} कहाँ पे {{mvar|C}} एक [[घन बहुपद]] है जिसके ग्राफ में एक कूबड़ है। इस प्रकार, एक अंतर्निहित फ़ंक्शन के लिए एक वास्तविक (एकल-मूल्यवान) फ़ंक्शन होने के लिए ग्राफ़ के केवल भाग का उपयोग करना आवश्यक हो सकता है। एक अंतर्निहित फ़ंक्शन को कभी-कभी किसी भाग पर ज़ूम इन करने के बाद ही एक सच्चे फ़ंक्शन के रूप में सफलतापूर्वक परिभाषित किया जा सकता है {{mvar|x}}-अक्ष और कुछ अवांछित कार्यात्मक शाखाओं को काट देना। फिर एक समीकरण व्यक्त करना {{mvar|y}} अन्य चरों के अन्तर्निहित समीकरण के रूप में लिखा जा सकता है।


परिभाषित समीकरण {{math|1=''R''(''x'', ''y'') = 0}} अन्य विकृति भी हो सकती है। उदाहरण के लिए, समीकरण {{math|1=''x'' = 0}} एक समारोह का मतलब नहीं है {{math|''f''(''x'')}} के लिए समाधान दे रहा है {{mvar|y}} बिल्कुल भी; यह एक खड़ी रेखा है। इस तरह की समस्या से बचने के लिए, स्वीकार्य प्रकार के समीकरणों या [[समारोह डोमेन]] पर अक्सर विभिन्न बाधाएं लगाई जाती हैं। अंतर्निहित कार्य प्रमेय इस प्रकार के विकृतियों से निपटने का एक समान तरीका प्रदान करता है।
परिभाषित समीकरण {{math|1=''R''(''x'', ''y'') = 0}} अन्य विकृति भी हो सकती है। उदाहरण के लिए, समीकरण {{math|1=''x'' = 0}} एक समारोह का मतलब नहीं है {{math|''f''(''x'')}} के लिए समाधान दे रहा है {{mvar|y}} बिल्कुल भी; यह एक खड़ी रेखा है। इस तरह की समस्या से बचने के लिए, स्वीकार्य प्रकार के समीकरणों या [[समारोह डोमेन]] पर अक्सर विभिन्न बाधाएं लगाई जाती हैं। अंतर्अन्तर्निहित समीकरण प्रमेय इस प्रकार के विकृतियों से निपटने का एक समान तरीका प्रदान करता है।


== निहित भेदभाव ==
== निहित भेदभाव ==
[[गणना]] में, अन्तर्निहित विभेदीकरण नामक एक विधि निहित रूप से परिभाषित कार्यों को अलग करने के लिए [[श्रृंखला नियम]] का उपयोग करती है।
[[गणना]] में, अन्तर्निहित विभेदीकरण नामक एक विधि निहित रूप से परिभाषित कार्यों को अलग करने के लिए [[श्रृंखला नियम]] का उपयोग करती है।


एक अंतर्निहित कार्य को अलग करने के लिए {{math|''y''(''x'')}}, एक समीकरण द्वारा परिभाषित {{math|1=''R''(''x'', ''y'') = 0}}, इसे स्पष्ट रूप से हल करना आम तौर पर संभव नहीं है {{mvar|y}} और फिर अंतर करें। इसके बजाय, कोई [[कुल भेदभाव]] कर सकता है {{math|1=''R''(''x'', ''y'') = 0}} इसके संबंध में {{mvar|x}} तथा {{mvar|y}} और उसके बाद परिणामी रैखिक समीकरण को हल करें {{math|{{sfrac|''dy''|''dx''}}}} के संदर्भ में स्पष्ट रूप से व्युत्पन्न प्राप्त करने के लिए {{mvar|x}} तथा {{mvar|y}}. यहां तक ​​​​कि जब मूल समीकरण को स्पष्ट रूप से हल करना संभव हो, तो कुल भिन्नता से उत्पन्न सूत्र सामान्य रूप से बहुत सरल और उपयोग में आसान होता है।
एक अंतर्अन्तर्निहित समीकरण को अलग करने के लिए {{math|''y''(''x'')}}, एक समीकरण द्वारा परिभाषित {{math|1=''R''(''x'', ''y'') = 0}}, इसे स्पष्ट रूप से हल करना आम तौर पर संभव नहीं है {{mvar|y}} और फिर अंतर करें। इसके बजाय, कोई [[कुल भेदभाव]] कर सकता है {{math|1=''R''(''x'', ''y'') = 0}} इसके संबंध में {{mvar|x}} तथा {{mvar|y}} और उसके बाद परिणामी रैखिक समीकरण को हल करें {{math|{{sfrac|''dy''|''dx''}}}} के संदर्भ में स्पष्ट रूप से व्युत्पन्न प्राप्त करने के लिए {{mvar|x}} तथा {{mvar|y}}. यहां तक ​​​​कि जब मूल समीकरण को स्पष्ट रूप से हल करना संभव हो, तो कुल भिन्नता से उत्पन्न सूत्र सामान्य रूप से बहुत सरल और उपयोग में आसान होता है।


=== उदाहरण ===
=== उदाहरण ===
Line 109: Line 109:




===अंतर्निहित कार्य के व्युत्पन्न के लिए सामान्य सूत्र ===
===अंतर्अन्तर्निहित समीकरण के व्युत्पन्न के लिए सामान्य सूत्र ===
यदि {{math|1=''R''(''x'', ''y'') = 0}}, अंतर्निहित कार्य का व्युत्पन्न {{math|''y''(''x'')}} द्वारा दिया गया है<ref name="Stewart1998">{{cite book | last = Stewart | first = James | title = कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स| publisher = Brooks/Cole Publishing Company | year = 1998 | isbn = 0-534-34330-9 | url-access = registration | url = https://archive.org/details/calculusconcepts00stew }}</ref>{{rp|§11.5}}
यदि {{math|1=''R''(''x'', ''y'') = 0}}, अंतर्अन्तर्निहित समीकरण का व्युत्पन्न {{math|''y''(''x'')}} द्वारा दिया गया है<ref name="Stewart1998">{{cite book | last = Stewart | first = James | title = कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स| publisher = Brooks/Cole Publishing Company | year = 1998 | isbn = 0-534-34330-9 | url-access = registration | url = https://archive.org/details/calculusconcepts00stew }}</ref>{{rp|§11.5}}
:<math>\frac{dy}{dx} = -\frac{\,\frac{\partial R}{\partial x}\,}{\frac{\partial R}{\partial y}} = -\frac {R_x}{R_y} \,,</math>
:<math>\frac{dy}{dx} = -\frac{\,\frac{\partial R}{\partial x}\,}{\frac{\partial R}{\partial y}} = -\frac {R_x}{R_y} \,,</math>
कहाँ पे {{math|''R<sub>x</sub>''}} तथा {{math|''R<sub>y</sub>''}} के आंशिक डेरिवेटिव का संकेत दें {{mvar|R}} इसके संबंध में {{mvar|x}} तथा {{mvar|y}}.
कहाँ पे {{math|''R<sub>x</sub>''}} तथा {{math|''R<sub>y</sub>''}} के आंशिक डेरिवेटिव का संकेत दें {{mvar|R}} इसके संबंध में {{mvar|x}} तथा {{mvar|y}}.
Line 122: Line 122:
जिसे हल करने पर {{math|{{sfrac|''dy''|''dx''}}}}, उपरोक्त अभिव्यक्ति देता है।
जिसे हल करने पर {{math|{{sfrac|''dy''|''dx''}}}}, उपरोक्त अभिव्यक्ति देता है।


== अंतर्निहित कार्य प्रमेय ==
== अंतर्अन्तर्निहित समीकरण प्रमेय ==
[[Image:Implicit circle.svg|thumb|right|200px|यूनिट सर्कल को स्पष्ट रूप से बिंदुओं के सेट के रूप में परिभाषित किया जा सकता है {{math|(''x'', ''y'')}} संतुष्टि देने वाला {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = 1}}. बिंदु के आसपास {{mvar|A}}, {{mvar|y}} एक निहित कार्य के रूप में व्यक्त किया जा सकता है {{math|''y''(''x'')}}. (कई मामलों के विपरीत, यहां इस कार्य को स्पष्ट किया जा सकता है {{math|1=''g''<sub>1</sub>(''x'') = {{sqrt|1 − ''x''<sup>2</sup>}}}}.) बिंदु के आसपास ऐसा कोई कार्य मौजूद नहीं है {{mvar|B}}, जहां [[स्पर्शरेखा स्थान]] लंबवत है।]]
[[Image:Implicit circle.svg|thumb|right|200px|यूनिट सर्कल को स्पष्ट रूप से बिंदुओं के सेट के रूप में परिभाषित किया जा सकता है {{math|(''x'', ''y'')}} संतुष्टि देने वाला {{math|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = 1}}. बिंदु के आसपास {{mvar|A}}, {{mvar|y}} एक अन्तर्निहित समीकरण के रूप में व्यक्त किया जा सकता है {{math|''y''(''x'')}}. (कई मामलों के विपरीत, यहां इस कार्य को स्पष्ट किया जा सकता है {{math|1=''g''<sub>1</sub>(''x'') = {{sqrt|1 − ''x''<sup>2</sup>}}}}.) बिंदु के आसपास ऐसा कोई कार्य मौजूद नहीं है {{mvar|B}}, जहां [[स्पर्शरेखा स्थान]] लंबवत है।]]
{{main|Implicit function theorem}}
{{main|Implicit function theorem}}
होने देना {{math|''R''(''x'', ''y'')}} दो चरों का एक अवकलनीय फलन हो, और {{math|(''a'', ''b'')}} [[वास्तविक संख्या]]ओं का एक ऐसा युग्म बनिए {{math|1=''R''(''a'', ''b'') = 0}}. यदि {{math|{{sfrac|∂''R''|∂''y''}} ≠ 0}}, फिर {{math|1=''R''(''x'', ''y'') = 0}} एक अंतर्निहित कार्य को परिभाषित करता है जो कुछ छोटे पर्याप्त [[पड़ोस (गणित)]] में भिन्न होता है {{open-open|''a'', ''b''}}; दूसरे शब्दों में, एक भिन्न कार्य है {{mvar|f}} के कुछ पड़ोस में परिभाषित और अलग-अलग है {{mvar|a}}, ऐसा है कि {{math|1=''R''(''x'', ''f''(''x'')) = 0}} के लिये {{mvar|x}} इस पड़ोस में।
होने देना {{math|''R''(''x'', ''y'')}} दो चरों का एक अवकलनीय फलन हो, और {{math|(''a'', ''b'')}} [[वास्तविक संख्या]]ओं का एक ऐसा युग्म बनिए {{math|1=''R''(''a'', ''b'') = 0}}. यदि {{math|{{sfrac|∂''R''|∂''y''}} ≠ 0}}, फिर {{math|1=''R''(''x'', ''y'') = 0}} एक अंतर्अन्तर्निहित समीकरण को परिभाषित करता है जो कुछ छोटे पर्याप्त [[पड़ोस (गणित)]] में भिन्न होता है {{open-open|''a'', ''b''}}; दूसरे शब्दों में, एक भिन्न कार्य है {{mvar|f}} के कुछ पड़ोस में परिभाषित और अलग-अलग है {{mvar|a}}, ऐसा है कि {{math|1=''R''(''x'', ''f''(''x'')) = 0}} के लिये {{mvar|x}} इस पड़ोस में।


स्थिति {{math|{{sfrac|∂''R''|∂''y''}} ≠ 0}} मतलब कि {{math|(''a'', ''b'')}} निहित समीकरण के [[निहित वक्र]] के वक्र का एक विलक्षण बिंदु है {{math|1=''R''(''x'', ''y'') = 0}} जहां [[स्पर्शरेखा]] लंबवत नहीं है।
स्थिति {{math|{{sfrac|∂''R''|∂''y''}} ≠ 0}} मतलब कि {{math|(''a'', ''b'')}} निहित समीकरण के [[निहित वक्र]] के वक्र का एक विलक्षण बिंदु है {{math|1=''R''(''x'', ''y'') = 0}} जहां [[स्पर्शरेखा]] लंबवत नहीं है।


कम तकनीकी भाषा में, अंतर्निहित कार्य मौजूद हैं और इन्हें अलग किया जा सकता है, यदि वक्र में एक गैर-ऊर्ध्वाधर स्पर्शरेखा है।<ref name="Stewart1998"/>{{rp|§11.5}}
कम तकनीकी भाषा में, अंतर्अन्तर्निहित समीकरण मौजूद हैं और इन्हें अलग किया जा सकता है, यदि वक्र में एक गैर-ऊर्ध्वाधर स्पर्शरेखा है।<ref name="Stewart1998"/>{{rp|§11.5}}




Line 136: Line 136:


== अंतर समीकरणों में ==
== अंतर समीकरणों में ==
अंतर समीकरणों के समाधान आम तौर पर एक अंतर्निहित कार्य द्वारा व्यक्त किए जाते हैं।<ref>{{cite book |last=Kaplan |first=Wilfred |title=उन्नत कैलकुलस|location=Boston |publisher=Addison-Wesley |year=2003 |isbn=0-201-79937-5 }}</ref>
अंतर समीकरणों के समाधान आम तौर पर एक अंतर्अन्तर्निहित समीकरण द्वारा व्यक्त किए जाते हैं।<ref>{{cite book |last=Kaplan |first=Wilfred |title=उन्नत कैलकुलस|location=Boston |publisher=Addison-Wesley |year=2003 |isbn=0-201-79937-5 }}</ref>




Line 151: Line 151:
=== अनुकूलन ===
=== अनुकूलन ===
{{Main|Mathematical economics#Mathematical optimization}}
{{Main|Mathematical economics#Mathematical optimization}}
अक्सर [[आर्थिक सिद्धांत]] में, कुछ फ़ंक्शन जैसे उपयोगिता फ़ंक्शन या [[लाभ (अर्थशास्त्र)]] फ़ंक्शन को पसंद वेक्टर के संबंध में अधिकतम किया जाना है {{mvar|x}} भले ही उद्देश्य कार्य किसी विशिष्ट कार्यात्मक रूप तक सीमित न हो। अंतर्निहित कार्य प्रमेय गारंटी देता है कि अनुकूलन के पहले क्रम की शर्तें इष्टतम वेक्टर के प्रत्येक तत्व के लिए एक अंतर्निहित कार्य परिभाषित करती हैं {{math|''x''*}} पसंद वेक्टर का {{mvar|x}}. जब लाभ को अधिकतम किया जा रहा है, आम तौर पर परिणामी अंतर्निहित कार्य श्रम [[मांग समारोह]] और विभिन्न वस्तुओं की आपूर्ति कार्य होते हैं। जब उपयोगिता को अधिकतम किया जा रहा है, तो आम तौर पर परिणामी अंतर्निहित कार्य श्रम आपूर्ति कार्य और विभिन्न वस्तुओं के लिए मांग कार्य होते हैं।
अक्सर [[आर्थिक सिद्धांत]] में, कुछ फ़ंक्शन जैसे उपयोगिता फ़ंक्शन या [[लाभ (अर्थशास्त्र)]] फ़ंक्शन को पसंद वेक्टर के संबंध में अधिकतम किया जाना है {{mvar|x}} भले ही उद्देश्य कार्य किसी विशिष्ट कार्यात्मक रूप तक सीमित न हो। अंतर्अन्तर्निहित समीकरण प्रमेय गारंटी देता है कि अनुकूलन के पहले क्रम की शर्तें इष्टतम वेक्टर के प्रत्येक तत्व के लिए एक अंतर्अन्तर्निहित समीकरण परिभाषित करती हैं {{math|''x''*}} पसंद वेक्टर का {{mvar|x}}. जब लाभ को अधिकतम किया जा रहा है, आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम [[मांग समारोह]] और विभिन्न वस्तुओं की आपूर्ति कार्य होते हैं। जब उपयोगिता को अधिकतम किया जा रहा है, तो आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम आपूर्ति कार्य और विभिन्न वस्तुओं के लिए मांग कार्य होते हैं।


इसके अलावा, समस्या के पैरामीटर # गणितीय कार्यों का प्रभाव {{math|''x''*}} - निहित फ़ंक्शन के आंशिक डेरिवेटिव - को पहले-क्रम की स्थितियों की प्रणाली के कुल डेरिवेटिव के रूप में व्यक्त किया जा सकता है, जो फ़ंक्शन के डिफरेंशियल का उपयोग करके पाया जाता है #कई चर में अंतर।
इसके अलावा, समस्या के पैरामीटर # गणितीय कार्यों का प्रभाव {{math|''x''*}} - निहित फ़ंक्शन के आंशिक डेरिवेटिव - को पहले-क्रम की स्थितियों की प्रणाली के कुल डेरिवेटिव के रूप में व्यक्त किया जा सकता है, जो फ़ंक्शन के डिफरेंशियल का उपयोग करके पाया जाता है #कई चर में अंतर।
Line 190: Line 190:
*मूल्य (गणित)
*मूल्य (गणित)
*लगातार अलग करने योग्य
*लगातार अलग करने योग्य
*अंतर्निहित कार्य प्रमेय
*अंतर्अन्तर्निहित समीकरण प्रमेय
*बहुभिन्नरूपी समारोह
*बहुभिन्नरूपी समारोह
*उलटा काम करना
*उलटा काम करना

Revision as of 14:40, 26 November 2022

गणित में, अन्तर्निहित समीकरण रूप का एक संबंध है जहाँ R कई चरों (अक्सर बहुपद) का एक फलन है। उदाहरण के लिए, एक वृत्त का अंतर्निहित समीकरण है|

अंतर्निहित फ़ंक्शन एक फलन है जिसे एक अंतर्निहित समीकरण द्वारा परिभाषित किया गया है, जो फलन के मान के रूप में माने जाने वाले चरों में से एक से संबंधित है, अन्य को फलन के तर्क के रूप में माना जाता है।[1]: 204–206  उदाहरण के लिए, समीकरण एक वृत्त को परिभाषित करता है, y को एक अन्तर्निहित समीकरण के रूप में परिभाषित करता है, यदि −1 ≤ x ≤ 1, तथा y गैर-नकारात्मक मूल्यों तक सीमित है।

अन्तर्निहित समीकरण प्रमेय ऐसी स्थितियाँ प्रदान करता है जिसके तहत कुछ प्रकार के अन्तर्निहित समीकरण अन्तर्निहित फलन को परिभाषित करते हैं, अर्थात् वे जो शून्य बहुविकल्पीय कार्यों के बराबर प्राप्त होते हैं जो लगातार डिफ्रेंटिएबल होते हैं।

उदाहरण

व्युत्क्रम समीकरण

अन्तर्निहित समीकरण का एक सामान्य प्रकार व्युत्क्रम समीकरण है। सभी समीकरणों में अद्वितीय व्युत्क्रम समीकरण नहीं होता है। यदि g, x का एक फलन है जिसका एक अनूठा व्युत्क्रम है, फिर का व्युत्क्रम समीकरण g को g−1 कहा जाता है, समीकरण का हल देने वाला अनूठा फलन है

x के लिये के y अनुसार | यह समाधान तब इस रूप में लिखा जा सकता है

g−1 को g के व्युत्क्रम रूप में परिभाषित करना अस्पष्ट परिभाषा है। g के कुछ समीकरणों के लिए , g−1(y) एक बंद रूप फलन के रूप में स्पष्ट लिखा जा सकता है - उदाहरण के लिए, यदि g(x) = 2x − 1, फिर g−1(y) = 1/2(y + 1). हालांकि, यह अक्सर संभव नहीं होता है, या केवल एक नया अंकन शुरू करने से होता है (जैसा कि नीचे प्रोडक्ट लॉग उदाहरण में है)।

सहज रूप से, g आश्रित और स्वतंत्र चरों की भूमिकाओं को आपस में बदलकर एक व्युत्क्रम समीकरण प्राप्त किया जाता है।

उदाहरण: उत्पाद लॉग एक अंतर्अन्तर्निहित समीकरण है जो समाधान देता है x समीकरण का yxex = 0.

बीजगणितीय समीकरण

एक बीजगणितीय फलन एक ऐसा फलन है जो बहुपद समीकरण को संतुष्ट करता है जिसके गुणांक स्वयं बहुपद होते हैं। उदाहरण के लिए, एक चर में एक बीजगणितीय फ़ंक्शन x का समाधान देता है y एक समीकरण का

जहां गुणांक ai(x) के बहुपद कार्य हैं x. इस बीजगणितीय फलन को हल समीकरण के दाहिने पक्ष के रूप में लिखा जा सकता है y = f(x). ऐसे लिखा, f एक बहु-मूल्यवान कार्य है | बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण।

बीजगणितीय कार्य गणितीय विश्लेषण और बीजगणितीय ज्यामिति में एक महत्वपूर्ण भूमिका निभाते हैं। बीजगणितीय फलन का एक सरल उदाहरण इकाई वृत्त समीकरण के बाईं ओर दिया गया है:

के लिए हल करना y एक स्पष्ट समाधान देता है:

लेकिन इस स्पष्ट समाधान को निर्दिष्ट किए बिना भी, यूनिट सर्कल समीकरण के अंतर्निहित समाधान को संदर्भित करना संभव है y = f(x), कहाँ पे f बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण है।

जबकि समीकरणों के लिए स्पष्ट समाधान पाया जा सकता है जो द्विघात समीकरण, घन समीकरण और चतुर्थक समीकरण हैं y, समान रूप से क्विंटिक समीकरण और उच्च डिग्री समीकरणों के लिए सही नहीं है, जैसे

फिर भी, कोई अभी भी अंतर्निहित समाधान का उल्लेख कर सकता है y = f(x) बहु-मूल्यवान अंतर्अन्तर्निहित समीकरण शामिल है f.

चेतावनी

हर समीकरण नहीं R(x, y) = 0 एक एकल-मूल्यवान फ़ंक्शन का एक ग्राफ़ दर्शाता है, सर्कल समीकरण एक प्रमुख उदाहरण है। एक अन्य उदाहरण द्वारा दिया गया एक अंतर्अन्तर्निहित समीकरण है xC(y) = 0 कहाँ पे C एक घन बहुपद है जिसके ग्राफ में एक कूबड़ है। इस प्रकार, एक अंतर्निहित फ़ंक्शन के लिए एक वास्तविक (एकल-मूल्यवान) फ़ंक्शन होने के लिए ग्राफ़ के केवल भाग का उपयोग करना आवश्यक हो सकता है। एक अंतर्निहित फ़ंक्शन को कभी-कभी किसी भाग पर ज़ूम इन करने के बाद ही एक सच्चे फ़ंक्शन के रूप में सफलतापूर्वक परिभाषित किया जा सकता है x-अक्ष और कुछ अवांछित कार्यात्मक शाखाओं को काट देना। फिर एक समीकरण व्यक्त करना y अन्य चरों के अन्तर्निहित समीकरण के रूप में लिखा जा सकता है।

परिभाषित समीकरण R(x, y) = 0 अन्य विकृति भी हो सकती है। उदाहरण के लिए, समीकरण x = 0 एक समारोह का मतलब नहीं है f(x) के लिए समाधान दे रहा है y बिल्कुल भी; यह एक खड़ी रेखा है। इस तरह की समस्या से बचने के लिए, स्वीकार्य प्रकार के समीकरणों या समारोह डोमेन पर अक्सर विभिन्न बाधाएं लगाई जाती हैं। अंतर्अन्तर्निहित समीकरण प्रमेय इस प्रकार के विकृतियों से निपटने का एक समान तरीका प्रदान करता है।

निहित भेदभाव

गणना में, अन्तर्निहित विभेदीकरण नामक एक विधि निहित रूप से परिभाषित कार्यों को अलग करने के लिए श्रृंखला नियम का उपयोग करती है।

एक अंतर्अन्तर्निहित समीकरण को अलग करने के लिए y(x), एक समीकरण द्वारा परिभाषित R(x, y) = 0, इसे स्पष्ट रूप से हल करना आम तौर पर संभव नहीं है y और फिर अंतर करें। इसके बजाय, कोई कुल भेदभाव कर सकता है R(x, y) = 0 इसके संबंध में x तथा y और उसके बाद परिणामी रैखिक समीकरण को हल करें dy/dx के संदर्भ में स्पष्ट रूप से व्युत्पन्न प्राप्त करने के लिए x तथा y. यहां तक ​​​​कि जब मूल समीकरण को स्पष्ट रूप से हल करना संभव हो, तो कुल भिन्नता से उत्पन्न सूत्र सामान्य रूप से बहुत सरल और उपयोग में आसान होता है।

उदाहरण

उदाहरण 1

विचार करना

इस समीकरण को हल करना आसान है y, दे रहा है

जहां दाहिनी ओर कार्य का स्पष्ट रूप है y(x). विभेदीकरण तब देता है dy/dx = −1.

वैकल्पिक रूप से, कोई मूल समीकरण को पूरी तरह से अलग कर सकता है:

के लिए हल करना dy/dx देता है

वही उत्तर जो पहले प्राप्त हुआ था।

उदाहरण 2

निहित फ़ंक्शन का एक उदाहरण जिसके लिए स्पष्ट भेदभाव का उपयोग करने की तुलना में अंतर्निहित भेदभाव आसान है, वह फ़ंक्शन है y(x) समीकरण द्वारा परिभाषित

इसके संबंध में स्पष्ट रूप से अंतर करने के लिए x, पहले पाना होता है

और फिर इस फ़ंक्शन को अलग करें। यह दो डेरिवेटिव बनाता है: एक के लिए y ≥ 0 और दूसरे के लिए y < 0.

मूल समीकरण को स्पष्ट रूप से अलग करना काफी आसान है:

दे रही है


उदाहरण 3

अक्सर, स्पष्ट रूप से हल करना मुश्किल या असंभव होता है y, और अन्तर्निहित विभेदीकरण ही विभेदीकरण का एकमात्र व्यवहार्य तरीका है। एक उदाहरण समीकरण है

बीजीय व्यंजक असम्भव है y स्पष्ट रूप से एक कार्य के रूप में x, और इसलिए कोई नहीं मिल सकता है dy/dx स्पष्ट भेदभाव द्वारा। निहित विधि का उपयोग करना, dy/dx प्राप्त करने के लिए समीकरण को अवकलित करके प्राप्त किया जा सकता है

कहाँ पे dx/dx = 1. फैक्टरिंग आउट dy/dx दिखाता है

जो परिणाम देता है

जिसके लिए परिभाषित किया गया है


अंतर्अन्तर्निहित समीकरण के व्युत्पन्न के लिए सामान्य सूत्र

यदि R(x, y) = 0, अंतर्अन्तर्निहित समीकरण का व्युत्पन्न y(x) द्वारा दिया गया है[2]: §11.5 

कहाँ पे Rx तथा Ry के आंशिक डेरिवेटिव का संकेत दें R इसके संबंध में x तथा y.

उपरोक्त सूत्र कुल व्युत्पन्न प्राप्त करने के लिए चेन नियम#Multivariable_case का उपयोग करने से आता है - के संबंध में x - दोनों पक्षों का R(x, y) = 0:

इसलिये

जिसे हल करने पर dy/dx, उपरोक्त अभिव्यक्ति देता है।

अंतर्अन्तर्निहित समीकरण प्रमेय

यूनिट सर्कल को स्पष्ट रूप से बिंदुओं के सेट के रूप में परिभाषित किया जा सकता है (x, y) संतुष्टि देने वाला x2 + y2 = 1. बिंदु के आसपास A, y एक अन्तर्निहित समीकरण के रूप में व्यक्त किया जा सकता है y(x). (कई मामलों के विपरीत, यहां इस कार्य को स्पष्ट किया जा सकता है g1(x) = 1 − x2.) बिंदु के आसपास ऐसा कोई कार्य मौजूद नहीं है B, जहां स्पर्शरेखा स्थान लंबवत है।

होने देना R(x, y) दो चरों का एक अवकलनीय फलन हो, और (a, b) वास्तविक संख्याओं का एक ऐसा युग्म बनिए R(a, b) = 0. यदि R/y ≠ 0, फिर R(x, y) = 0 एक अंतर्अन्तर्निहित समीकरण को परिभाषित करता है जो कुछ छोटे पर्याप्त पड़ोस (गणित) में भिन्न होता है (a, b); दूसरे शब्दों में, एक भिन्न कार्य है f के कुछ पड़ोस में परिभाषित और अलग-अलग है a, ऐसा है कि R(x, f(x)) = 0 के लिये x इस पड़ोस में।

स्थिति R/y ≠ 0 मतलब कि (a, b) निहित समीकरण के निहित वक्र के वक्र का एक विलक्षण बिंदु है R(x, y) = 0 जहां स्पर्शरेखा लंबवत नहीं है।

कम तकनीकी भाषा में, अंतर्अन्तर्निहित समीकरण मौजूद हैं और इन्हें अलग किया जा सकता है, यदि वक्र में एक गैर-ऊर्ध्वाधर स्पर्शरेखा है।[2]: §11.5 


बीजगणितीय ज्यामिति में

प्रपत्र के संबंध (गणित) पर विचार करें R(x1, …, xn) = 0, कहाँ पे R एक बहुभिन्नरूपी बहुपद है। इस संबंध को संतुष्ट करने वाले चरों के मूल्यों के समुच्चय को एक अंतर्निहित वक्र कहा जाता है यदि n = 2 और एक निहित सतह अगर n = 3. निहित समीकरण बीजगणितीय ज्यामिति का आधार हैं, जिनके अध्ययन के मूल विषय कई अंतर्निहित समीकरणों के एक साथ समाधान हैं जिनके बाएँ हाथ बहुपद हैं। समकालिक समाधानों के इन समुच्चयों को affine बीजगणितीय समुच्चय कहा जाता है।

अंतर समीकरणों में

अंतर समीकरणों के समाधान आम तौर पर एक अंतर्अन्तर्निहित समीकरण द्वारा व्यक्त किए जाते हैं।[3]


अर्थशास्त्र में अनुप्रयोग

प्रतिस्थापन की सीमांत दर

अर्थशास्त्र में, जब स्तर निर्धारित होता है R(x, y) = 0 मात्राओं के लिए एक उदासीनता वक्र है x तथा y दो वस्तुओं का उपभोग, अंतर्निहित व्युत्पन्न का पूर्ण मूल्य dy/dx की व्याख्या दो वस्तुओं के प्रतिस्थापन की सीमांत दर के रूप में की जाती है: कितना अधिक y एक इकाई के नुकसान के प्रति उदासीन होने के लिए किसी को प्राप्त करना चाहिएx.

तकनीकी प्रतिस्थापन की सीमांत दर

इसी तरह, कभी-कभी स्तर सेट होता है R(L, K) उपयोग की गई मात्राओं के विभिन्न संयोजनों को दर्शाने वाला एक समोत्पाद है L श्रम और K भौतिक पूंजी का प्रत्येक जिसके परिणामस्वरूप कुछ अच्छे के उत्पादन की समान मात्रा का उत्पादन होगा। इस मामले में अंतर्निहित व्युत्पन्न का पूर्ण मूल्य dK/dL की व्याख्या उत्पादन के दो कारकों के बीच तकनीकी प्रतिस्थापन की सीमांत दर के रूप में की जाती है: श्रम की एक कम इकाई के साथ उत्पादन की समान मात्रा का उत्पादन करने के लिए फर्म को कितनी अधिक पूंजी का उपयोग करना चाहिए।

अनुकूलन

अक्सर आर्थिक सिद्धांत में, कुछ फ़ंक्शन जैसे उपयोगिता फ़ंक्शन या लाभ (अर्थशास्त्र) फ़ंक्शन को पसंद वेक्टर के संबंध में अधिकतम किया जाना है x भले ही उद्देश्य कार्य किसी विशिष्ट कार्यात्मक रूप तक सीमित न हो। अंतर्अन्तर्निहित समीकरण प्रमेय गारंटी देता है कि अनुकूलन के पहले क्रम की शर्तें इष्टतम वेक्टर के प्रत्येक तत्व के लिए एक अंतर्अन्तर्निहित समीकरण परिभाषित करती हैं x* पसंद वेक्टर का x. जब लाभ को अधिकतम किया जा रहा है, आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम मांग समारोह और विभिन्न वस्तुओं की आपूर्ति कार्य होते हैं। जब उपयोगिता को अधिकतम किया जा रहा है, तो आम तौर पर परिणामी अंतर्अन्तर्निहित समीकरण श्रम आपूर्ति कार्य और विभिन्न वस्तुओं के लिए मांग कार्य होते हैं।

इसके अलावा, समस्या के पैरामीटर # गणितीय कार्यों का प्रभाव x* - निहित फ़ंक्शन के आंशिक डेरिवेटिव - को पहले-क्रम की स्थितियों की प्रणाली के कुल डेरिवेटिव के रूप में व्यक्त किया जा सकता है, जो फ़ंक्शन के डिफरेंशियल का उपयोग करके पाया जाता है #कई चर में अंतर।


यह भी देखें


संदर्भ

  1. Chiang, Alpha C. (1984). गणितीय अर्थशास्त्र के मौलिक तरीके (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
  2. 2.0 2.1 Stewart, James (1998). कैलकुलस कॉन्सेप्ट्स एंड कॉन्टेक्स्ट्स. Brooks/Cole Publishing Company. ISBN 0-534-34330-9.
  3. Kaplan, Wilfred (2003). उन्नत कैलकुलस. Boston: Addison-Wesley. ISBN 0-201-79937-5.


अग्रिम पठन


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • समारोह (गणित)
  • एक समारोह का तर्क
  • मूल्य (गणित)
  • लगातार अलग करने योग्य
  • अंतर्अन्तर्निहित समीकरण प्रमेय
  • बहुभिन्नरूपी समारोह
  • उलटा काम करना
  • समाधान (गणित)
  • बहु-मूल्यवान समारोह
  • द्विघातीय समीकरण
  • पंचांग समीकरण
  • बीजगणतीय अभिव्यक्ति
  • आंशिक व्युत्पन्न
  • अलग करने योग्य समारोह
  • एक वक्र का एकवचन बिंदु
  • affine बीजगणितीय सेट
  • इनडीफरन्स कर्व
  • प्रतिस्थापन के सीमांत दर
  • उपयोगिता समारोह
  • पहले क्रम की स्थिति
  • आपूर्ति समारोह
  • श्रम की मांग
  • श्रमिक आपूर्ति
  • लघुगणक विभेदन

बाहरी संबंध