प्रथम-क्रम सिद्धांतों की सूची: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 74: Line 74:


==आदेश==
==आदेश==
[[गणित में क्रम संरचनाओं की सूची]] '''के हस्ताक्षर में कोई स्थिरांक या कार्य नहीं है, और द्विआधारी संबंध प्रतीक ≤ है। (स्वयंसिद्धों में स्पष्ट मामूली परिवर्तनों के साथ, मूल''' संबंध के रूप में ≥, < या > का उपयोग करना निश्चित रूप से संभव है।)
[[गणित में क्रम संरचनाओं की सूची]] के हस्ताक्षर में कोई स्थिरांक या कार्य नहीं है, और द्विआधारी संबंध प्रतीक ≤ है। (बेशक, मूल संबंध के रूप में ≥, < या > का उपयोग करना संभव है, स्वयंसिद्धों में स्पष्ट साधारण परिवर्तनों के साथ।) हम ''x'' ''y'', ''x'' < ''y'', ''x'' > ''y'' को ''y'' ''x'', ''x'' ''y'' ∧¬''y'' ''x'', ''y'' < ''x'', के संक्षिप्त रूप के रूप में परिभाषित करते हैं।
हम x ≥ y, x < y, x > y को y ≤ x, x ≤ y ∧¬y ≤ x, y < x के संक्षिप्त रूप के रूप में परिभाषित करते हैं।


ऑर्डर के कुछ प्रथम-क्रम गुण:
ऑर्डर के कुछ प्रथम-क्रम गुण:
Line 81: Line 80:
*'रिफ्लेक्टिव': ∀x x ≤ x
*'रिफ्लेक्टिव': ∀x x ≤ x
*'[[एंटीसिमेट्रिक संबंध]]': ∀x ∀y x ≤ y ∧ y ≤ x → x = y
*'[[एंटीसिमेट्रिक संबंध]]': ∀x ∀y x ≤ y ∧ y ≤ x → x = y
*'आंशिक क्रम': सकर्मक ∧ प्रतिवर्ती ∧ एंटीसिमेट्रिक;
*'आंशिक क्रम': सकर्मक ∧ प्रतिवर्ती ∧ एंटीसिमेट्रिक |
*'रैखिक क्रम' (या 'कुल'): आंशिक ∧ ∀x ∀y x ≤ y ∨ y ≤ x
*'रैखिक क्रम' (या 'कुल'): आंशिक ∧ ∀x ∀y x ≤ y ∨ y ≤ x
*'[[सघन क्रम]]': ∀x ∀z x < z → ∃y x < y ∧ y < z (किन्हीं दो अलग-अलग तत्वों के बीच और तत्व होता है)
*'[[सघन क्रम]]': ∀x ∀z x < z → ∃y x < y ∧ y < z (किन्हीं दो अलग-अलग तत्वों के मध्य और तत्व होता है)
*एक सबसे छोटा तत्व है: ∃x ∀y x ≤ y
*एक सबसे लघु तत्व है: ∃x ∀y x ≤ y
*एक सबसे बड़ा तत्व है: ∃x ∀y y ≤ x
*एक सबसे दीर्घ तत्व है: ∃x ∀y y ≤ x
*प्रत्येक तत्व का तत्काल उत्तराधिकारी होता है: ∀x ∃y ∀z x < z ↔ y ≤ z
*प्रत्येक तत्व का तत्काल उत्तराधिकारी होता है: ∀x ∃y ∀z x < z ↔ y ≤ z
अंतिम बिंदुओं के बिना घने रैखिक आदेशों का सिद्धांत डीएलओ (यानी कोई सबसे छोटा या सबसे बड़ा तत्व नहीं) पूर्ण, ω-श्रेणीबद्ध है, किन्तु किसी भी असंख्य कार्डिनल के लिए श्रेणीबद्ध नहीं है। तीन अन्य समान सिद्धांत हैं: घने रैखिक आदेशों का सिद्धांत:
अंतिम बिंदुओं के बिना सघन रैखिक आदेशों का सिद्धांत डीएलओ (यानी कोई सबसे लघु या सबसे दीर्घ तत्व नहीं) हैं | पूर्ण, ω-श्रेणीबद्ध है, किन्तु किसी भी असंख्य कार्डिनल के लिए श्रेणीबद्ध नहीं है। तीन अन्य समान सिद्धांत हैं: सघन रैखिक आदेशों का सिद्धांत होता हैं |
* सबसे छोटा किन्तु कोई सबसे बड़ा तत्व नहीं;
* सबसे लघु किन्तु कोई सबसे दीर्घ तत्व नहीं हैं
* सबसे बड़ा किन्तु कोई सबसे छोटा तत्व नहीं;
* सबसे दीर्घ किन्तु कोई सबसे लघु तत्व नहीं हैं
* सबसे बड़ा और सबसे छोटा तत्व.
* सबसे दीर्घ और सबसे लघु तत्व हैं


'[[सुव्यवस्थित सेट|सुव्यवस्थित समुच्चय]]' होना (किसी भी गैर-रिक्त उपसमुच्चय में न्यूनतम तत्व होता है) प्रथम-क्रम की संपत्ति नहीं है; सामान्य परिभाषा में सभी उपसमूहों की मात्रा निर्धारित करना सम्मिलित है।
'[[सुव्यवस्थित सेट|सुव्यवस्थित समुच्चय]]' होना (किसी भी गैर-रिक्त उपसमुच्चय में न्यूनतम तत्व होता है) यह प्रथम-क्रम की संपत्ति नहीं होती है | इसमें सामान्य परिभाषा में सभी उपसमूहों की मात्रा निर्धारित करना सम्मिलित है।


==जालियाँ==
==जालियाँ==
जाली (ऑर्डर) को या तो विशेष प्रकार के आंशिक रूप से ऑर्डर किए गए समुच्चय के रूप में माना जा सकता है, जिसमें बाइनरी संबंध प्रतीक ≤ से युक्त हस्ताक्षर होता है, या दो बाइनरी ऑपरेशन ∧ और ∨ से युक्त हस्ताक्षर के साथ [[बीजगणितीय संरचना]]ओं के रूप में माना जा सकता है। दोनों दृष्टिकोणों को a ≤ b को a∧b = a के अर्थ में परिभाषित करके संबंधित किया जा सकता है।
लैटिस (ऑर्डर) को या तो विशेष प्रकार के आंशिक रूप से ऑर्डर किए गए समुच्चय के रूप में माना जा सकता है, जिसमें बाइनरी संबंध प्रतीक ≤ से युक्त हस्ताक्षर होता है, या दो बाइनरी ऑपरेशन ∧ और ∨ से युक्त हस्ताक्षर के साथ[[बीजगणितीय संरचना|बीजगणितीय संरचनाओं]] के रूप में माना जा सकता है। दोनों दृष्टिकोणों को a ≤ b को a∧b = a के अर्थ में परिभाषित करके संबंधित किया जा सकता है।


दो द्विआधारी संक्रियाओं के लिए जालक के लिए अभिगृहीत हैं:
दो द्विआधारी संक्रियाओं के लिए लैटिस के लिए अभिगृहीत हैं |
{| style="margin-left: 2em;"
{| style="margin-left: 2em;"
| '''[[commutative operation|Commutative]] laws:''' ||
|क्रमविनिमेय नियम:
|
| <math> \forall a \forall b \; a  \vee b = b \vee a </math> || || <math> \forall a \forall b\; a \wedge  b = b \wedge a </math>
| <math> \forall a \forall b \; a  \vee b = b \vee a </math> || || <math> \forall a \forall b\; a \wedge  b = b \wedge a </math>
|-
|-
| '''[[associativity|Associative]] laws:''' ||
|सहयोगी नियम:
|
| <math>\forall a \forall b \forall c\; a \vee (b \vee c) = (a \vee b) \vee c </math> || || <math> \forall a \forall b \forall c\; a \wedge (b \wedge c) = (a \wedge b) \wedge c </math>
| <math>\forall a \forall b \forall c\; a \vee (b \vee c) = (a \vee b) \vee c </math> || || <math> \forall a \forall b \forall c\; a \wedge (b \wedge c) = (a \wedge b) \wedge c </math>
|-
|-
| '''[[Absorption law]]s:''' ||
|अवशोषण नियम:
|
| <math> \forall a \forall b \;a  \vee (a \wedge b) = a </math> || || <math>\forall a \forall b \;a  \wedge (a \vee b) = a </math>
| <math> \forall a \forall b \;a  \vee (a \wedge b) = a </math> || || <math>\forall a \forall b \;a  \wedge (a \vee b) = a </math>
|}
|}
एक संबंध के लिए ≤ अभिगृहीत हैं:
एक संबंध के लिए ≤ अभिगृहीत हैं |
*ऊपर बताए अनुसार ≤ बताने वाले अभिगृहीत आंशिक क्रम है।
*ऊपर बताए अनुसार ≤ बताने वाले अभिगृहीत आंशिक क्रम है।
*<math>\forall a \forall b \exist c\; c \le a \wedge c \le b \wedge \forall d\;d \le a \wedge d \le b \rightarrow d \le c</math> (c = a∧b का अस्तित्व)
*<math>\forall a \forall b \exist c\; c \le a \wedge c \le b \wedge \forall d\;d \le a \wedge d \le b \rightarrow d \le c</math> (c = a∧b का अस्तित्व)
*<math>\forall a \forall b \exist c\; a \le c \wedge b \le c \wedge \forall d\;a \le d \wedge b \le d \rightarrow c \le d</math> (c = a∨b का अस्तित्व)
*<math>\forall a \forall b \exist c\; a \le c \wedge b \le c \wedge \forall d\;a \le d \wedge b \le d \rightarrow c \le d</math> (c = a∨b का अस्तित्व)


प्रथम क्रम की संपत्तियों में सम्मिलित हैं:
प्रथम क्रम की गुणों में सम्मिलित हैं |
* <math>\forall x \forall y\forall z\;x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)</math> ([[वितरणात्मक जाली]])
* <math>\forall x \forall y\forall z\;x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)</math> ([[वितरणात्मक जाली|वितरणात्मक लैटिस]])
* <math>\forall x \forall y\forall z\;x \vee (y \wedge (x \vee z)) = (x \vee y) \wedge (x \vee z)</math> ([[मॉड्यूलर जाली]])
* <math>\forall x \forall y\forall z\;x \vee (y \wedge (x \vee z)) = (x \vee y) \wedge (x \vee z)</math> ([[मॉड्यूलर जाली|मॉड्यूलर लैटिस]])


हेटिंग बीजगणित को कुछ अतिरिक्त प्रथम-क्रम गुणों के साथ जाली के रूप में परिभाषित किया जा सकता है।
हेटिंग बीजगणित को कुछ अतिरिक्त प्रथम-क्रम गुणों के साथ लैटिस के रूप में परिभाषित किया जा सकता है।


[[पूर्ण जाली]] जाली का प्रथम क्रम का गुण नहीं है।
[[पूर्ण जाली|पूर्ण लैटिस]] लैटिस का प्रथम क्रम का गुण नहीं है।


==ग्राफ़==
==ग्राफ़==
{{main|Logic of graphs}}
{{main|ग्राफ़ का तर्क}}
ग्राफ़ (असतत गणित) के हस्ताक्षर में कोई स्थिरांक या फलन नहीं है, और द्विआधारी संबंध प्रतीक आर है, जहां आर(एक्स,वाई) को पढ़ा जाता है क्योंकि एक्स से वाई तक किनारा है।
 
ग्राफ़ (असतत गणित) के हस्ताक्षर में कोई स्थिरांक या फलन नहीं है, और द्विआधारी संबंध प्रतीक ''R'' है, जहां ''R''(''x'',''y'') को "''x'' से ''y''" तक '''किनारा''' है" इसके रूप में पढ़ा जाता है।


'ग्राफ़ के सिद्धांत' के लिए अभिगृहीत हैं
'ग्राफ़ के सिद्धांत' के लिए अभिगृहीत हैं
*'सममित': ∀x ∀y R(x,y)→ R(y,x)
*'सममित': ∀x ∀y R(x,y)→ R(y,x)
*'रिफ्लेक्सिव_रिलेशन#रिलेटेड_टर्म्स|एंटी-रिफ्लेक्सिव': ∀x ¬R(x,x) (कोई लूप नहीं (ग्राफ सिद्धांत))
*एंटी-रिफ्लेक्टिव: ∀x ¬R(x,x) ("कोई लूप नहीं")


[[यादृच्छिक ग्राफ]]के सिद्धांत में प्रत्येक धनात्मक पूर्णांक n के लिए निम्नलिखित अतिरिक्त सिद्धांत हैं:
[[यादृच्छिक ग्राफ]] के सिद्धांत में प्रत्येक धनात्मक पूर्णांक ''n'' के लिए निम्नलिखित के अतिरिक्त सिद्धांत हैं |
* आकार n के किन्हीं दो असंयुक्त परिमित समुच्चयों के लिए, पहले समुच्चय के सभी बिंदुओं से बिंदु जुड़ा होता है और दूसरे समुच्चय के किसी भी बिंदु से नहीं जुड़ा होता है। (प्रत्येक निश्चित n के लिए इस कथन को ग्राफ़ की भाषा में लिखना सरल है।)
* आकार ''n'' के किन्हीं दो असंयुक्त परिमित समुच्चयों के लिए, पहले समुच्चय के सभी बिंदुओं से बिंदु जुड़ा होता है और दूसरे समुच्चय के किसी भी बिंदु से नहीं जुड़ा होता है। (प्रत्येक निश्चित ''n'' के लिए इस कथन को ग्राफ़ की भाषा में लिखना सरल है।)


यादृच्छिक ग्राफ़ का सिद्धांत ω श्रेणीबद्ध, पूर्ण और निर्णय लेने योग्य है, और इसके गणनीय मॉडल को [[राडो ग्राफ]]कहा जाता है। ग्राफ़ की भाषा में कथन इस सिद्धांत में सत्य है यदि और केवल यदि संभावना है कि एन-वर्टेक्स यादृच्छिक ग्राफ़ मॉडल कथन को सीमा में 1 तक ले जाता है क्योंकि एन अनंत तक जाता है।
यादृच्छिक ग्राफ़ का सिद्धांत ω श्रेणीबद्ध, पूर्ण और निर्णय लेने योग्य है, और इसके गणनीय मॉडल को [[राडो ग्राफ]] कहा जाता है। ग्राफ़ की भाषा में कथन इस सिद्धांत में सत्य है यदि और केवल यदि संभावना है कि ''n'' -वर्टेक्स यादृच्छिक ग्राफ़ मॉडल कथन को सीमा में 1 तक ले जाता है क्योंकि ''n'' अनंत तक जाता है।


==बूलियन [[बीजगणित]]==
==बूलियन [[बीजगणित]]==
[[बूलियन बीजगणित]] के लिए अनेक अलग-अलग हस्ताक्षर और परंपराएं उपयोग की जाती हैं:
[[बूलियन बीजगणित]] के लिए अनेक अलग-अलग हस्ताक्षर और परंपराएं उपयोग की जाती हैं |
#हस्ताक्षर में दो स्थिरांक हैं, 0 और 1, और दो बाइनरी फलन ∧ और ∨ (और और या), और यूनरी फलन ¬ (नहीं)यह भ्रमित करने वाला हो सकता है क्योंकि फ़ंक्शंस प्रथम-क्रम तर्क के प्रस्तावात्मक फ़ंक्शंस के समान प्रतीकों का उपयोग करते हैं।
#हस्ताक्षर में दो स्थिरांक हैं, 0 और 1, और दो बाइनरी फलन ∧ और ∨ ("और" और "या"), और यूनरी फलन ¬ ("नहीं") हैं। यह भ्रमित करने वाला हो सकता है क्योंकि फलन प्रथम-क्रम तर्क के प्रस्तावात्मक फलन के समान प्रतीकों का उपयोग करते हैं।
#समुच्चय सिद्धांत में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फलन · और +, और यूनरी फलन -। तीनों कार्यों की व्याख्या पहले सम्मेलन के कार्यों के समान ही है। दुर्भाग्य से, यह सम्मेलन अगले सम्मेलन से बुरी तरह टकराता है:
#समुच्चय सिद्धांत में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फलन हैं | और +, और यूनरी फलन -। तीनों कार्यों की व्याख्या पहले '''सम्मेलन''' के कार्यों के समान ही है। '''दुर्भाग्य''' से, यह '''सम्मेलन''' आगामी '''सम्मेलन''' से असफ़लतापूर्वक तरह से संघर्ष करता है |
#बीजगणित में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फ़ंक्शंस · और +। फलन · का अर्थ ∧ जैसा ही है, किन्तु ''a''+''b'' का अर्थ है ''a''∨''b''∧¬(''a''∧''b'')। इसका कारण यह है कि बूलियन बीजगणित के लिए अभिगृहीत केवल 1 प्लस ∀''x'' ''x'' वाली रिंग के लिए अभिगृहीत हैं<sup>2</sup>=x. दुर्भाग्य से यह ऊपर दिए गए समुच्चय सिद्धांत में मानक सम्मेलन से टकराता है।
#बीजगणित में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फलन · और +। फलन · का अर्थ ∧ के समान है, किन्तु ''a''+''b'' का अर्थ है ''a''∨''b''∧¬(''a''∧''b'') हैं । इसका कारण यह है कि बूलियन बीजगणित के लिए अभिगृहीत केवल 1 प्लस ∀''x'' ''x''<sup>2</sup> = ''x'' वाली रिंग के लिए अभिगृहीत हैं | दुर्भाग्य से यह ऊपर दिए गए समुच्चय सिद्धांत में मानक '''सम्मेलन''' से संघर्ष करता है।


अभिगृहीत हैं:
यह अभिगृहीत हैं |
*वितरणात्मक जाली के लिए अभिगृहीत (ऊपर देखें)
*वितरणात्मक लैटिस के लिए अभिगृहीत (ऊपर देखें)
*∀a a∧¬a = 0, ∀a a∨¬a = 1 (निषेध के गुण)
*∀a a∧¬a = 0, ∀a a∨¬a = 1 (निषेध के गुण)
*कुछ लेखक तत्व के साथ तुच्छ बीजगणित को बाहर करने के लिए अतिरिक्त स्वयंसिद्ध ¬0 = 1 जोड़ते हैं।
*कुछ लेखक तत्व के साथ '''तुच्छ''' बीजगणित को बाहर करने के लिए अतिरिक्त स्वयंसिद्ध ¬0 = 1 जोड़ते हैं।


टार्स्की ने साबित किया कि बूलियन बीजगणित का सिद्धांत निर्णायक है।
टार्स्की ने साबित किया कि बूलियन बीजगणित का सिद्धांत निर्णायक है।


हम x yy y को x∧y = x के लिए संक्षिप्त नाम के रूप में लिखते हैं, और परमाणु (x) को ¬x = 0 ∧ ∧ y y y x → y = 0 ∨ y = x के लिए संक्षिप्त नाम के रूप में लिखते हैं, X के रूप में पढ़ें परमाणु है, दूसरे शब्दों में इसके बीच कुछ भी नहीं है और 0. यहाँ कुछ पहले-क्रम गुण हैं:
हम ''x'' ≤ ''y'' को ''x''∧''y'' = ''x'' के लिए संक्षिप्त नाम के रूप में लिखते हैं, और परमाणु (''x'') को ¬''x'' = 0 ∧ ∀''y'' ''y'' ≤ ''x'' ''y'' = 0 ∨ ''y'' = ''x'' के लिए संक्षिप्त नाम के रूप में लिखते हैं, ''x'' के रूप में पढ़ें परमाणु है, दूसरे शब्दों में इसके मध्य कुछ भी नहीं है और 0. यहाँ कुछ पहले-क्रम गुण हैं:
*'परमाणु': ∀x x = 0 ∨ ∃y y ≤ x ∧ परमाणु(y)
*'परमाणु': ∀x x = 0 ∨ ∃y y ≤ x ∧ परमाणु(y)
*'परमाणु रहित': ∀x ¬atom(x)
*'परमाणु रहित': ∀x ¬ परमाणु (x)
'परमाणु रहित बूलियन बीजगणित' का सिद्धांत ω-श्रेणीबद्ध और पूर्ण है।
'परमाणु रहित बूलियन बीजगणित' का सिद्धांत ω-श्रेणीबद्ध और पूर्ण है।


किसी भी बूलियन बीजगणित बी के लिए, निम्नानुसार अनेक अपरिवर्तनीय परिभाषित हैं।
किसी भी बूलियन बीजगणित बी के लिए, निम्नानुसार अनेक अपरिवर्तनीय परिभाषित हैं।
*आदर्श I(B) में ऐसे तत्व सम्मिलित हैं जो परमाणु और परमाणु रहित तत्व (एक ऐसा तत्व जिसके नीचे कोई परमाणु नहीं है) का योग है।
*आदर्श I(B) में ऐसे तत्व सम्मिलित हैं जो परमाणु और परमाणु रहित तत्व (एक ऐसा तत्व जिसके नीचे कोई परमाणु नहीं है) का योग है।
*भागफल बीजगणित बी<sup>बी के i को बी द्वारा आगमनात्मक रूप से परिभाषित किया गया है<sup>0</sup>=बी, बी<sup>k+1</sup> = बी<sup></sup>/I(बी<sup></sup>).
*''B'' के भागफल बीजगणित ''B<sup>i</sup>'' को ''B''<sup>0</sup>=''B'', ''B<sup>k</sup>''<sup>+1</sup> = ''B<sup>k</sup>''/''I''(''B<sup>k</sup>'') द्वारा आगमनात्मक रूप से परिभाषित किया गया है।
*अपरिवर्तनीय m(B) B जैसा सबसे छोटा पूर्णांक है<sup>m+1</sup> तुच्छ है, या ∞ यदि ऐसा कोई पूर्णांक उपस्तिथ नहीं है।
*अपरिवर्तनीय ''m''(''B'') सबसे लघु पूर्णांक है जैसे कि ''B<sup>m</sup>''<sup>+1</sup> तुच्छ है, या ∞ यदि ऐसा कोई पूर्णांक उपस्तिथ नहीं है।
*यदि m(B) परिमित है, तो अपरिवर्तनीय n(B) B के परमाणुओं की संख्या है<sup>m(B)</sup> यदि यह संख्या सीमित है, या ∞ यदि यह संख्या अनंत है।
*यदि ''m''(''B'') परिमित है, तो अपरिवर्तनीय ''n''(''B'') ''B<sup>m</sup>''<sup>(''B'')</sup> के परमाणुओं की संख्या है, यदि यह संख्या सीमित है, या ∞ यदि यह संख्या अनंत है।
*अपरिवर्तनीय l(B) 0 है यदि B<sup>m(B)</sup> परमाणु है या यदि m(B) ∞ है, और 1 अन्यथा है।
*यदि ''B<sup>m</sup>''<sup>(''B'')</sup> परमाणु है या यदि ''m''(''B'') ∞ है, तो अपरिवर्तनीय ''l''(''B'') 0 है, और अन्यथा 1 है।


तब दो बूलियन बीजगणित [[प्राथमिक तुल्यता]] हैं यदि और केवल यदि उनके अपरिवर्तनीय एल, एम, और एन समान हैं। दूसरे शब्दों में, इन अपरिवर्तनीयों के मान बूलियन बीजगणित के सिद्धांत की संभावित पूर्णता को वर्गीकृत करते हैं। तो संभावित पूर्ण सिद्धांत हैं:
फिर दो बूलियन बीजगणित [[प्राथमिक तुल्यता]] हैं यदि और केवल यदि उनके अपरिवर्तनीय ''l'', ''m'', और ''n'' समान हैं। दूसरे शब्दों में, इन अपरिवर्तनीयों के मान बूलियन बीजगणित के सिद्धांत की संभावित पूर्णता को वर्गीकृत करते हैं। तो संभावित पूर्ण सिद्धांत हैं |
*तुच्छ बीजगणित (यदि इसकी अनुमति है; कभी-कभी 0≠1 को स्वयंसिद्ध के रूप में सम्मिलित किया जाता है।)
*तुच्छ बीजगणित (यदि इसकी अनुमति है; कभी-कभी 0≠1 को स्वयंसिद्ध के रूप में सम्मिलित किया जाता है।)
*m = ∞ वाला सिद्धांत
*m = ∞ के साथ सिद्धांत
*m प्राकृतिक संख्या, n प्राकृतिक संख्या या ∞, और l = 0 या 1 वाले सिद्धांत (यदि n = 0 है तो l = 0 के साथ)।
*''m'' प्राकृतिक संख्या, ''n'' प्राकृतिक संख्या या ∞, और ''l'' = 0 या 1 वाले सिद्धांत (यदि ''n'' = 0 है तो ''l'' = 0 के साथ)।


==समूह==
==समूह==
[[समूह सिद्धांत]] के हस्ताक्षर में स्थिरांक 1 (समानता), arity 1 का कार्य (उलटा) होता है जिसका t पर मान t द्वारा दर्शाया जाता है<sup>−1</sup>, और arity 2 का कार्य, जिसे आमतौर पर शब्दों से हटा दिया जाता है। किसी पूर्णांक n, t के लिए<sup>n</sup>t की nवीं शक्ति के लिए स्पष्ट शब्द का संक्षिप्त रूप है।
[[समूह सिद्धांत]] '''के हस्ताक्षर में स्थिरांक 1 (समानता), arity 1 का कार्य (उलटा) होता है जिसका t पर मान t द्वारा दर्शाया जाता है<sup>−1</sup>, और arity 2 का कार्य, जिसे आमतौर पर शब्दों से हटा दिया जाता है। किसी पूर्णांक n, t के लिए<sup>n</sup>t की nवीं शक्ति के लिए स्पष्ट शब्द का संक्षिप्त रूप है।'''


'[[समूह (गणित)]]' को स्वयंसिद्धों द्वारा परिभाषित किया गया है
'[[समूह (गणित)]]' को स्वयंसिद्धों द्वारा परिभाषित किया गया है
Line 192: Line 195:
  }}.</ref> अनंत विभाज्य मरोड़-मुक्त एबेलियन समूहों का सिद्धांत पूर्ण है, जैसा कि घातांक पी के अनंत एबेलियन समूहों का सिद्धांत है (''पी'' [[अभाज्य संख्या]] के लिए)।
  }}.</ref> अनंत विभाज्य मरोड़-मुक्त एबेलियन समूहों का सिद्धांत पूर्ण है, जैसा कि घातांक पी के अनंत एबेलियन समूहों का सिद्धांत है (''पी'' [[अभाज्य संख्या]] के लिए)।


परिमित समूहों का सिद्धांत समूहों की भाषा में प्रथम-क्रम कथनों का समूह है जो सभी परिमित समूहों में सत्य हैं (इस सिद्धांत के बहुत सारे अनंत मॉडल हैं)। ऐसे किसी भी कथन को ढूंढना पूरी तरह से मामूली बात नहीं है जो सभी समूहों के लिए सत्य नहीं है: उदाहरण है
परिमित समूहों का सिद्धांत समूहों की भाषा में प्रथम-क्रम कथनों का समूह है जो सभी परिमित समूहों में सत्य हैं (इस सिद्धांत के बहुत सारे अनंत मॉडल हैं)। ऐसे किसी भी कथन को ढूंढना पूरी तरह से साधारण बात नहीं है जो सभी समूहों के लिए सत्य नहीं है: उदाहरण है
  क्रम 2 के दो तत्व दिए गए हैं, या तो वे संयुग्मी हैं या उन दोनों के साथ कोई गैर-तुच्छ तत्व आ रहा है।
  क्रम 2 के दो तत्व दिए गए हैं, या तो वे संयुग्मी हैं या उन दोनों के साथ कोई गैर-तुच्छ तत्व आ रहा है।


Line 198: Line 201:


==रिंग्स और फ़ील्ड्स==
==रिंग्स और फ़ील्ड्स==
(यूनिटल) रिंग (गणित) के हस्ताक्षर में दो स्थिरांक 0 और 1, दो बाइनरी फ़ंक्शंस + और × और, वैकल्पिक रूप से, यूनरी नेगेशन फलन है -।
(यूनिटल) रिंग (गणित) के हस्ताक्षर में दो स्थिरांक 0 और 1, दो बाइनरी फलन + और × और, वैकल्पिक रूप से, यूनरी नेगेशन फलन है -।


रिंगों
रिंगों
Line 252: Line 255:


==ज्यामिति==
==ज्यामिति==
ज्यामिति की विभिन्न प्रणालियों के लिए अभिगृहीत आम तौर पर टाइप की गई भाषा का उपयोग करते हैं, जिसमें विभिन्न ज्यामितीय वस्तुओं जैसे बिंदु, रेखाएं, वृत्त, विमान इत्यादि के अनुरूप विभिन्न प्रकार होते हैं। हस्ताक्षर में अक्सर विभिन्न प्रकार की वस्तुओं के बीच द्विआधारी घटना संबंध सम्मिलित होंगे; उदाहरण के लिए, यह संबंध कि बिंदु रेखा पर स्थित है। हस्ताक्षर में अधिक जटिल संबंध हो सकते हैं; उदाहरण के लिए [[आदेशित ज्यामिति]] में 3 बिंदुओं के लिए त्रिक मध्यता संबंध हो सकता है, जो बताता है कि क्या अन्य दो बिंदुओं के बीच स्थित है, या 2 जोड़े बिंदुओं के बीच सर्वांगसमता संबंध है।
ज्यामिति की विभिन्न प्रणालियों के लिए अभिगृहीत आम तौर पर टाइप की गई भाषा का उपयोग करते हैं, जिसमें विभिन्न ज्यामितीय वस्तुओं जैसे बिंदु, रेखाएं, वृत्त, विमान इत्यादि के अनुरूप विभिन्न प्रकार होते हैं। हस्ताक्षर में अक्सर विभिन्न प्रकार की वस्तुओं के मध्य द्विआधारी घटना संबंध सम्मिलित होंगे; उदाहरण के लिए, यह संबंध कि बिंदु रेखा पर स्थित है। हस्ताक्षर में अधिक जटिल संबंध हो सकते हैं; उदाहरण के लिए [[आदेशित ज्यामिति]] में 3 बिंदुओं के लिए त्रिक मध्यता संबंध हो सकता है, जो बताता है कि क्या अन्य दो बिंदुओं के मध्य स्थित है, या 2 जोड़े बिंदुओं के मध्य सर्वांगसमता संबंध है।


ज्यामिति की स्वयंसिद्ध प्रणालियों के कुछ उदाहरणों में क्रमबद्ध ज्यामिति, निरपेक्ष ज्यामिति, एफ़िन ज्यामिति, [[यूक्लिडियन ज्यामिति]], [[प्रक्षेप्य ज्यामिति]] और [[अतिशयोक्तिपूर्ण ज्यामिति]] सम्मिलित हैं। इनमें से प्रत्येक ज्यामिति के लिए विभिन्न आयामों के लिए स्वयंसिद्धों की अनेक अलग-अलग और असमान प्रणालियाँ हैं। इनमें से कुछ स्वयंसिद्ध प्रणालियों में पूर्णता स्वयंसिद्ध सम्मिलित हैं जो प्रथम क्रम के नहीं हैं।
ज्यामिति की स्वयंसिद्ध प्रणालियों के कुछ उदाहरणों में क्रमबद्ध ज्यामिति, निरपेक्ष ज्यामिति, एफ़िन ज्यामिति, [[यूक्लिडियन ज्यामिति]], [[प्रक्षेप्य ज्यामिति]] और [[अतिशयोक्तिपूर्ण ज्यामिति]] सम्मिलित हैं। इनमें से प्रत्येक ज्यामिति के लिए विभिन्न आयामों के लिए स्वयंसिद्धों की अनेक अलग-अलग और असमान प्रणालियाँ हैं। इनमें से कुछ स्वयंसिद्ध प्रणालियों में पूर्णता स्वयंसिद्ध सम्मिलित हैं जो प्रथम क्रम के नहीं हैं।


एक विशिष्ट उदाहरण के रूप में, प्रक्षेप्य ज्यामिति के लिए स्वयंसिद्ध 2 प्रकार, बिंदुओं और रेखाओं और बिंदुओं और रेखाओं के बीच द्विआधारी घटना संबंध का उपयोग करते हैं। यदि बिंदु और रेखा चर को छोटे और बड़े अक्षर से दर्शाया जाता है, और A की घटना को aA के रूप में लिखा जाता है, तो स्वयंसिद्धों का समुच्चय है
एक विशिष्ट उदाहरण के रूप में, प्रक्षेप्य ज्यामिति के लिए स्वयंसिद्ध 2 प्रकार, बिंदुओं और रेखाओं और बिंदुओं और रेखाओं के मध्य द्विआधारी घटना संबंध का उपयोग करते हैं। यदि बिंदु और रेखा चर को छोटे और बड़े अक्षर से दर्शाया जाता है, और A की घटना को aA के रूप में लिखा जाता है, तो स्वयंसिद्धों का समुच्चय है
*<math>\forall a\forall b\;\lnot a=b\rightarrow \exists C\; aC\land bC </math> (किन्हीं दो अलग-अलग बिंदुओं a,b से होकर रेखा गुजरती है...)
*<math>\forall a\forall b\;\lnot a=b\rightarrow \exists C\; aC\land bC </math> (किन्हीं दो अलग-अलग बिंदुओं a,b से होकर रेखा गुजरती है...)
*<math>\forall a\forall b\forall  C\forall D\; \lnot a=b\land aC\land bC \land aD\land bD\rightarrow C=D</math> (...जो अद्वितीय है)
*<math>\forall a\forall b\forall  C\forall D\; \lnot a=b\land aC\land bC \land aD\land bD\rightarrow C=D</math> (...जो अद्वितीय है)
Line 335: Line 338:
{{Main|Second-order arithmetic}}
{{Main|Second-order arithmetic}}


[[दूसरे क्रम का अंकगणित]] दो प्रकार के चर के साथ पहले क्रम के सिद्धांत (नाम के बावजूद) को संदर्भित कर सकता है, जिसे पूर्णांकों और पूर्णांकों के उपसमुच्चय में भिन्न माना जाता है। (दूसरे क्रम के तर्क में अंकगणित का सिद्धांत भी है जिसे दूसरे क्रम के अंकगणित कहा जाता है। इसमें केवल मॉडल है, पहले क्रम के तर्क में संबंधित सिद्धांत के विपरीत, जो अधूरा है।) हस्ताक्षर आम तौर पर हस्ताक्षर 0 होगा, ''अंकगणित का S'', +, ×, पूर्णांकों और उपसमुच्चयों के बीच सदस्यता संबंध ∈ के साथ (हालांकि अनेक छोटे बदलाव हैं)। स्वयंसिद्ध सिद्धांत रॉबिन्सन अंकगणित के हैं, साथ में [[गणितीय प्रेरण]] की स्वयंसिद्ध योजनाएं और विनिर्देशन की स्वयंसिद्ध स्कीमा भी हैं।
[[दूसरे क्रम का अंकगणित]] दो प्रकार के चर के साथ पहले क्रम के सिद्धांत (नाम के बावजूद) को संदर्भित कर सकता है, जिसे पूर्णांकों और पूर्णांकों के उपसमुच्चय में भिन्न माना जाता है। (दूसरे क्रम के तर्क में अंकगणित का सिद्धांत भी है जिसे दूसरे क्रम के अंकगणित कहा जाता है। इसमें केवल मॉडल है, पहले क्रम के तर्क में संबंधित सिद्धांत के विपरीत, जो अधूरा है।) हस्ताक्षर आम तौर पर हस्ताक्षर 0 होगा, ''अंकगणित का S'', +, ×, पूर्णांकों और उपसमुच्चयों के मध्य सदस्यता संबंध ∈ के साथ (हालांकि अनेक छोटे बदलाव हैं)। स्वयंसिद्ध सिद्धांत रॉबिन्सन अंकगणित के हैं, साथ में [[गणितीय प्रेरण]] की स्वयंसिद्ध योजनाएं और विनिर्देशन की स्वयंसिद्ध स्कीमा भी हैं।


दूसरे क्रम के अंकगणित के अनेक अलग-अलग उप-सिद्धांत हैं जो इस बात में भिन्न हैं कि प्रेरण और समझ योजनाओं में किन सूत्रों की अनुमति है।
दूसरे क्रम के अंकगणित के अनेक अलग-अलग उप-सिद्धांत हैं जो इस बात में भिन्न हैं कि प्रेरण और समझ योजनाओं में किन सूत्रों की अनुमति है।
Line 379: Line 382:
*उचित बल सिद्धांत
*उचित बल सिद्धांत
*विश्लेषणात्मक निर्धारण, [[प्रक्षेप्य निर्धारण]], निर्धारण का सिद्धांत
*विश्लेषणात्मक निर्धारण, [[प्रक्षेप्य निर्धारण]], निर्धारण का सिद्धांत
* बड़ी कार्डिनल संपत्तियों की अनेक सूची
* बड़ी कार्डिनल गुणों की अनेक सूची


==यह भी देखें==
==यह भी देखें==

Revision as of 15:40, 24 July 2023

प्रथम-क्रम तर्क में, प्रथम-क्रम सिद्धांत कुछ सिद्धांतों के समुच्चय (गणित) द्वारा दिया जाता है भाषा। यह प्रविष्टि मॉडल सिद्धांत में प्रयुक्त कुछ अधिक सामान्य उदाहरणों और उनके कुछ गुणों को सूचीबद्ध करती है।

प्रारंभिक

प्रत्येक प्राकृतिक गणितीय संरचना के लिए एकहस्ताक्षर (तर्क) σ होता है जो सिद्धांत के स्थिरांक, कार्यों और संबंधों को उनकी विशेषताओं के साथ सूचीबद्ध करता है, जिससे वस्तु स्वाभाविक रूप से σ-संरचना हो। हस्ताक्षर σ को देखते हुए अद्वितीय प्रथम-क्रम भाषा Lσ है जिसका उपयोग σ-संरचना के बारे में प्रथम-क्रम अभिव्यंजक तथ्यों को पकड़ने के लिए किया जा सकता है।

सिद्धांतों को निर्दिष्ट करने के दो सामान्य विधि हैं |

  1. Lσ भाषा में वाक्य (गणितीय तर्क) समुच्चय की सूची बनाएं या उसका वर्णन करें, जिसे सिद्धांत के अभिगृहीत कहा जाता है।
  2. σ-संरचनाओं का समुच्चय दें, और इन सभी मॉडलों में Lσ धारण करने वाले वाक्यों के समुच्चय के रूप में सिद्धांत को परिभाषित करें। उदाहरण के लिए, "परिमित क्षेत्रों का सिद्धांत" में क्षेत्रों की भाषा में सभी वाक्य सम्मिलित हैं जो सभी परिमित क्षेत्रों में सत्य हैं।

यह Lσ सिद्धांत हो सकता है |

  • सुसंगत रहें: विरोधाभास का कोई सबूत उपस्तिथ नहीं है |
  • संतुष्ट रहें: σ-संरचना उपस्तिथ है जिसके लिए सिद्धांत के सभी वाक्य सत्य हैं (पूर्णता प्रमेय के अनुसार, संतुष्टि स्थिरता के सामान्य है) |
  • पूर्ण हो: किसी भी कथन के लिए, या तो वह या उसका निषेध सिद्ध किया जा सकता है |
  • क्वांटिफ़ायर उन्मूलन है |
  • कल्पनाओं का उन्मूलन |
  • परिमित रूप से स्वयंसिद्ध होना |
  • निर्णय लेने योग्य बनें: यह तय करने के लिए एल्गोरिदम है कि कौन से कथन सिद्ध करने योग्य हैं |
  • पुनरावर्ती रूप से स्वयंसिद्ध होना |
  • मॉडल पूर्ण या उप-मॉडल पूर्ण हो |
  • κ-श्रेणीबद्ध हो:प्रमुखता कार्डिनैलिटी κ के सभी मॉडल समरूपी हैं |
  • स्थिर सिद्धांत या अस्थिर होना |
  • ω-स्थिर हो (गणनीय समुच्चय सिद्धांतों के लिए पूर्ण तरह से पारलौकिक के समान) |
  • अतिस्थिर बनें |
  • परमाणु मॉडल (गणितीय तर्क) है |
  • प्रमुख मॉडल है |
  • संतृप्त मॉडल है |

शुद्ध समानता सिद्धांत

शुद्ध समानता सिद्धांत का हस्ताक्षर रिक्त है, जिसमें कोई फलन, स्थिरांक या संबंध नहीं है।

शुद्ध समानता सिद्धांत में कोई (गैर-तार्किक) सिद्धांत नहीं है। यह निर्णय लेने योग्य है.

शुद्ध समानता सिद्धांत की भाषा में बताए जा सकने वाले कुछ रोचक गुणों में से अनंत होना है। यह सिद्धांतों के अनंत समुच्चय द्वारा दिया गया है जिसमें कहा गया है कि कम से कम 2 तत्व हैं, कम से कम 3 तत्व हैं, और इसी तरह |

  • x1x2 ¬x1 = x2, ∃x1x2x3 ¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x2 = x3,...

ये स्वयंसिद्ध अनंत समुच्चय के सिद्धांत को परिभाषित करते हैं।

परिमित होने की विपरीत संपत्ति को किसी भी सिद्धांत के लिए प्रथम-क्रम तर्क में नहीं बताया जा सकता है जिसमें अनेैतिक रूप से बड़े परिमित मॉडल होते हैं: वास्तव में ऐसे किसी भी सिद्धांत में कॉम्पैक्टनेस/ सघनता प्रमेय द्वारा अनंत मॉडल होते हैं। सामान्यतः यदि किसी गुण को प्रथम-क्रम तर्क के वाक्यों की सीमित संख्या द्वारा बताया जा सकता है तो विपरीत गुण को भी प्रथम-क्रम तर्क में बताया जा सकता है, किन्तु यदि किसी गुण को अनंत संख्या में वाक्यों के सिद्धांत की आवश्यकता होती है तो उसके विपरीत गुण को प्रथम-क्रम तर्क में नहीं बताया जा सकता है।

शुद्ध पहचान सिद्धांत का कोई भी कथन गैर-ऋणात्मक पूर्णांकों के कुछ परिमित उपसमुच्चय N के लिए या तो σ(N) या ¬σ(N) के सामान्य है, जहां σ(N) यह कथन है कि तत्वों की संख्या N में है। इस भाषा में सभी संभावित सिद्धांतों का वर्णन निम्नानुसार करना भी संभव है। कोई भी सिद्धांत या तो गैर-ऋणात्मक पूर्णांकों के कुछ परिमित उपसमुच्चय N के लिए N में कार्डिनैलिटी के सभी सबसमुच्चयों का सिद्धांत है, या गैर-ऋणात्मक पूर्णांकों के कुछ परिमित या अनंत उपसमुच्चय N के लिए उन सभी सेटों का सिद्धांत है जिनकी कार्डिनैलिटी N में नहीं है। (ऐसे कोई सिद्धांत नहीं हैं जिनके मॉडल सम्पूर्ण रूप में कार्डिनैलिटी N के समुच्चय हैं यदि N पूर्णांकों का अनंत उपसमुच्चय है।) संपूर्ण सिद्धांत कुछ परिमित n के लिए कार्डिनैलिटी n के समुच्चय के सिद्धांत और अनंत समुच्चय के सिद्धांत हैं।

इसका विशेष स्थिति स्वयंसिद्ध ∃x ¬x = x द्वारा परिभाषित असंगत सिद्धांत है। यह अनेक अच्छे गुणों के साथ पूरी तरह से अच्छा सिद्धांत है: यह पूर्ण है,और निर्णय लेने योग्य है, अंतिम रूप से स्वयंसिद्ध है, इत्यादि। एकमात्र समस्या यह है कि इसका कोई मॉडल ही नहीं है। गोडेल की पूर्णता प्रमेय के अनुसार, यह (किसी भी भाषा के लिए) एकमात्र सिद्धांत है जिसमें कोई मॉडल नहीं है।[1] यह रिक्त समुच्चय के सिद्धांत के समान नहीं है (प्रथम-क्रम तर्क के संस्करणों में जो मॉडल को रिक्त होने की अनुमति देता है): रिक्त समुच्चय के सिद्धांत में सम्पूर्ण रूप में मॉडल होता है, जिसमें कोई तत्व नहीं होता है।

एकात्मक संबंध

कुछ सेट में I के लिए एकात्मक संबंधों Pi के समुच्चय को स्वतंत्र कहा जाता है यदि I के प्रत्येक दो असंयुक्त परिमित उपसमुच्चय A और B के लिए कुछ तत्व x है जैसे कि Pi(x) A में i के लिए सत्य है और B में i के लिए असत्य है। स्वतंत्रता को प्रथम-क्रम कथनों के समुच्चय द्वारा व्यक्त किया जा सकता है।

'स्वतंत्र एकात्मक संबंधों की गणनीय संख्या का सिद्धांत' पूर्ण है, किन्तु इसका कोई परमाणु मॉडल (गणितीय तर्क) नहीं है। यह ऐसे सिद्धांत का उदाहरण भी है जो सुपरस्टेबल है किन्तु पूरी तरह से पारलौकिक नहीं है।

समतुल्यता संबंध

तुल्यता संबंधों के हस्ताक्षर में द्विआधारी इन्फ़िक्स संबंध प्रतीक ~, कोई स्थिरांक नहीं, और कोई कार्य नहीं है। तुल्यता संबंध स्वयंसिद्धों को संतुष्ट करते हैं |

तुल्यता संबंधों के कुछ प्रथम क्रम गुण हैं:

  • ~ समतुल्य वर्ग वर्गों की अनंत संख्या है;
  • ~ में सम्पूर्ण रूप में n तुल्यता वर्ग हैं (किसी भी निश्चित धनात्मक पूर्णांक n के लिए होगा) |
  • सभी समतुल्य वर्ग अनंत हैं;
  • सभी समतुल्य वर्गों का आकार सम्पूर्ण रूप में n है (किसी भी निश्चित धनात्मक पूर्णांक n के लिए)।

सम्पूर्ण रूप में 2 अनंत समतुल्य वर्गों के साथ समतुल्य संबंध का सिद्धांत हैं | और यह सिद्धांत का सरल उदाहरण है जो ω-श्रेणीबद्ध है किन्तु किसी भी बड़ी कार्डिनल संख्या के लिए श्रेणीबद्ध नहीं है।

तुल्यता संबंध ~ को समानता (दर्शन) प्रतीक '=' के साथ भ्रमित नहीं किया जाना चाहिए: यदि x=y तो x~y, किन्तु इसका विपरीत आवश्यक रूप से सत्य नहीं है। तुल्यता संबंधों के सिद्धांत उतने कठिन या रोचक नहीं हैं, किन्तु अक्सर विभिन्न कथनों के लिए सरल उदाहरण या प्रति-उदाहरण देते हैं।

निम्नलिखित निर्माणों का उपयोग कभी-कभी कुछ स्पेक्ट्रा वाले सिद्धांतों के उदाहरण तैयार करने के लिए किया जाता है; वास्तव में उन्हें स्पष्ट सिद्धांतों की छोटी संख्या पर प्रयुक्त करने से सभी संभावित असंख्य स्पेक्ट्रा के साथ पूर्ण गणनीय सिद्धांतों के उदाहरण मिलते हैं। यदि T किसी भाषा में सिद्धांत है, तो हम भाषा में नया द्विआधारी संबंध जोड़कर नया सिद्धांत 2T परिभाषित करते हैं, और यह बताते हुए स्वयंसिद्ध कथन जोड़ते हैं कि यह तुल्यता संबंध है, जैसे कि अनंत संख्या में समतुल्य वर्ग हैं जो सभी T के मॉडल हैं। इस निर्माण को अनंत प्रेरण से पुनरावृत्त करना संभव होता है | क्रमिक α दिया गया है, प्रत्येक β<α के लिए तुल्यता संबंध Eβ जोड़कर नया सिद्धांत परिभाषित करें | और इसके साथ ही यह बताते हुए कि जब भी β<γ हैं तो प्रत्येक Eγ समतुल्य वर्ग अनंत रूप से अनेक Eβ समतुल्य वर्गों का संघ है | और प्रत्येक E0 समतुल्य वर्ग T का मॉडल होता है। अनौपचारिक रूप से, कोई इस सिद्धांत के मॉडल को ऊंचाई α के अनंत ब्रंच्रिंग वाले ट्री के रूप में देख सकता है, जिसमें सभी लिव्स से जुड़े T के मॉडल होते हैं।

आदेश

गणित में क्रम संरचनाओं की सूची के हस्ताक्षर में कोई स्थिरांक या कार्य नहीं है, और द्विआधारी संबंध प्रतीक ≤ है। (बेशक, मूल संबंध के रूप में ≥, < या > का उपयोग करना संभव है, स्वयंसिद्धों में स्पष्ट साधारण परिवर्तनों के साथ।) हम xy, x < y, x > y को yx, xy ∧¬yx, y < x, के संक्षिप्त रूप के रूप में परिभाषित करते हैं।

ऑर्डर के कुछ प्रथम-क्रम गुण:

  • 'सकर्मक': ∀x ∀y ∀z x ≤ y∧y ≤ z → x ≤ z
  • 'रिफ्लेक्टिव': ∀x x ≤ x
  • 'एंटीसिमेट्रिक संबंध': ∀x ∀y x ≤ y ∧ y ≤ x → x = y
  • 'आंशिक क्रम': सकर्मक ∧ प्रतिवर्ती ∧ एंटीसिमेट्रिक |
  • 'रैखिक क्रम' (या 'कुल'): आंशिक ∧ ∀x ∀y x ≤ y ∨ y ≤ x
  • 'सघन क्रम': ∀x ∀z x < z → ∃y x < y ∧ y < z (किन्हीं दो अलग-अलग तत्वों के मध्य और तत्व होता है)
  • एक सबसे लघु तत्व है: ∃x ∀y x ≤ y
  • एक सबसे दीर्घ तत्व है: ∃x ∀y y ≤ x
  • प्रत्येक तत्व का तत्काल उत्तराधिकारी होता है: ∀x ∃y ∀z x < z ↔ y ≤ z

अंतिम बिंदुओं के बिना सघन रैखिक आदेशों का सिद्धांत डीएलओ (यानी कोई सबसे लघु या सबसे दीर्घ तत्व नहीं) हैं | पूर्ण, ω-श्रेणीबद्ध है, किन्तु किसी भी असंख्य कार्डिनल के लिए श्रेणीबद्ध नहीं है। तीन अन्य समान सिद्धांत हैं: सघन रैखिक आदेशों का सिद्धांत होता हैं |

  • सबसे लघु किन्तु कोई सबसे दीर्घ तत्व नहीं हैं
  • सबसे दीर्घ किन्तु कोई सबसे लघु तत्व नहीं हैं
  • सबसे दीर्घ और सबसे लघु तत्व हैं

'सुव्यवस्थित समुच्चय' होना (किसी भी गैर-रिक्त उपसमुच्चय में न्यूनतम तत्व होता है) यह प्रथम-क्रम की संपत्ति नहीं होती है | इसमें सामान्य परिभाषा में सभी उपसमूहों की मात्रा निर्धारित करना सम्मिलित है।

जालियाँ

लैटिस (ऑर्डर) को या तो विशेष प्रकार के आंशिक रूप से ऑर्डर किए गए समुच्चय के रूप में माना जा सकता है, जिसमें बाइनरी संबंध प्रतीक ≤ से युक्त हस्ताक्षर होता है, या दो बाइनरी ऑपरेशन ∧ और ∨ से युक्त हस्ताक्षर के साथबीजगणितीय संरचनाओं के रूप में माना जा सकता है। दोनों दृष्टिकोणों को a ≤ b को a∧b = a के अर्थ में परिभाषित करके संबंधित किया जा सकता है।

दो द्विआधारी संक्रियाओं के लिए लैटिस के लिए अभिगृहीत हैं |

क्रमविनिमेय नियम:
सहयोगी नियम:
अवशोषण नियम:

एक संबंध के लिए ≤ अभिगृहीत हैं |

  • ऊपर बताए अनुसार ≤ बताने वाले अभिगृहीत आंशिक क्रम है।
  • (c = a∧b का अस्तित्व)
  • (c = a∨b का अस्तित्व)

प्रथम क्रम की गुणों में सम्मिलित हैं |

हेटिंग बीजगणित को कुछ अतिरिक्त प्रथम-क्रम गुणों के साथ लैटिस के रूप में परिभाषित किया जा सकता है।

पूर्ण लैटिस लैटिस का प्रथम क्रम का गुण नहीं है।

ग्राफ़

ग्राफ़ (असतत गणित) के हस्ताक्षर में कोई स्थिरांक या फलन नहीं है, और द्विआधारी संबंध प्रतीक R है, जहां R(x,y) को "x से y" तक किनारा है" इसके रूप में पढ़ा जाता है।

'ग्राफ़ के सिद्धांत' के लिए अभिगृहीत हैं

  • 'सममित': ∀x ∀y R(x,y)→ R(y,x)
  • एंटी-रिफ्लेक्टिव: ∀x ¬R(x,x) ("कोई लूप नहीं")

यादृच्छिक ग्राफ के सिद्धांत में प्रत्येक धनात्मक पूर्णांक n के लिए निम्नलिखित के अतिरिक्त सिद्धांत हैं |

  • आकार n के किन्हीं दो असंयुक्त परिमित समुच्चयों के लिए, पहले समुच्चय के सभी बिंदुओं से बिंदु जुड़ा होता है और दूसरे समुच्चय के किसी भी बिंदु से नहीं जुड़ा होता है। (प्रत्येक निश्चित n के लिए इस कथन को ग्राफ़ की भाषा में लिखना सरल है।)

यादृच्छिक ग्राफ़ का सिद्धांत ω श्रेणीबद्ध, पूर्ण और निर्णय लेने योग्य है, और इसके गणनीय मॉडल को राडो ग्राफ कहा जाता है। ग्राफ़ की भाषा में कथन इस सिद्धांत में सत्य है यदि और केवल यदि संभावना है कि n -वर्टेक्स यादृच्छिक ग्राफ़ मॉडल कथन को सीमा में 1 तक ले जाता है क्योंकि n अनंत तक जाता है।

बूलियन बीजगणित

बूलियन बीजगणित के लिए अनेक अलग-अलग हस्ताक्षर और परंपराएं उपयोग की जाती हैं |

  1. हस्ताक्षर में दो स्थिरांक हैं, 0 और 1, और दो बाइनरी फलन ∧ और ∨ ("और" और "या"), और यूनरी फलन ¬ ("नहीं") हैं। यह भ्रमित करने वाला हो सकता है क्योंकि फलन प्रथम-क्रम तर्क के प्रस्तावात्मक फलन के समान प्रतीकों का उपयोग करते हैं।
  2. समुच्चय सिद्धांत में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फलन हैं | और +, और यूनरी फलन -। तीनों कार्यों की व्याख्या पहले सम्मेलन के कार्यों के समान ही है। दुर्भाग्य से, यह सम्मेलन आगामी सम्मेलन से असफ़लतापूर्वक तरह से संघर्ष करता है |
  3. बीजगणित में, सामान्य परंपरा यह है कि भाषा में दो स्थिरांक होते हैं, 0 और 1, और दो बाइनरी फलन · और +। फलन · का अर्थ ∧ के समान है, किन्तु a+b का अर्थ है ab∧¬(ab) हैं । इसका कारण यह है कि बूलियन बीजगणित के लिए अभिगृहीत केवल 1 प्लस ∀x x2 = x वाली रिंग के लिए अभिगृहीत हैं | दुर्भाग्य से यह ऊपर दिए गए समुच्चय सिद्धांत में मानक सम्मेलन से संघर्ष करता है।

यह अभिगृहीत हैं |

  • वितरणात्मक लैटिस के लिए अभिगृहीत (ऊपर देखें)
  • ∀a a∧¬a = 0, ∀a a∨¬a = 1 (निषेध के गुण)
  • कुछ लेखक तत्व के साथ तुच्छ बीजगणित को बाहर करने के लिए अतिरिक्त स्वयंसिद्ध ¬0 = 1 जोड़ते हैं।

टार्स्की ने साबित किया कि बूलियन बीजगणित का सिद्धांत निर्णायक है।

हम xy को xy = x के लिए संक्षिप्त नाम के रूप में लिखते हैं, और परमाणु (x) को ¬x = 0 ∧ ∀y yxy = 0 ∨ y = x के लिए संक्षिप्त नाम के रूप में लिखते हैं, x के रूप में पढ़ें परमाणु है, दूसरे शब्दों में इसके मध्य कुछ भी नहीं है और 0. यहाँ कुछ पहले-क्रम गुण हैं:

  • 'परमाणु': ∀x x = 0 ∨ ∃y y ≤ x ∧ परमाणु(y)
  • 'परमाणु रहित': ∀x ¬ परमाणु (x)

'परमाणु रहित बूलियन बीजगणित' का सिद्धांत ω-श्रेणीबद्ध और पूर्ण है।

किसी भी बूलियन बीजगणित बी के लिए, निम्नानुसार अनेक अपरिवर्तनीय परिभाषित हैं।

  • आदर्श I(B) में ऐसे तत्व सम्मिलित हैं जो परमाणु और परमाणु रहित तत्व (एक ऐसा तत्व जिसके नीचे कोई परमाणु नहीं है) का योग है।
  • B के भागफल बीजगणित Bi को B0=B, Bk+1 = Bk/I(Bk) द्वारा आगमनात्मक रूप से परिभाषित किया गया है।
  • अपरिवर्तनीय m(B) सबसे लघु पूर्णांक है जैसे कि Bm+1 तुच्छ है, या ∞ यदि ऐसा कोई पूर्णांक उपस्तिथ नहीं है।
  • यदि m(B) परिमित है, तो अपरिवर्तनीय n(B) Bm(B) के परमाणुओं की संख्या है, यदि यह संख्या सीमित है, या ∞ यदि यह संख्या अनंत है।
  • यदि Bm(B) परमाणु है या यदि m(B) ∞ है, तो अपरिवर्तनीय l(B) 0 है, और अन्यथा 1 है।

फिर दो बूलियन बीजगणित प्राथमिक तुल्यता हैं यदि और केवल यदि उनके अपरिवर्तनीय l, m, और n समान हैं। दूसरे शब्दों में, इन अपरिवर्तनीयों के मान बूलियन बीजगणित के सिद्धांत की संभावित पूर्णता को वर्गीकृत करते हैं। तो संभावित पूर्ण सिद्धांत हैं |

  • तुच्छ बीजगणित (यदि इसकी अनुमति है; कभी-कभी 0≠1 को स्वयंसिद्ध के रूप में सम्मिलित किया जाता है।)
  • m = ∞ के साथ सिद्धांत
  • m प्राकृतिक संख्या, n प्राकृतिक संख्या या ∞, और l = 0 या 1 वाले सिद्धांत (यदि n = 0 है तो l = 0 के साथ)।

समूह

समूह सिद्धांत के हस्ताक्षर में स्थिरांक 1 (समानता), arity 1 का कार्य (उलटा) होता है जिसका t पर मान t द्वारा दर्शाया जाता है−1, और arity 2 का कार्य, जिसे आमतौर पर शब्दों से हटा दिया जाता है। किसी पूर्णांक n, t के लिएnt की nवीं शक्ति के लिए स्पष्ट शब्द का संक्षिप्त रूप है।

'समूह (गणित)' को स्वयंसिद्धों द्वारा परिभाषित किया गया है

  • समानता: ∀x 1x = x ∧ x1 = x
  • उलटा: ∀x x−1x = 1 ∧ xx−1=1
  • सहयोगिता: ∀x∀y∀z (xy)z = x(yz)

समूहों के कुछ गुण जिन्हें समूहों की प्रथम-क्रम भाषा में परिभाषित किया जा सकता है:

'एबेलियन समूहों' का सिद्धांत निर्णायक है।[2] अनंत विभाज्य मरोड़-मुक्त एबेलियन समूहों का सिद्धांत पूर्ण है, जैसा कि घातांक पी के अनंत एबेलियन समूहों का सिद्धांत है (पी अभाज्य संख्या के लिए)।

परिमित समूहों का सिद्धांत समूहों की भाषा में प्रथम-क्रम कथनों का समूह है जो सभी परिमित समूहों में सत्य हैं (इस सिद्धांत के बहुत सारे अनंत मॉडल हैं)। ऐसे किसी भी कथन को ढूंढना पूरी तरह से साधारण बात नहीं है जो सभी समूहों के लिए सत्य नहीं है: उदाहरण है

क्रम 2 के दो तत्व दिए गए हैं, या तो वे संयुग्मी हैं या उन दोनों के साथ कोई गैर-तुच्छ तत्व आ रहा है।

परिमित, या मुक्त समूह, या सरल समूह, या मरोड़ होने के गुण प्रथम-क्रम के नहीं हैं। अधिक सटीक रूप से, इन गुणों में से किसी गुण वाले सभी समूहों के प्रथम-क्रम सिद्धांत में ऐसे मॉडल होते हैं जिनमें यह गुण नहीं होता है।

रिंग्स और फ़ील्ड्स

(यूनिटल) रिंग (गणित) के हस्ताक्षर में दो स्थिरांक 0 और 1, दो बाइनरी फलन + और × और, वैकल्पिक रूप से, यूनरी नेगेशन फलन है -।

रिंगों

अभिगृहीत: जोड़ वलय को एबेलियन समूह में बनाता है, गुणन साहचर्य है और इसकी समानता 1 है, और गुणन बाएँ और दाएँ वितरणात्मक है।

क्रमविनिमेय वलय

रिंग प्लस ∀xy xy = yx के लिए अभिगृहीत।

फ़ील्ड (गणित)एस

क्रमविनिमेय वलय प्लस ∀xx = 0 → ∃y xy = 1) और ¬ 1 = 0 के लिए अभिगृहीत। यहां दिए गए अनेक उदाहरणों में केवल सार्वभौमिक, या बीजगणितीय सिद्धांत हैं। ऐसे सिद्धांत को संतुष्ट करने वाली संरचनाओं के वर्ग (समुच्चय सिद्धांत) में उपसंरचना के तहत बंद होने की संपत्ति होती है। उदाहरण के लिए, गुणन और व्युत्क्रम की समूह क्रियाओं के अंतर्गत बंद समूह का उपसमुच्चय फिर से समूह है। चूँकि फ़ील्ड के हस्ताक्षर में आमतौर पर गुणक और योगात्मक व्युत्क्रम सम्मिलित नहीं होते हैं, व्युत्क्रम के लिए अभिगृहीत सार्वभौमिक नहीं होते हैं, और इसलिए जोड़ और गुणन के तहत बंद फ़ील्ड का उपसंरचना हमेशा फ़ील्ड नहीं होता है। भाषा में एकात्मक व्युत्क्रम फलन जोड़कर इसका समाधान किया जा सकता है।

किसी भी धनात्मक पूर्णांक n के लिए यह गुण कि डिग्री n के सभी समीकरणों का मूल होता है, प्रथम-क्रम वाक्य द्वारा व्यक्त किया जा सकता है:

  • 1 ∀ ए2... ∀ एn ∃x (...((x+a1)एक्स +ए2)x+...)x+an = 0

उत्तम क्षेत्र

फ़ील्ड के लिए स्वयंसिद्ध, साथ ही प्रत्येक अभाज्य संख्या पी के लिए स्वयंसिद्ध यह बताते हुए कि यदि पी 1 = 0 (अर्थात् फ़ील्ड में फ़ील्ड विशेषता पी है), तो प्रत्येक फ़ील्ड तत्व में पी है वाँ जड़.

विशेषता पी के बीजगणितीय रूप से बंद क्षेत्र

फ़ील्ड के लिए स्वयंसिद्ध, साथ ही प्रत्येक धनात्मक एन के लिए यह सिद्धांत कि डिग्री एन के सभी बहुपदों का मूल होता है, साथ ही विशेषता को तय करने वाले स्वयंसिद्ध। संपूर्ण सिद्धांतों के शास्त्रीय उदाहरण. सभी असंख्य कार्डिनल्स में श्रेणी सिद्धांत। सिद्धांत एसीएफp सार्वभौमिक डोमेन संपत्ति है, इस अर्थ में कि प्रत्येक संरचना एन एसीएफ के सार्वभौमिक सिद्धांतों को संतुष्ट करती हैp पर्याप्त रूप से बड़े बीजगणितीय रूप से बंद क्षेत्र की उपसंरचना है , और इसके अतिरिक्त कोई भी दो ऐसे एम्बेडिंग एन → एम एम के स्वचालितता को प्रेरित करते हैं।

'परिमित क्षेत्र'

परिमित क्षेत्रों का सिद्धांत सभी प्रथम-क्रम कथनों का समूह है जो सभी परिमित क्षेत्रों में सत्य हैं। उदाहरण के लिए, ऐसे बयानों के महत्वपूर्ण उदाहरण प्रमुख क्षेत्रों पर शेवेल्ली-चेतावनी प्रमेय को प्रयुक्त करके दिए जा सकते हैं। नाम थोड़ा भ्रामक है क्योंकि सिद्धांत में बहुत सारे अनंत मॉडल हैं। एक्स ने साबित कर दिया कि सिद्धांत निर्णायक है।

'औपचारिक रूप से वास्तविक क्षेत्र'

फ़ील्ड के लिए स्वयंसिद्ध प्लस, प्रत्येक धनात्मक पूर्णांक n के लिए, स्वयंसिद्ध:

  • ∀ ए1 ∀ ए2... ∀ एn a1a1+ए2a2+ ...+एnan=0 → ए1=0∧a2=0∧ ... ∧an=0.

अर्थात्, 0 वर्गों का गैर-तुच्छ योग नहीं है।

वास्तविक बंद फ़ील्ड

औपचारिक रूप से वास्तविक क्षेत्रों के लिए स्वयंसिद्ध कथन और स्वयंसिद्ध कथन:

  • xy (x=yyx+yy= 0);
  • प्रत्येक विषम धनात्मक पूर्णांक n के लिए, यह अभिगृहीत बताता है कि घात n के प्रत्येक बहुपद का मूल होता है।

वास्तविक बंद क्षेत्रों का सिद्धांत प्रभावी और पूर्ण है और इसलिए निर्णय लेने योग्य है (टार्स्की-सीडेनबर्ग प्रमेय)। आगे के फलन प्रतीकों को जोड़ना (उदाहरण के लिए, घातीय फलन, साइन फलन) वास्तविक संख्याओं के प्रथम-क्रम सिद्धांतों की निर्णायकता

पी-एडिक फ़ील्ड

Ax & Kochen (1965) दिखाया कि पी-एडिक फ़ील्ड का सिद्धांत निर्णायक है और इसके लिए सिद्धांतों का समुच्चय दिया।[3]


ज्यामिति

ज्यामिति की विभिन्न प्रणालियों के लिए अभिगृहीत आम तौर पर टाइप की गई भाषा का उपयोग करते हैं, जिसमें विभिन्न ज्यामितीय वस्तुओं जैसे बिंदु, रेखाएं, वृत्त, विमान इत्यादि के अनुरूप विभिन्न प्रकार होते हैं। हस्ताक्षर में अक्सर विभिन्न प्रकार की वस्तुओं के मध्य द्विआधारी घटना संबंध सम्मिलित होंगे; उदाहरण के लिए, यह संबंध कि बिंदु रेखा पर स्थित है। हस्ताक्षर में अधिक जटिल संबंध हो सकते हैं; उदाहरण के लिए आदेशित ज्यामिति में 3 बिंदुओं के लिए त्रिक मध्यता संबंध हो सकता है, जो बताता है कि क्या अन्य दो बिंदुओं के मध्य स्थित है, या 2 जोड़े बिंदुओं के मध्य सर्वांगसमता संबंध है।

ज्यामिति की स्वयंसिद्ध प्रणालियों के कुछ उदाहरणों में क्रमबद्ध ज्यामिति, निरपेक्ष ज्यामिति, एफ़िन ज्यामिति, यूक्लिडियन ज्यामिति, प्रक्षेप्य ज्यामिति और अतिशयोक्तिपूर्ण ज्यामिति सम्मिलित हैं। इनमें से प्रत्येक ज्यामिति के लिए विभिन्न आयामों के लिए स्वयंसिद्धों की अनेक अलग-अलग और असमान प्रणालियाँ हैं। इनमें से कुछ स्वयंसिद्ध प्रणालियों में पूर्णता स्वयंसिद्ध सम्मिलित हैं जो प्रथम क्रम के नहीं हैं।

एक विशिष्ट उदाहरण के रूप में, प्रक्षेप्य ज्यामिति के लिए स्वयंसिद्ध 2 प्रकार, बिंदुओं और रेखाओं और बिंदुओं और रेखाओं के मध्य द्विआधारी घटना संबंध का उपयोग करते हैं। यदि बिंदु और रेखा चर को छोटे और बड़े अक्षर से दर्शाया जाता है, और A की घटना को aA के रूप में लिखा जाता है, तो स्वयंसिद्धों का समुच्चय है

  • (किन्हीं दो अलग-अलग बिंदुओं a,b से होकर रेखा गुजरती है...)
  • (...जो अद्वितीय है)
  • (वेब्लेन का अभिगृहीत: यदि एबी और सीडी प्रतिच्छेदी रेखाओं पर हैं, तो एसी और बीडी भी हैं।)
  • (प्रत्येक पंक्ति में कम से कम 3 बिंदु होते हैं)

यूक्लिड ने यूक्लिडियन ज्यामिति के लिए सभी स्वयंसिद्धों को स्पष्ट रूप से नहीं बताया, और पहली पूरी सूची हिल्बर्ट द्वारा हिल्बर्ट के स्वयंसिद्धों में दी गई थी। यह प्रथम क्रम का स्वयंसिद्धीकरण नहीं है क्योंकि हिल्बर्ट के स्वयंसिद्धों में से दूसरे क्रम की पूर्णता का स्वयंसिद्ध है। टार्स्की के अभिगृहीत यूक्लिडियन ज्यामिति का प्रथम क्रम का स्वयंसिद्धीकरण हैं। टार्स्की ने इसे वास्तविक बंद क्षेत्रों के पूर्ण और निर्णायक सिद्धांत से जोड़कर दिखाया कि यह स्वयंसिद्ध प्रणाली पूर्ण और निर्णायक है।

विभेदक बीजगणित

हस्ताक्षर यूनिरी फलन ∂, व्युत्पत्ति के साथ फ़ील्ड (0, 1, +, -, ×) का है। अभिगृहीत वे हैं जो खेतों के लिए साथ हैं

इस सिद्धांत के लिए कोई यह शर्त जोड़ सकता है कि विशेषता p, अभाज्य या शून्य है, सिद्धांत डीएफ प्राप्त करने के लिएp विशेषता पी के विभेदक क्षेत्रों का (और इसी तरह नीचे दिए गए अन्य सिद्धांतों के साथ)।

यदि K विभेदक क्षेत्र है तो स्थिरांक का क्षेत्र विभेदक रूप से परिपूर्ण क्षेत्रों का सिद्धांत इस शर्त के साथ विभेदक क्षेत्रों का सिद्धांत है कि स्थिरांक का क्षेत्र एकदम सही है; दूसरे शब्दों में, प्रत्येक अभाज्य p के लिए इसका स्वयंसिद्ध कथन है:

(यह मांग करने का कोई मतलब नहीं है कि पूरा क्षेत्र आदर्श क्षेत्र होना चाहिए, क्योंकि गैर-शून्य विशेषता में इसका मतलब है कि अंतर 0 है।) क्वांटिफायर उन्मूलन से संबंधित तकनीकी कारणों से, कभी-कभी सिद्धांतों के साथ हस्ताक्षर में नया प्रतीक आर जोड़कर निरंतर क्षेत्र को सही होने के लिए मजबूर करना अधिक सुविधाजनक होता है।

  • विभेदक रूप से बंद क्षेत्रों का सिद्धांत (DCF) विभेदित रूप से पूर्ण क्षेत्रों का सिद्धांत है जिसमें स्वयंसिद्ध कथन हैं कि यदि f और g विभेदक बहुपद हैं और f का विभाजक गैर-शून्य है और g≠0 है और f का क्रम g से अधिक है, तो f(x)=0 और g(x) के साथ क्षेत्र में कुछ x है ≠0.

जोड़

उत्तराधिकारी फलन के साथ प्राकृतिक संख्याओं के सिद्धांत में स्थिरांक 0 और एकल फलन S से युक्त हस्ताक्षर होते हैं (उत्तराधिकारी: S(x) की व्याख्या x+ के रूप में की जाती है 1), और इसके स्वयंसिद्ध हैं:

  1. ∀x ¬ Sx = 0
  2. ∀x∀y Sx = Sy → x = y
  3. मान लीजिए P(x) सुगठित सूत्र है|एक एकल मुक्त चर x के साथ प्रथम-क्रम सूत्र। फिर निम्नलिखित सूत्र स्वयंसिद्ध है:
(P(0) ∧ ∀x(P(x)→P(Sx))) → ∀y पी(वाई).

अंतिम स्वयंसिद्ध (प्रेरण) को स्वयंसिद्धों द्वारा प्रतिस्थापित किया जा सकता है

  • प्रत्येक पूर्णांक n>0 के लिए, अभिगृहीत ∀x SSS...Sx ≠ x (S की n प्रतियों के साथ)
  • ∀x ¬ x = 0 → ∃y Sy = x

उत्तराधिकारी फलन के साथ प्राकृतिक संख्याओं का सिद्धांत पूर्ण और निर्णायक है, और असंख्य κ के लिए κ-श्रेणीबद्ध है, किन्तु गणनीय κ के लिए नहीं।

प्रेस्बर्गर अंकगणित जोड़ के तहत प्राकृतिक संख्याओं का सिद्धांत है, जिसमें हस्ताक्षर में स्थिरांक 0, यूनरी फलन एस और बाइनरी फलन + सम्मिलित होता है। यह पूर्ण एवं निर्णययोग्य है। स्वयंसिद्ध हैं

  1. ∀x ¬ Sx = 0
  2. ∀x∀y Sx = Sy → x = y
  3. ∀x x + 0 = x
  4. ∀x∀y x + Sy = S(x + y)
  5. मान लीजिए P(x) एकल मुक्त चर x के साथ प्रथम-क्रम सूत्र है। फिर निम्नलिखित सूत्र स्वयंसिद्ध है:
(P(0) ∧ ∀x(P(x)→P(Sx))) → ∀y पी(वाई).

अंकगणित

ऊपर वर्णित प्रथम क्रम के अनेक सिद्धांतों को पुनरावर्ती रूप से गणना योग्य सुसंगत सिद्धांतों को पूरा करने के लिए बढ़ाया जा सकता है। यह अब निम्नलिखित अधिकांश सिद्धांतों के लिए सत्य नहीं है; वे आम तौर पर प्राकृतिक संख्याओं के गुणन और जोड़ दोनों को एनकोड कर सकते हैं, और इससे उन्हें खुद को एनकोड करने के लिए पर्याप्त शक्ति मिलती है, जिसका अर्थ है कि गोडेल की अपूर्णता प्रमेय प्रयुक्त होती है और सिद्धांत अब पूर्ण और पुनरावर्ती रूप से गणना योग्य नहीं हो सकते हैं (जब तक कि वे असंगत न हों)।

अंकगणित के सिद्धांत के हस्ताक्षर हैं:

  • स्थिरांक 0;
  • एकात्मक कार्य, उत्तराधिकारी फलन, यहां उपसर्ग एस द्वारा, या अन्यत्र उपसर्ग σ या पोस्टफिक्स ′ द्वारा दर्शाया गया है;
  • दो द्विआधारी फलन, जो इनफ़िक्स + और × द्वारा निरूपित होते हैं, जोड़ और गुणा कहलाते हैं।

कुछ लेखक फलन S के बजाय स्थिरांक 1 को सम्मिलित करने के लिए हस्ताक्षर लेते हैं, फिर S को स्पष्ट विधि से St = 1 + t के रूप में परिभाषित करते हैं।

'रॉबिन्सन अंकगणित' (जिसे 'क्यू' भी कहा जाता है)। अभिगृहीत (1) और (2) विशिष्ट तत्व 0 को नियंत्रित करते हैं। (3) आश्वासन देता है कि एस इंजेक्शन का कार्य है। अभिगृहीत (4) और (5) जोड़ की मानक पुनरावर्ती परिभाषा हैं; गुणन के लिए (6) और (7) भी ऐसा ही करें। रॉबिन्सन अंकगणित को प्रेरण के बिना पीनो अंकगणित के रूप में सोचा जा सकता है। 'क्यू' कमजोर सिद्धांत है जिसके लिए गोडेल की अपूर्णता प्रमेय|गोडेल की अपूर्णता प्रमेय मान्य है। अभिगृहीत:

  1. ∀x ¬ Sx = 0
  2. ∀x ¬ x = 0 → ∃y Sy = x
  3. ∀x∀y Sx = Sy → x = y
  4. ∀x x + 0 = x
  5. ∀x∀y x + Sy = S(x + y)
  6. ∀x x × 0 = 0
  7. ∀x∀y x × Sy = (x × y) + x.

'मैंΣnअंकगणितीय पदानुक्रम|Σ तक सीमित प्रेरण के साथ पहला क्रम पीनो अंकगणित हैn सूत्र (n = 0, 1, 2, ... के लिए)। सिद्धांत IΣ0 इसे अक्सर IΔ द्वारा निरूपित किया जाता है0. यह पीनो अंकगणित के अधिक से अधिक शक्तिशाली अंशों की श्रृंखला है। केस n = 1 में 'आदिम पुनरावर्ती अंकगणित' (पीआरए) के समान ही ताकत है। 'घातांकीय फलन अंकगणित ' (ईएफए) IΣ है0 स्वयंसिद्ध कथन के साथ कि xy सभी x और y के लिए उपस्तिथ है (सामान्य गुणों के साथ)।

'प्रथम क्रम पीनो अंकगणित', 'पीए'। अंकगणित का मानक सिद्धांत. स्वयंसिद्ध उपरोक्त रॉबिन्सन अंकगणित के स्वयंसिद्ध हैं, प्रेरण की स्वयंसिद्ध योजना के साथ:

  • पीए की भाषा में किसी भी सूत्र φ के लिए। φ में x के अलावा अन्य मुक्त चर हो सकते हैं।

कर्ट गोडेल के 1931 के पेपर ने साबित कर दिया कि पीए अधूरा है, और इसमें लगातार पुनरावर्ती गणना योग्य पूर्णताएं नहीं हैं।

पूर्ण अंकगणित (जिसे वास्तविक अंकगणित के रूप में भी जाना जाता है) अंकगणित के मानक मॉडल, प्राकृतिक संख्या एन का सिद्धांत है। यह पूर्ण है किन्तु इसमें स्वयंसिद्धों का पुनरावर्ती रूप से गणना योग्य समुच्चय नहीं है।

वास्तविक संख्याओं के लिए, स्थिति थोड़ी अलग है: वह स्थिति जिसमें केवल जोड़ और गुणा सम्मिलित है, पूर्णांकों को एन्कोड नहीं कर सकता है, और इसलिए गोडेल की अपूर्णता प्रमेय टार्स्की-सीडेनबर्ग प्रमेय है। वास्तविक संख्याओं के प्रथम-क्रम सिद्धांतों की निर्णायकता आगे फलन प्रतीकों (जैसे, घातांक) को जोड़ने पर उत्पन्न होती है।

द्वितीय क्रम अंकगणित

दूसरे क्रम का अंकगणित दो प्रकार के चर के साथ पहले क्रम के सिद्धांत (नाम के बावजूद) को संदर्भित कर सकता है, जिसे पूर्णांकों और पूर्णांकों के उपसमुच्चय में भिन्न माना जाता है। (दूसरे क्रम के तर्क में अंकगणित का सिद्धांत भी है जिसे दूसरे क्रम के अंकगणित कहा जाता है। इसमें केवल मॉडल है, पहले क्रम के तर्क में संबंधित सिद्धांत के विपरीत, जो अधूरा है।) हस्ताक्षर आम तौर पर हस्ताक्षर 0 होगा, अंकगणित का S, +, ×, पूर्णांकों और उपसमुच्चयों के मध्य सदस्यता संबंध ∈ के साथ (हालांकि अनेक छोटे बदलाव हैं)। स्वयंसिद्ध सिद्धांत रॉबिन्सन अंकगणित के हैं, साथ में गणितीय प्रेरण की स्वयंसिद्ध योजनाएं और विनिर्देशन की स्वयंसिद्ध स्कीमा भी हैं।

दूसरे क्रम के अंकगणित के अनेक अलग-अलग उप-सिद्धांत हैं जो इस बात में भिन्न हैं कि प्रेरण और समझ योजनाओं में किन सूत्रों की अनुमति है। बढ़ती ताकत के क्रम में, पांच सबसे आम प्रणालियाँ हैं

  • , पुनरावर्ती समझ
  • , कमजोर कोनिग की लेम्मा
  • , अंकगणितीय समझ
  • , अंकगणितीय ट्रांसफ़िनिट रिकर्सन
  • , समझ

इन्हें दूसरे क्रम के अंकगणित और विपरीत गणित पर लेखों में विस्तार से परिभाषित किया गया है।

सिद्धांत समुच्चय करें

समुच्चय सिद्धांत के सामान्य हस्ताक्षर में द्विआधारी संबंध ∈ होता है, कोई स्थिरांक नहीं होता है, और कोई कार्य नहीं होता है। नीचे दिए गए कुछ सिद्धांत वर्ग सिद्धांत हैं जिनमें दो प्रकार की वस्तुएँ, समुच्चय और वर्ग हैं। प्रथम-क्रम तर्क में इसे संभालने के तीन सामान्य विधि हैं:

  1. दो प्रकार के साथ प्रथम-क्रम तर्क का उपयोग करें।
  2. सामान्य प्रथम-क्रम तर्क का उपयोग करें, किन्तु नया यूनरी विधेय समुच्चय जोड़ें, जहां समुच्चय (टी) का अर्थ अनौपचारिक रूप से टी समुच्चय है।
  3. सामान्य प्रथम-क्रम तर्क का उपयोग करें, और भाषा में नया विधेय जोड़ने के बजाय, Set(t) को ∃y t∈y के संक्षिप्त नाम के रूप में मानें

कुछ प्रथम क्रम समुच्चय सिद्धांतों में सम्मिलित हैं:

कुछ अतिरिक्त प्रथम क्रम के सिद्धांत जिन्हें इनमें से किसी (आमतौर पर ZF) में जोड़ा जा सकता है, उनमें सम्मिलित हैं:

यह भी देखें

संदर्भ

  1. Goldrei, Derek (2005), Propositional and Predicate Calculus: A Model of Argument: A Model of Argument, Springer, p. 265, ISBN 9781846282294.
  2. Szmielew, W. (1955), "Elementary properties of Abelian groups", Fundamenta Mathematicae, 41 (2): 203–271, doi:10.4064/fm-41-2-203-271, MR 0072131.
  3. Ax, James; Kochen, Simon (1965), "Diophantine problems over local fields. II. A complete set of axioms for p-adic number theory.", Amer. J. Math., The Johns Hopkins University Press, 87 (3): 631–648, doi:10.2307/2373066, JSTOR 2373066, MR 0184931


अग्रिम पठन