चेर्न वर्ग: Difference between revisions
m (20 revisions imported from alpha:चेर्न_क्लास) |
No edit summary |
||
| Line 351: | Line 351: | ||
{{Topology}} | {{Topology}} | ||
{{Authority control}} | {{Authority control}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 10/07/2023]] | [[Category:Created On 10/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages that use a deprecated format of the math tags]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:चीनी गणितीय खोजें]] | |||
[[Category:विशेषता वर्ग]] | |||
Revision as of 11:12, 26 July 2023
गणित में, विशेष रूप से बीजगणितीय टोपोलॉजी, विभेदक ज्यामिति एवं टोपोलॉजी एवं बीजगणितीय ज्यामिति में, चेर्न कक्षाएं समष्टि सदिश समूह सदिश समूहों से जुड़े विशिष्ट वर्ग हैं। तब से वे गणित एवं भौतिकी की कई शाखाओं में मौलिक अवधारणाएँ बन गए हैं, जैसे कि स्ट्रिंग सिद्धांत, चेर्न-साइमन्स सिद्धांत, गाँठ सिद्धांत, ग्रोमोव-विटन सिद्धांत।
चेर्न कक्षाएं शिंग-शेन चेर्न (1946) द्वारा प्रारम्भ की गईं।
ज्यामितीय दृष्टिकोण
मूल विचार एवं प्रेरणा
चेर्न वर्ग विशिष्ट वर्ग हैं। वे चिकने मैनिफोल्ड पर सदिश समूहों से जुड़े टोपोलॉजिकल अपरिवर्तनीय हैं। इस प्रश्न का उत्तर देना अधिकतम कठिन हो सकता है, कि क्या दो प्रत्यक्ष रूप से भिन्न सदिश समूह एक जैसे हैं। चेर्न वर्ग सरल परीक्षण प्रदान करते हैं: यदि सदिश समूहों की जोड़ी के चेर्न वर्ग सहमत नहीं हैं, तो सदिश समूह भिन्न हैं। चूंकि, इसका उलटा सच नहीं है।
टोपोलॉजी, विभेदक ज्यामिति एवं बीजगणितीय ज्यामिति में, यह गिनना प्रायः महत्वपूर्ण होता है कि सदिश समूह में कितने रैखिक रूप से स्वतंत्र अनुभाग हैं। उदाहरण के लिए, चेर्न कक्षाएं इसके बारे में कुछ जानकारी प्रदान करती हैं, उदाहरण के लिए, रीमैन-रोच प्रमेय एवं अतियाह-सिंगर सूचकांक प्रमेय होती है। अभ्यास में चेर्न कक्षाओं की गणना करना भी संभव है। विभेदक ज्यामिति (एवं कुछ प्रकार की बीजगणितीय ज्यामिति) में, चेर्न वर्गों को वक्रता रूप के गुणांकों में बहुपद के रूप में व्यक्त किया जा सकता है।
निर्माण
विषय तक पहुंचने की विभिन्न विधियां हैं, जिनमें से प्रत्येक चेर्न वर्ग के थोड़े भिन्न स्वाद पर केंद्रित है। चेर्न कक्षाओं के लिए मूल दृष्टिकोण बीजगणितीय टोपोलॉजी के माध्यम से था। चेर्न कक्षाएं होमोटोपी सिद्धांत के माध्यम से उत्पन्न होती हैं जो वर्गीकृत स्थान (इस स्थिति में अनंत ग्रासमैनियन) के लिए सदिश समूह से जुड़ी मैपिंग प्रदान करती है। मैनिफोल्ड M पर किसी भी समष्टि सदिश समूह V के लिए, M से वर्गीकरण स्थान तक मैप F उपस्थित है, जैसे कि समूह V, वर्गीकरण स्थान पर सार्वभौमिक समूह के पुलबैक एवं F के समान है, एवं चेर्न कक्षाएं इसलिए V को सार्वभौमिक समूह के चेर्न वर्गों के पुलबैक के रूप में परिभाषित किया जा सकता है। परिवर्तन में, इन सार्वभौमिक चेर्न वर्गों को शूबर्ट चक्रों के संदर्भ में स्पष्ट रूप से लिखा जा सकता है।
यह दिखाया जा सकता है कि M से वर्गीकृत स्थान तक किन्हीं दो मानचित्रों F, G के लिए जिनके पुलबैक समान समूह V हैं, मानचित्र समस्थानिक होने चाहिए। इसलिए, किसी भी सार्वभौमिक चेर्न वर्ग के F या जी द्वारा M के कोहोमोलॉजी वर्ग में पुलबैक वर्ग होना चाहिए। इससे ज्ञात होता है कि V की चेर्न कक्षाएं उत्तम रूप से परिभाषित हैं।
इस आलेख में मुख्य रूप से वर्णित वक्रता दृष्टिकोण के माध्यम से, चेर्न के दृष्टिकोण ने विभेदक ज्यामिति का उपयोग किया। उन्होंने दिखाया, कि पूर्व परिभाषा वास्तव में उनके समकक्ष थी। परिणामी सिद्धांत को चेर्न-वील सिद्धांत के रूप में जाना जाता है।
अलेक्जेंडर ग्रोथेंडिक का दृष्टिकोण यह भी दर्शाता है कि स्वयंसिद्ध रूप से किसी को केवल लाइन समूह केस को परिभाषित करने की आवश्यकता है।
बीजगणितीय ज्यामिति में चेर्न वर्ग स्वाभाविक रूप से उत्पन्न होते हैं। बीजगणितीय ज्यामिति में सामान्यीकृत चेर्न वर्गों को किसी भी गैर-एकवचन विविधता पर सदिश समूहों (या अधिक सटीक रूप से, स्थानीय रूप से मुक्त शीव्स) के लिए परिभाषित किया जा सकता है। बीजगणित-ज्यामितीय चेर्न वर्गों को अंतर्निहित क्षेत्र में किसी विशेष गुण की आवश्यकता नहीं होती है। विशेष रूप से, सदिश समूहों का समष्टि होना आवश्यक नहीं है।
विशेष प्रतिमान के पश्चात भी, चेर्न वर्ग का सहज अर्थ सदिश समूह के अनुभाग (श्रेणी सिद्धांत) के 'आवश्यक शून्य' से संबंधित है: उदाहरण के लिए प्रमेय कहता है कि कोई बालों वाली गेंद को समतल नहीं कर सकता (बालों वाली गेंद प्रमेय) है। यद्यपि यह वास्तव में वास्तविक सदिश समूह (गेंद पर बाल वास्तव में वास्तविक रेखा की प्रतियां हैं) के बारे में प्रश्न बोल रहा है, ऐसे सामान्यीकरण हैं जिनमें बाल समष्टि हैं (नीचे समष्टि बालों वाली गेंद प्रमेय का उदाहरण देखें), या कई अन्य क्षेत्रों पर 1-आयामी प्रक्षेप्य स्थानों के लिए है।
अधिक वर्णन के लिए चेर्न-साइमन्स सिद्धांत देखें।
लाइन समूहों का चेर्न वर्ग
(मान लीजिए कि X टोपोलॉजिकल स्पेस है जिसमें सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार है।)
महत्वपूर्ण विशेष विषय तब होता है जब V लाइन समूह होता है। तत्पश्चात एकमात्र गैर-सारहीन चेर्न वर्ग प्रथम चेर्न वर्ग है, जो X के दूसरे कोहोलॉजी समूह का तत्व है। चूंकि यह शीर्ष चेर्न वर्ग है, यह समूह के यूलर वर्ग के समान है।
प्रथम चेर्न वर्ग अपरिवर्तनीयों का पूर्ण समुच्चय बन जाता है जिसके साथ टोपोलॉजिकल रूप से बोलते हुए, समष्टि लाइन समूहों को वर्गीकृत किया जाता है। अर्थात्, X एवं तत्वों के ऊपर लाइन समूहों के समरूपता वर्गों के मध्य आक्षेप है, जो अपने प्रथम चेर्न क्लास को लाइन समूह से जोड़ता है। इसके अतिरिक्त, यह आक्षेप समूह समरूपता है (इस प्रकार समरूपता):
अत्यधिक आयाम वाले समष्टि सदिश समूहों के लिए, चेर्न वर्ग पूर्ण अपरिवर्तनीय नहीं हैं।
निर्माण
चेर्न-वेइल सिद्धांत के माध्यम से
चिकनी मैनिफोल्ड M पर सदिश समूह N के समष्टि हर्मिटियन मीट्रिक सदिश समूह V को देखते हुए, प्रत्येक चेर्न वर्ग के प्रतिनिधि (जिसे 'चेर्न फॉर्म' भी कहा जाता है) V के को वक्रता रूप के विशिष्ट बहुपद के गुणांक के रूप में दिया गया है। ओमेगा ऑफ V.
यह कहने के लिए कि दी गई अभिव्यक्ति चेर्न वर्ग का प्रतिनिधि है, यह दर्शाता है कि यहां 'वर्ग' का अर्थ यथार्थ अंतर रूप को जोड़ने तक है। अर्थात्, चेर्न कक्षाएं डी राम कोहोमोलोजी वर्ग अर्थ में कोहोमोलॉजी कक्षाएं हैं। यह दिखाया जा सकता है कि चेर्न रूपों की कोहोमोलॉजी कक्षाएं V में कनेक्शन की रूचि पर निर्भर नहीं करती हैं।
यदि मैट्रिक्स पहचान से अनुसरण करता है:
वह अब टेलर श्रृंखला को प्रारम्भ कर रहे हैं,
, हमें चेर्न रूपों के लिए निम्नलिखित अभिव्यक्ति मिलती है:
यूलर वर्ग के माध्यम से
कोई चेर्न वर्ग को यूलर वर्ग के संदर्भ में परिभाषित कर सकता है। मिल्नोर एवं स्टैशेफ की पुस्तक में यह दृष्टिकोण है, एवं सदिश समूह के अभिविन्यास की भूमिका पर बल देता है।
मूल अवलोकन यह है कि समष्टि सदिश समूह विहित अभिविन्यास के साथ आता है, अंततः क्योंकि जुड़ा है। इसलिए, कोई बस समूह के शीर्ष चेर्न वर्ग को उसके यूलर वर्ग (अंतर्निहित वास्तविक सदिश समूह का यूलर वर्ग) के रूप में परिभाषित करता है एवं निचले चेर्न वर्गों को आगमनात्मक विधियां से संभालता है।
सटीक निर्माण इस प्रकार है, एक-कम रैंक का समूह प्राप्त करने के लिए आधार परिवर्तन करने का विचार है। होने देना पैराकॉम्पैक्ट स्पेस B पर समष्टि सदिश समूह बनें है। B को शून्य खंड के रूप में E में एम्बेडेड मानते हुए, मान लीजिए
आइए एवं नए सदिश समूह को परिभाषित करें:
:
. होने देना
यह भी देखें: थॉम समरूपतावाद।
उदाहरण
रीमैन क्षेत्र का समष्टि स्पर्शरेखा समूह
होने देना रीमैन क्षेत्र बनें: 1-आयामी समष्टि प्रक्षेप्य स्थान, मान लीजिए कि रीमैन क्षेत्र के लिए z होलोमोर्फिक फलन कई गुना है। होने देना समष्टि स्पर्शरेखा वाले सदिशों का समूह बनें प्रत्येक बिंदु पर, जहां a सम्मिश्र संख्या है। हम हेयरी बॉल प्रमेय के समष्टि संस्करण को सिद्ध करते हैं: V में कोई खंड नहीं है जो प्रत्येक स्थान गैर-शून्य है।
इसके लिए, हमें निम्नलिखित तथ्य की आवश्यकता है: सारहीन समूह का प्रथम चेर्न वर्ग शून्य है, अर्थात,
इससे यह सिद्ध होता है कोई साधारण सदिश समूह नहीं है.
समष्टि प्रक्षेप्य स्थान
समूहों का सटीक क्रम है:[4]
उपरोक्त अनुक्रम प्राप्त करने के दो विधियां हैं:
- [5] Let be the coordinates of let विहित प्रक्षेपण हो, और चलो . तो हमारे पास हैं:
दूसरे शब्दों में, कोटैंजेंट शीफ , जो मुफ़्त है -आधार के साथ मॉड्यूल , सटीक क्रम में फिट बैठता हैजहां a मध्य पद का आधार पुनः. वही अनुक्रम संपूर्ण प्रक्षेप्य स्थान पर स्पष्ट रूप से सटीक है और इसका दोहराव उपरोक्त अनुक्रम है।
- मान लीजिए L पंक्ति है जो मूल से होकर प्रवाहित होता है। यह है एक प्राथमिक ज्यामिति यह देखने के लिए कि जटिल स्पर्शरेखा स्थान बिंदु L पर स्वाभाविक रूप से L से इसके पूरक तक रैखिक मानचित्रों का समूह है। इस प्रकार, स्पर्शरेखा समूह से पहचाना जा सकता है होम समूह
जहां η इस प्रकार का सदिश समूह है . यह इस प्रकार है:
कुल चेर्न वर्ग की योगात्मकता द्वारा (अर्थात, व्हिटनी योग सूत्र),
विशेष रूप से, किसी के लिए ,
चेर्न बहुपद
चेर्न बहुपद चेर्न वर्गों और संबंधित धारणाओं को व्यवस्थित रूप से संभालने की सुविधाजनक विधि है। परिभाषा के अनुसार, जटिल सदिश समूह E के लिए, E का चेर्न बहुपद ct इस प्रकार दिया गया है:
एवं इसके विपरीत व्हिटनी योग सूत्र, चेर्न वर्गों के सिद्धांतों में से (नीचे देखें), कहता है कि ct इस अर्थ में योगात्मक है:
उदाहरण: हमारे पास बहुपद sk हैं
गणना सूत्र
मान लीजिए E रैंक r का सदिश समूह है एवं इसका चेर्न बहुपद।
- दोहरे समूह के लिए का , .[7]
- यदि L लाइन समूह है, तो[8][9] इसलिए हैं
- चेर्न जड़ों के लिए का ,[10] विशेष रूप से,
- उदाहरण के लिए,[11] के लिए ,
- जब , *:कब ,
- (सीएफ. सेग्रे क्लास#उदाहरण 2.)
सूत्रों का अनुप्रयोग
हम लाइन समूहों के शेष चेरन वर्गों की गणना करने के लिए इन अमूर्त गुणों का उपयोग कर सकते हैं, याद करें कि दिखा . तत्पश्चात टेंसर शक्तियों का उपयोग करके, हम उन्हें चेर्न वर्गों से जोड़ सकते हैं किसी भी पूर्णांक के लिए.
गुण
टोपोलॉजिकल स्पेस X पर समष्टि सदिश समूह E को देखते हुए, E की चेर्न ck(e), का तत्व है
शास्त्रीय स्वयंसिद्ध परिभाषा
चेर्न वर्ग निम्नलिखित चार सिद्धांतों को संतुष्ट करते हैं:
- सभी E के लिए
- स्वाभाविकता: यदि सतत कार्य (टोपोलॉजी) है एवं f*E, E का पुलबैक समूह है।
- हस्लर व्हिटनी योग सूत्र: यदि एवं समष्टि सदिश समूह है, तत्पश्चात सदिश समूहों के प्रत्यक्ष योग का चेर्न वर्ग द्वारा दिए गए हैं वह है,
- सामान्यीकरण: टॉटोलॉजिकल लाइन समूह का कुल चेर्न वर्ग 1−H है, जहां H पोंकारे द्वैत है, हाइपरप्लेन के लिए पोंकारे दोहरा है।
ग्रोथेंडिक स्वयंसिद्ध दृष्टिकोण
वैकल्पिक रूप से, Alexander Grothendieck (1958) इन्हें सिद्धांतों के थोड़े छोटे समुच्चय से प्रतिस्थापित किया गया:
- स्वाभाविकता: (ऊपर के समान)
- एडिटिविटी: यदि तो, सदिश समूहों का सटीक क्रम है।
- सामान्यीकरण: यदि E लाइन समूह है, तो जहाँ अंतर्निहित वास्तविक सदिश समूह का यूलर वर्ग है।
वह लेरे-हिर्श प्रमेय का उपयोग करके दिखाते हैं कि इच्छानुकूल परिमित रैंक समष्टि सदिश समूह के कुल चेर्न वर्ग को टॉटोलॉजिकल रूप से परिभाषित लाइन समूह के पूर्व चेर्न वर्ग के संदर्भ में परिभाषित किया जा सकता है।
अर्थात्, प्रोजेक्टिवाइज़ेशन का परिचय देना रैंक N समष्टि सदिश समूह E → B पर फाइबर समूह के रूप में B जिसका फाइबर किसी भी बिंदु पर है, फाइबर Eb का प्रक्षेप्य स्थान है। इस समूह का कुल स्थान इसके टॉटोलॉजिकल कॉम्प्लेक्स लाइन समूह से सुसज्जित है, जिसे हम निरूपित करते हैं। , एवं प्रथम चेर्न वर्ग,
वर्ग
शीर्ष चेर्न वर्ग
वास्तव में, ये गुण विशिष्ट रूप से चेर्न वर्गों की विशेषता बताते हैं। अन्य कथनो के अतिरिक्त, उनका तात्पर्य यह है:
- यदि n, V की सम्मिश्र रैंक है, तो सभी k > n के लिए, इस प्रकार कुल चेर्न वर्ग समाप्त हो जाता है।
- वी (अर्थ) का शीर्ष चेर्न वर्ग , जहां n V का रैंक है) सदैव अंतर्निहित वास्तविक सदिश समूह के यूलर वर्ग के समान होता है।
बीजगणितीय ज्यामिति में
स्वयंसिद्ध वर्णन
चेर्न कक्षाओं का निर्माण है, जो कोहोमोलॉजी रिंग, चाउ रिंग के बीजगणितीय एनालॉग में मान लेता है। यह दिखाया जा सकता है कि चेर्न कक्षाओं का अद्भुत सिद्धांत है जैसे कि यदि आपको बीजगणितीय सदिश समूह दिया जाता है अर्ध-प्रक्षेपी विविधता पर वर्गों का क्रम होता है ऐसा है कि
- उलटे पुलिंदे के लिए (जिससे कार्टियर विभाजक है),
- सदिश समूहों का सटीक क्रम दिया गया है व्हिटनी योग सूत्र मानता है:
- के लिए
- वो मैप वलय आकारिकी तक विस्तारित है
डिग्री डी हाइपरसर्फेस
यदि डिग्री है, चिकनी हाइपरसतह, हमारे पास संक्षिप्त सटीक अनुक्रम है
निकटतम धारणाएँ
चेर्न चरित्र
चेर्न कक्षाओं का उपयोग किसी स्थान के टोपोलॉजिकल के-सिद्धांत से लेकर उसके तर्कसंगत कोहोमोलॉजी (पूर्ण होने) तक रिंगों की समरूपता का निर्माण करने के लिए किया जा सकता है। लाइन समूह L के लिए, चेर्न कैरेक्टर सीएच द्वारा परिभाषित किया गया है।
यदि कनेक्शन का उपयोग चेर्न वर्गों को परिभाषित करने के लिए किया जाता है जब आधार कई गुना होता है (अर्थात, चेर्न-वेइल सिद्धांत), तो चेर्न चरित्र का स्पष्ट रूप है।
चेर्न चरित्र आंशिक रूप से उपयोगी है क्योंकि यह टेंसर उत्पाद के चेर्न वर्ग की गणना की सुविधा प्रदान करता है। विशेष रूप से, यह निम्नलिखित पहचानों का पालन करता है:
चेर्न वर्ण का उपयोग हिरज़ेब्रुच-रीमैन-रोच प्रमेय में किया जाता है।
चेर्न संख्या
यदि हम आयाम के उन्मुख कई गुना पर कार्य करते हैं, , तत्पश्चात कुल डिग्री के चेर्न वर्गों का कोई भी उत्पाद (अर्थात, उत्पाद में चेर्न वर्गों के सूचकांकों का योग होना चाहिए ) को पूर्णांक, सदिश समूह का चेर्न नंबर देने के लिए ओरिएंटेशन होमोलॉजी क्लास (या मैनिफोल्ड पर एकीकृत) के साथ जोड़ा जा सकता है। उदाहरण के लिए, यदि मैनिफोल्ड का आयाम 6 है, तो तीन रैखिक रूप से स्वतंत्र चेर्न संख्याएँ , , एवं दी गई हैं। सामान्यतः, यदि मैनिफ़ोल्ड में आयाम है, , संभावित स्वतंत्र चेर्न संख्याओं की संख्या पूर्णांक विभाजनों की संख्या है।
समष्टि (या लगभग समष्टि) मैनिफोल्ड के स्पर्शरेखा समूह के चेर्न नंबरों को मैनिफोल्ड के चेर्न नंबर कहा जाता है, एवं महत्वपूर्ण अपरिवर्तनीय हैं।
सामान्यीकृत सहसंगति सिद्धांत
चेर्न कक्षाओं के सिद्धांत का सामान्यीकरण है, जहां सामान्य कोहॉमोलॉजी को सामान्यीकृत कोहॉमोलॉजी सिद्धांत से परिवर्तित कर दिया जाता है। वे सिद्धांत जिनके लिए ऐसा सामान्यीकरण संभव है, समष्टि कोबॉर्डिज्मऔपचारिक समूह कानून कहलाते हैं। चेर्न वर्गों के औपचारिक गुण समान रहते हैं, महत्वपूर्ण अंतर के साथ: नियम जो कारकों के प्रथम चेर्न वर्गों के संदर्भ में लाइन समूहों के टेंसर उत्पाद के प्रथम चेर्न वर्ग की गणना करता है, वह (सामान्य) जोड़ नहीं है, अन्यथा औपचारिक समूह कानून है।
बीजगणितीय ज्यामिति
बीजगणितीय ज्यामिति में सदिश समूहों के चेर्न वर्गों का समान सिद्धांत है। चेर्न वर्ग किन समूहों में आते हैं, इसके आधार पर कई भिन्नताएँ हैं:
- समष्टि किस्मों के लिए चेर्न कक्षाएं ऊपर बताए अनुसार सामान्य कोहोलॉजी में मान ले सकती हैं।
- सामान्य क्षेत्रों की किस्मों के लिए, चेर्न वर्ग कोहॉमोलॉजी सिद्धांतों जैसे कि ईटेल कोहोमोलोजी या एल-एडिक कोहोमोलॉजी में मान ले सकते हैं।
- सामान्य क्षेत्रों में किस्मों v के लिए चेर्न वर्ग चाउ समूह CH (V) के समरूपता में भी मान ले सकते हैं: उदाहरण के लिए, विविधता V पर लाइन समूह का प्रथम चेर्न वर्ग CH (V) से CH तक समरूपता है (V) डिग्री को 1 से कम करना। यह इस तथ्य से मेल खाता है कि चाउ समूह इस प्रकार के होमोलॉजी समूहों के एनालॉग हैं, एवं कोहोमोलॉजी समूहों के तत्वों को कैप उत्पाद का उपयोग करके होमोलॉजी समूहों के होमोमोर्फिज्म के रूप में माना जा सकता है।
संरचना के साथ कई गुना
चेर्न वर्गों का सिद्धांत लगभग समष्टि विविधताओं के लिए सह-बॉर्डिज्म आक्रमणकारियों को जन्म देता है।
यदि M लगभग समष्टि मैनिफोल्ड है, तो इसकी स्पर्शरेखा समूह समष्टि सदिश समूह है। इस प्रकार M के 'चेर्न वर्ग' को इसके स्पर्शरेखा समूह के चेर्न वर्ग के रूप में परिभाषित किया गया है। यदि M भी सघन स्थान है एवं आयाम 2d का है, तो चेर्न वर्गों में कुल डिग्री 2d के प्रत्येक एकपदी को M के मूल वर्ग के साथ जोड़ा जा सकता है, पूर्णांक देते हुए, M का 'चेर्न संख्या' है। यदि M' एक और लगभग जटिल मैनिफोल्ड है समान आयाम, तो यह M के लिए सहसंयोजक है यदि और केवल यदि M' की चेर्न संख्याएं M के साथ मेल खाती हैं।
सिद्धांत संगत लगभग समष्टि संरचनाओं की मध्यस्थता द्वारा, वास्तविक सिंपलेक्टिक ज्यामिति सदिश समूहों तक भी विस्तृत हुआ है। विशेष रूप से, सिंपलेक्टिक मैनिफ़ोल्ड में उचित रूप से परिभाषित चेर्न वर्ग होता है।
अंकगणितीय योजनाएं एवं डायोफैंटाइन समीकरण
(अरकेलोव ज्यामिति देखें)
यह भी देखें
- पोंट्रीगिन वर्ग
- स्टिफ़ेल-व्हिटनी वर्ग
- यूलर वर्ग
- भिन्न वर्ग
- शुबर्ट कैलकुलस
- क्वांटम हॉल प्रभाव
- स्थानीयकृत चेर्न वर्ग
टिप्पणियाँ
- ↑ Bott, Raoul; Tu, Loring (1995). बीजगणितीय टोपोलॉजी में विभेदक रूप (Corr. 3. print. ed.). New York [u.a.]: Springer. p. 267ff. ISBN 3-540-90613-4.
- ↑ Hatcher, Allen. "Vector Bundles and K-theory" (PDF). Proposition 3.10.
- ↑ Editorial note: Our notation differs from Milnor−Stasheff, but seems more natural.
- ↑ The sequence is sometimes called the Euler sequence.
- ↑ Hartshorne, Ch. II. Theorem 8.13.
- ↑ In a ring-theoretic term, there is an isomorphism of graded rings:
where the left is the cohomology ring of even terms, η is a ring homomorphism that disregards grading and x is homogeneous and has degree |x|.
- ↑ Fulton, Remark 3.2.3. (a)
- ↑ Fulton, Remark 3.2.3. (b)
- ↑ Fulton, Example 3.2.2.
- ↑ Fulton, Remark 3.2.3. (c)
- ↑ Use, for example, WolframAlpha to expand the polynomial and then use the fact are elementary symmetric polynomials in 's.
- ↑ (See also § Chern polynomial.) Observe that when V is a sum of line bundles, the Chern classes of V can be expressed as elementary symmetric polynomials in the ,
In particular, on the one hand
while on the other handConsequently, Newton's identities may be used to re-express the power sums in ch(V) above solely in terms of the Chern classes of V, giving the claimed formula.
संदर्भ
- Chern, Shiing-Shen (1946), "Characteristic classes of Hermitian Manifolds", Annals of Mathematics, Second Series, 47 (1): 85–121, doi:10.2307/1969037, ISSN 0003-486X, JSTOR 1969037
- Fulton, W. (29 June 2013). Intersection Theory (in English). Springer Science & Business Media. ISBN 978-3-662-02421-8.
- Grothendieck, Alexander (1958), "La théorie des classes de Chern", Bulletin de la Société Mathématique de France, 86: 137–154, doi:10.24033/bsmf.1501, ISSN 0037-9484, MR 0116023
- Hartshorne, Robin (29 June 2013). Algebraic Geometry (in English). Springer Science & Business Media. ISBN 978-1-4757-3849-0.
- Jost, Jürgen (2005), Riemannian Geometry and Geometric Analysis (4th ed.), Springer-Verlag, ISBN 978-3-540-25907-7 (Provides a very short, introductory review of Chern classes).
- May, J. Peter (1999), A Concise Course in Algebraic Topology, University of Chicago Press, ISBN 9780226511832
- Milnor, John Willard; Stasheff, James D. (1974), Characteristic classes, Annals of Mathematics Studies, vol. 76, Princeton University Press; University of Tokyo Press, ISBN 978-0-691-08122-9
- Rubei, Elena (2014), Algebraic Geometry, a concise dictionary, Walter De Gruyter, ISBN 978-3-11-031622-3
बाहरी संबंध
- Vector Bundles & K-Theory – A downloadable book-in-progress by Allen Hatcher. Contains a chapter about characteristic classes.
- Dieter Kotschick, Chern numbers of algebraic varieties