3डी रोटेशन समूह

From Vigyanwiki

3डी रोटेशन समूह,शास्त्रीय यांत्रिकी और ज्यामिति में जिसे अधिकांशतः विशेष ऑर्थोगोनल समूह (3) से दर्शाया जाता है, त्रि-आयामी समिष्ट की उत्पत्ति (गणित) के बारे में सभी घुमावों का समूह (गणित) है। त्रि-आयामी समिष्ट फलन संरचना के संचालन के अनुसार आता है।[1]

परिभाषा के अनुसार, मूल के बारे में घूर्णन परिवर्तन है जो मूल, यूक्लिडियन दूरी (इसलिए यह आइसोमेट्री है), और अभिविन्यास को संरक्षित करता है। दो घूर्णनों को संयोजित करने से एक और घूर्णन होता है, प्रत्येक घूर्णन में अद्वितीय व्युत्क्रम फलन घूर्णन होता है, और पहचान मानचित्र घूर्णन की परिभाषा को संतुष्ट करता है। उपरोक्त गुणों (मिश्रित घुमावों की साहचर्य संपत्ति के साथ) के कारण, सभी घुमावों का समूह संरचना के अनुसार समूह (गणित) है।

प्रत्येक गैर-तुच्छ घूर्णन उसके घूर्णन अक्ष (मूल बिंदु से होकर जाने वाली रेखा) और उसके घूर्णन कोण द्वारा निर्धारित होता है। घूर्णन क्रमविनिमेय नहीं होते हैं (उदाहरण के लिए, x-y समतल में R 90° को यात्रा करने के बाद y-z समतल में S 90° को यात्रा करना R को यात्रा करने के समान नहीं है), जिससे 3डी घूर्णन समूह गैर-एबेलियन समूह बन जाता है। इसके अतिरिक्त, रोटेशन समूह में प्राकृतिक संरचना होती है जिसके लिए समूह संचालन सुचारू कार्य होता है, इसलिए यह वास्तव में लाइ समूह है। यह सघन समिष्ट है और इसका आयाम 3 है।

घूर्णन रैखिक परिवर्तन हैं और इसलिए इसे सदिश समष्टि के आधार पर बार आव्युह (गणित) द्वारा दर्शाया जा सकता है चुना गया है। विशेष रूप से, यदि हम लम्बवत आधार चुनते हैं , प्रत्येक रोटेशन को ऑर्थोगोनल आव्युह द्वारा वर्णित किया गया है। ऑर्थोगोनल 3 × 3 आव्युह (अर्थात , वास्तविक प्रविष्टियों के साथ 3 × 3 आव्युह , जो इसके स्थानान्तरण से गुणा होने पर, पहचान आव्युह में परिणत होता है) निर्धारक 1 के साथ। समूह SO(3) इसलिए आव्युह गुणन के अनुसार इन आव्युह के समूह के साथ पहचाना जा सकता है। इन आव्यूहों को विशेष ऑर्थोगोनल आव्यूह के रूप में जाना जाता है, जो संकेतन SO(3) की व्याख्या करते हैं।

समूह SO(3) का उपयोग किसी वस्तु की संभावित घूर्णी समरूपता, साथ ही समिष्ट में किसी वस्तु के संभावित अभिविन्यास का वर्णन करने के लिए किया जाता है। इसके समूह निरूपण भौतिकी में महत्वपूर्ण हैं, जहां वे पूर्णांक स्पिन (भौतिकी) के प्राथमिक कणों का उत्पन्न होता है।

लंबाई और कोण

मात्र लंबाई को संरक्षित करने के अतिरिक्त, घूर्णन सदिशों के बीच के कोणों को भी संरक्षित करता है। यह इस तथ्य से पता चलता है कि दो सदिश u और v के बीच मानक डॉट उत्पाद हो सकता है जो केवल लंबाई के पूर्ण रूप में लिखा जा सकता है।

इसका परिणाम है कि में हर लंबाई संरक्षित रूपी रैखिक परिवर्तन डॉट उत्पन्न करता है, और इसलिए सदिश के बीच के कोण को भी संरक्षित करता है। घुमावों को अधिकांशतः रैखिक परिवर्तनों के रूप में परिभाषित किया जाता है जो पर आंतरिक गुणन को संरक्षित रखने के रूप में, जो उन्हें लंबाई को संरक्षित रखने की आवश्यकता के समान है। इस अधिक सामान्य दृष्टिकोण के उपचार के लिए "शास्त्रीय समूह" देखें, जहाँ SO(3) विशेष स्थितियों के रूप में प्रकट होता है।

ऑर्थोगोनल और रोटेशन आव्युह

प्रत्येक घूर्णन लंबात्मक आधार का मानचित्रण करता है। किसी अन्य दैहिक आधार पर। परिमित-आयामी सदिश स्थानों के किसी भी रैखिक परिवर्तन की प्रकार , रोटेशन को सदैव आव्युह (गणित) द्वारा दर्शाया जा सकता है। होने देना R दिया गया घुमाव हो। मानक आधार के संबंध में e1, e2, e3 का के कॉलम R द्वारा दिए गए हैं (Re1, Re2, Re3). चूँकि मानक आधार लम्बवत् है, और तब से R कोणों और लंबाई, स्तंभों को सुरक्षित रखता है R और लंबात्मक आधार बनाएं। इस रूढ़िबद्धता की स्थिति को इस रूप में व्यक्त किया जा सकता है

जहाँ RT के स्थानान्तरण को दर्शाता है R और I है 3 × 3 शिनाख्त सांचा। वे आव्युह जिनके लिए यह गुण धारण करता है, ऑर्थोगोनल आव्युह कहलाते हैं। सबका समूह 3 × 3 ऑर्थोगोनल आव्युह को दर्शाया गया है O(3), और इसमें सभी उचित और अनुचित घुमाव सम्मलित हैं।

लंबाई को संरक्षित करने के अतिरिक्त, उचित घुमाव को अभिविन्यास को भी संरक्षित करना रखना आवश्यक है। आव्युह का निर्धारक धनात्मक है या ऋधात्मक, इसके अनुसार आव्युह अभिविन्यास को संरक्षित या उलट देगा। ऑर्थोगोनल आव्युह के लिए R, ध्यान दें कि det RT = det R तात्पर्य (det R)2 = 1, जिससे कि det R = ±1. निर्धारक के साथ ऑर्थोगोनल आव्युह का उपसमूह +1 को विशेष ऑर्थोगोनल समूह कहा जाता है, जिसे दर्शाया गया है SO(3).

इस प्रकार प्रत्येक घुमाव को इकाई निर्धारक के साथ ऑर्थोगोनल आव्युह द्वारा विशिष्ट रूप से दर्शाया जा सकता है। इसके अतिरिक्त, चूंकि घूर्णन की संरचना आव्युह गुणन से मेल खाती है, इसलिए घूर्णन समूह विशेष ऑर्थोगोनल समूह SO(3) के समरूपी है।

अनुचित घुमाव निर्धारक −1 के साथ ऑर्थोगोनल आव्युह के अनुरूप होते हैं, और वे समूह नहीं बनाते क्योंकि दो अनुचित घुमावों का गुणनफल उचित घुमाव होता है।

समूह संरचना

रोटेशन समूह फलन संरचना (या समकक्ष आव्युह उत्पाद) के अंतर्गत समूह (गणित) है। यह सामान्य रैखिक समूह का उपसमूह है जिसमें वास्तविक समन्वय समिष्ट के सभी उलटा आव्युह रैखिक परिवर्तन सम्मलित हैं । वास्तविक 3-समिष्ट .[2]

इसके अतिरिक्त, घूर्णन समूह नॉनबेलियन समूह है। अर्थात्, घुमावों की रचना के क्रम से असमानता पड़ता है। उदाहरण के लिए, धनात्मक x-अक्ष के चारों ओर चौथाई चक्कर और उसके बाद धनात्मक y-अक्ष के चारों ओर चौथाई चक्कर, पहले y और फिर x के चारों ओर घूमने से प्राप्त घुमाव से भिन्न घूर्णन है।

ऑर्थोगोनल समूह, जिसमें सभी उचित और अनुचित घुमाव सम्मलित हैं, प्रतिबिंबों द्वारा उत्पन्न होता है। प्रत्येक उचित घुमाव दो प्रतिबिंबों की संरचना है, जो कार्टन-ड्युडोने प्रमेय का विशेष स्थितियों है।

परिमित उपसमूहों का पूर्ण वर्गीकरण

के परिमित उपसमूह पूर्णतः वर्गीकरण प्रमेय हैं।[3]

प्रत्येक परिमित उपसमूह समतल सममिति के दो गणनीय अनंत परिवारों में से किसी के तत्व के लिए समरूपी होता है: चक्रीय समूह या डायहेड्रल समूह , या तीन अन्य समूहों में से एकचतुष्फलकीय समूह समूह , अष्टफलकीय समूह , या इकोसाहेड्रल समूह .

घूर्णन अक्ष

प्रत्येक गैर-तुच्छ उचित घुमाव 3 आयामों में अद्वितीय 1-आयामी रैखिक उप-समिष्ट को ठीक करता है जिसे घूर्णन अक्ष कहा जाता है (यह यूलर का घूर्णन प्रमेय है)। ऐसा प्रत्येक घुमाव इस अक्ष के ओर्थोगोनल समतल में सामान्य 2-आयामी घुमाव के रूप में कार्य करता है। चूँकि प्रत्येक 2-आयामी घुमाव को कोण φ द्वारा दर्शाया जा सकता है, इच्छानुसार 3-आयामी घुमाव को इस अक्ष के चारों ओर घूमने के कोण के साथ-साथ घूर्णन की धुरी द्वारा निर्दिष्ट किया जा सकता है। (तकनीकी तौर पर, किसी को अक्ष के लिए अभिविन्यास निर्दिष्ट करने की आवश्यकता होती है और क्या इस अभिविन्यास के संबंध में रोटेशन को [[दक्षिणावर्त और वामावर्त]] या वामावर्त माना जाता है)।

उदाहरण के लिए, कोण φ द्वारा धनात्मक z-अक्ष के बारे में वामावर्त घूर्णन द्वारा दिया जाता है

इकाई सदिश n दिया गया है और कोण φ, मान लीजिए R(φ, 'n') 'n' के माध्यम से अक्ष के बारे में वामावर्त घुमाव का प्रतिनिधित्व करता है ('n' द्वारा निर्धारित अभिविन्यास के साथ)। तब

  • R(0, 'n') किसी भी 'n' के लिए पहचान परिवर्तन है
  • R(φ, 'n') = R(−φ, −'n')
  • आर(π + φ, 'n') = R(π − φ, −'n').

इन गुणों का उपयोग करके कोई यह दिखा सकता है कि किसी भी घूर्णन को 0 ≤ φ ≤ की सीमा में अद्वितीय कोण φ द्वारा दर्शाया जा सकता है। π और इकाई सदिश n ऐसा है

  • n इच्छानुसार है यदि φ = 0
  • n अद्वितीय है यदि 0 < φ < π
  • n चिन्ह (गणित) तक अद्वितीय है यदि φ = π (अर्थात्, घूर्णन R(π, ±n) समान हैं)।

अगले अनुभाग में, घुमावों के इस प्रतिनिधित्व का उपयोग त्रि-आयामी वास्तविक प्रक्षेप्य समिष्ट के साथ स्थलीय रूप से SO(3) की पहचान करने के लिए किया जाता है।

टोपोलॉजी

लाई समूह SO(3) वास्तविक प्रक्षेप्य समिष्ट से भिन्नता है [4]

ठोस गेंद पर विचार करें त्रिज्या का π (अर्थात, के सभी बिंदु दूरी का π या मूल से कम)। उपरोक्त को देखते हुए, इस गेंद में प्रत्येक बिंदु के लिए घूर्णन होता है, जिसमें अक्ष बिंदु और मूल बिंदु से होकर गुजरती है, और घूर्णन कोण मूल से बिंदु की दूरी के समान होता है। पहचान घुमाव गेंद के केंद्र पर बिंदु से मेल खाता है। 0 और -π के बीच के कोणों से घूमना मूल बिंदु से समान अक्ष और दूरी पर किन्तु मूल के विपरीत दिशा में स्थित बिंदु के अनुरूप। शेष मुद्दा यह है कि दो घूर्णन होते हैं और π इसके माध्यम से −π समान हैं। तो हम गेंद की सतह पर एंटीपोडल बिंदुओं को कोटिएंट समिष्ट (टोपोलॉजी) (या साथ गोंद) करते हैं। इस पहचान के बाद, हम रोटेशन समूह के लिए टोपोलॉजिकल समिष्ट होम्योमॉर्फिक पर पहुंचते हैं।

मुख्य रूप से, पहचाने गए एंटीपोडल सतह बिंदुओं वाली गेंद चिकनी मैनिफोल्ड है, और चिकनी कई गुना रोटेशन समूह के लिए भिन्नता है। यह वास्तविक प्रक्षेप्य स्थान।वास्तविक 3-आयामी प्रक्षेप्य समिष्ट से भिन्न भी है इसलिए उत्तरार्द्ध रोटेशन समूह के लिए टोपोलॉजिकल मॉडल के रूप में भी काम कर सकता है।

ये पहचान दर्शाती हैं कि SO(3) जुड़ा हुआ समिष्ट है किन्तु केवल जुड़ा हुआ नहीं है। उत्तरार्द्ध के संबंध में, पहचाने गए एंटीपोडल सतह बिंदुओं वाली गेंद में, उत्तरी ध्रुव से सीधे आंतरिक भाग से होते हुए दक्षिणी ध्रुव तक चलने वाले पथ पर विचार करें। यह बंद लूप है, क्योंकि उत्तरी ध्रुव और दक्षिणी ध्रुव की पहचान की जाती है। इस लूप को बिंदु तक छोटा नहीं किया जा सकता है, क्योंकि इससे कोई फर्क नहीं पड़ता कि आप लूप को कैसे विकृत करते हैं, प्रारंभ और अंत बिंदु को एंटीपोडल रहना होगा, अन्यथा लूप टूट कर खुल जाएगा। घूर्णन के संदर्भ में, यह लूप z-अक्ष के बारे में घूर्णन के निरंतर अनुक्रम का प्रतिनिधित्व करता है (उदाहरण के लिए) पहचान (गेंद के केंद्र) पर प्रारंभ होता है, दक्षिणी ध्रुव के माध्यम से, उत्तरी ध्रुव पर कूदता है और फिर से पहचान रोटेशन पर समाप्त होता है (अर्थात कोण φ के माध्यम से घूर्णन की श्रृंखला जहां φ 0 से मोड़ 2π तक चलता है).

आश्चर्य की बात है, यदि आप पथ पर दो बार दौड़ते हैं, अर्थात, उत्तरी ध्रुव से नीचे दक्षिणी ध्रुव तक दौड़ते हैं, उत्तरी ध्रुव पर वापस कूदते हैं (इस तथ्य का उपयोग करते हुए कि उत्तरी और दक्षिणी ध्रुव पहचाने जाते हैं), और फिर उत्तरी ध्रुव से नीचे दक्षिण की ओर दौड़ते हैं ध्रुव, ताकि φ 0 से 4 तक चले π, आपको बंद लूप मिलता है जिसे बिंदु तक छोटा किया जा सकता है: पहले पथों को लगातार गेंद की सतह पर ले जाएं, फिर भी उत्तरी ध्रुव को दक्षिणी ध्रुव से दो बार जोड़ करें। फिर दूसरे पथ को पथ को बिल्कुल भी बदले बिना एंटीपोडल पक्ष पर प्रतिबिंबित किया जा सकता है। अब हमारे पास गेंद की सतह पर साधारण बंद लूप है, जो उत्तरी ध्रुव को बड़े वृत्त के साथ जोड़ता है। इस वृत्त को बिना किसी समस्या के उत्तरी ध्रुव तक छोटा किया जा सकता है। प्लेट चाल और इसी प्रकार की विधि इसे व्यावहारिक रूप से प्रदर्शित करती हैं।

समान तर्क सामान्य रूप से किया जा सकता है, और यह दर्शाता है कि SO(3) का मूल समूह क्रम 2 का चक्रीय समूह है (दो तत्वों वाला मूल समूह)। भौतिकी अनुप्रयोगों में, मौलिक समूह की गैर-तुच्छता ( से अधिक तत्व) स्पिनर के रूप में ज्ञात वस्तुओं के अस्तित्व की अनुमति देती है, और स्पिन-सांख्यिकी प्रमेय के विकास में महत्वपूर्ण उपकरण है।

SO(3) का सार्वभौमिक आवरण स्पिन(3) नामक लाइ समूह है। समूह स्पिन(3) विशेष एकात्मक समूह SU(2) का समरूपी है; यह इकाई 3-गोले S3 से भिन्न भी हैऔर इसे छंदों के समूह (पूर्ण मान 1 के साथ चतुर्भुज) के रूप में समझा जा सकता है। चतुर्भुज और घूर्णन के बीच संबंध, जो सामान्यतः कंप्यूटर चित्रलेख में उपयोग किया जाता है, चतुर्भुज और स्थानिक घुमावों में समझाया गया है। S3 से नक्शा SO(3) पर जो S3 के एंटीपोडल बिंदुओं की पहचान करता है कर्नेल (बीजगणित) {±1} के साथ, लाई समूहों का विशेषण समरूपता है। स्थलाकृतिक दृष्टि से, यह मानचित्र दो-से- कवर करने वाला मानचित्र है। (प्लेट ट्रिक देखें।)

SO(3) और SU(2) के बीच संबंध

इस अनुभाग में, हम SO(3) पर SU(2) की दो-से- और विशेषण समरूपता की दो अलग-अलग संरचनाएँ देते हैं।

इकाई मानदंड के चतुर्भुज का उपयोग करना

समूह SU(2) द्वारा दिए गए मानचित्र के माध्यम से इकाई मानदंड के चतुष्कोणों के लिए समूह समरूपता है[5]

तक सीमित जहाँ , , , और , .

आइये अब पहचानते हैं के विस्तार के साथ . इसके बाद कोई इसे सत्यापित कर सकता है में है और तो फिर, इकाई चतुर्भुज है


इसके अतिरिक्त, मानचित्र का चक्र है इसके अतिरिक्त, वैसा ही है जैसा कि . इसका तात्पर्य यह है कि वहाँ है 2:1 इकाई मानदंड के चतुर्भुज से 3डी रोटेशन समूह तक समरूपता SO(3).

कोई इस समरूपता को स्पष्ट रूप से कार्यान्वित कर सकता है: इकाई चतुर्भुज, q, साथ

रोटेशन आव्युह में मैप किया गया है
यह सदिश के चारों ओर घूर्णन है (x, y, z) कोण से 2θ, जहाँ cos θ = w और |sin θ| = ||(x, y, z)||. के लिए उचित संकेत sin θ निहित है, बार अक्ष घटकों के संकेत तय हो गए हैं। वह 2:1-nature दोनों से स्पष्ट है q और q उसी के लिए मानचित्र Q.

मोबियस परिवर्तनों का उपयोग करना

त्रिज्या के गोले से त्रिविम प्रक्षेपण 1/2उत्तरी ध्रुव से (x, y, z) = (0, 0, 1/2) विमान पर M द्वारा दिए गए z = −1/2 द्वारा समन्वित किया गया (ξ, η), यहां क्रॉस सेक्शन में दिखाया गया है।

इस अनुभाग के लिए सामान्य संदर्भ है गेलफैंड, मिनलोस & शापिरो (1963). बिन्दु P गोले पर

उत्तरी ध्रुव को छोड़कर, कर सकते हैं N, अंकों के साथ एक-से- आक्षेप में रखा जाए S(P) = P' विमान पर M द्वारा परिभाषित z = −1/2, रेखा - चित्र देखें। वो नक्शा S त्रिविम प्रक्षेपण कहलाता है।

निर्देशांक चालू रखें M होना (ξ, η). रेखा L के माध्यम से गुजरते हुए N और P को इस प्रकार पैरामीट्रिज्ड किया जा सकता है

मांग कर रहे हैं कि z-coordinate का के समान होती है 1/2, कोई पाता है

हमारे पास है इसलिए मानचित्र

जहां, बाद की सुविधा के लिए, विमान M की पहचान जटिल तल से की जाती है व्युत्क्रम के लिए लिखिए L जैसा

और मांग x2 + y2 + z2 = 1/4 ढूँढ़ने के लिए s = 1/1 + ξ2 + η2 और इस प्रकार

यदि g ∈ SO(3) रोटेशन है, तो इस पर अंक लगेंगे S बिंदुओं पर S अपनी मानक क्रिया द्वारा Πs(g)एम्बेडिंग समिष्ट पर इस क्रिया को साथ बनाकर S व्यक्ति परिवर्तन प्राप्त करता है S ∘ Πs(g) ∘ S−1 का M,

इस प्रकार Πu(g) का रूपांतरण है परिवर्तन से सम्बंधित है Πs(g) का .

यह पता चला है कि g ∈ SO(3) द्वारा इस प्रकार दर्शाया गया है Πu(g) को आव्युह के रूप में व्यक्त किया जा सकता है Πu(g) ∈ SU(2) (जहां आव्युह के परिवर्तन के लिए उसी नाम का उपयोग करने के लिए नोटेशन को पुनर्नवीनीकरण किया जाता है यह प्रस्तुत करता है)। इस आव्युह की पहचान करने के लिए, पहले रोटेशन पर विचार करें gφ के बारे में z-axis कोण के माध्यम से φ,

इस प्रकार

जो, आश्चर्यजनक रूप से, जटिल तल में घूर्णन है। इसी प्रकार, यदि gθ के बारे में घूर्णन है x-axis कोण के माध्यम से θ, तब

जो, थोड़ा बीजगणित के बाद, बन जाता है

ये दो घुमाव, इस प्रकार के द्विरेखीय परिवर्तन के अनुरूप है R2CM, अर्थात्, वे मोबियस परिवर्तनों के उदाहरण हैं।

सामान्य मोबियस परिवर्तन द्वारा दिया गया है

घूर्णन, सभी उत्पन्न करें SO(3) और मोबियस परिवर्तनों के रचना नियम दर्शाते हैं कि कोई भी रचना मोबियस परिवर्तनों की संगत संरचना का अनुवाद करता है। मोबियस परिवर्तनों को आव्युह द्वारा दर्शाया जा सकता है

के सामान्य कारक के बाद से α, β, γ, δ रद्द करता है.

इसी कारण से, गुणा के बाद से आव्युह को विशिष्ट रूप से परिभाषित नहीं किया गया है I का निर्धारक या मोबियस परिवर्तन पर कोई प्रभाव नहीं पड़ता है। मोबियस परिवर्तनों का रचना नियम संबंधित आव्यूहों का अनुसरण करता है। निष्कर्ष यह है कि प्रत्येक मोबियस परिवर्तन दो आव्युह से मेल खाता है g, −g ∈ SL(2, C).

इस पत्राचार का उपयोग करके कोई भी लिख सकता है

ये आव्युह एकात्मक हैं और इस प्रकार Πu(SO(3)) ⊂ SU(2) ⊂ SL(2, C). यूलर कोण के संदर्भ में[nb 1] कोई सामान्य घुमाव ढूंढता है

 

 

 

 

(1)

किसी के पास[6]

 

 

 

 

(2)

इसके विपरीत, सामान्य आव्युह पर विचार करें

प्रतिस्थापन करें

प्रतिस्थापन के साथ, Π(gα, β) (के दाहिने हाथ की ओर) का रूप धारण करता है2), जो नीचे मेल खाता है Πu के आरएचएस के रूप में आव्युह के लिए (1) उसी के साथ φ, θ, ψ. जटिल मापदंडों के संदर्भ में α, β,

इसे सत्यापित करने के लिए, प्रतिस्थापित करें α. β के आरएचएस पर आव्युह के तत्व (2). कुछ हेरफेर के बाद, आव्युह आरएचएस का रूप धारण कर लेता है (1).

यूलर कोणों के संदर्भ में स्पष्ट रूप से यह स्पष्ट है कि मानचित्र

अभी वर्णित सहज है, 2:1 और विशेषण समूह समरूपता। इसलिए यह सार्वभौमिक आवरण समिष्ट का स्पष्ट विवरण है SO(3) यूनिवर्सल कवरिंग ग्रुप से SU(2).

झूठ बीजगणित

प्रत्येक लाई समूह के साथ उसका लाई अलजेब्रा जुड़ा होता है, लाई समूह के समान आयाम का रैखिक स्थान, जो लेट ब्रैकेट नामक द्विरेखीय वैकल्पिक उत्पाद के अनुसार बंद होता है। लाई अलजेब्रा SO(3) द्वारा दर्शाया जाता है और इसमें सभी तिरछा-सममित आव्युह ।तिरछा-सममित सम्मलित हैं 3 × 3 आव्युह .[7] इसे ऑर्थोगोनल आव्युह को अलग करके देखा जा सकता है, ATA = I, A ∈ SO(3).[nb 2] के दो तत्वों का लाइ ब्रैकेट आव्युह कम्यूटेटर द्वारा दिए गए प्रत्येक आव्युह समूह के बीजगणित के लिए, [A1, A2] = A1A2A2A1, जो फिर से तिरछा-सममित आव्युह है। लाई अलजेब्रा ब्रैकेट बेकर-कैंपबेल-हॉसडॉर्फ सूत्र द्वारा सटीक किए गए अर्थ में लाई समूह उत्पाद के सार को पकड़ता है।

के तत्व घूर्णन के अनंत लघु जनक हैं, अर्थात , वे पहचान तत्व पर मैनिफोल्ड SO(3) के स्पर्शरेखा समिष्ट के तत्व हैं। यदि इकाई सदिश द्वारा निर्दिष्ट अक्ष के बारे में कोण φ के साथ वामावर्त घुमाव को दर्शाता है तब

इसका उपयोग यह दिखाने के लिए किया जा सकता है कि लाई अलजेब्रा (कम्यूटेटर के साथ) लाई अलजेब्रा के समरूपी है (क्रॉस उत्पाद के साथ)। इस समरूपता के अनुसार , अक्ष-कोण प्रतिनिधित्व रोटेशन सदिश रेखीय मानचित्र से मेल खाता है द्वारा परिभाषित

अधिक विस्तार से, अधिकांशतः के लिए उपयुक्त आधार के तौर पर 3-आकार सदिश समिष्ट है

इन आधार तत्वों के रूपान्तरण संबंध हैं,

जो कि तीन मानक आधारों के संबंधों से सहमत हैं क्रॉस उत्पाद के अंतर्गत.

जैसा कि ऊपर बताया गया है, कोई भी इस लाई अलजेब्रा में यूलर सदिश के साथ किसी भी आव्युह की पहचान कर सकता है [8]

इस पहचान को कभी-कभी हैट-मैप भी कहा जाता है।[9] इस पहचान के अनुसार , ब्रैकेट में मेल खाता है क्रॉस उत्पाद के लिए,

आव्युह की पहचान सदिश से की गई उसके पास वह संपत्ति है

जहां बाईं ओर हमारे पास साधारण आव्युह गुणन है। यह संकेत करता है तिरछा-सममित आव्युह के शून्य समिष्ट में है जिसके साथ इसकी पहचान की जाती है, क्योंकि

लाई अलजेब्रा पर नोट

बीजगणित अभ्यावेदन में, समूह SO(3) रैंक 1 का कॉम्पैक्ट और सरल है, और इसलिए इसमें एकल स्वतंत्र कासिमिर तत्व है, जो तीन जनरेटर का द्विघात अपरिवर्तनीय कार्य है जो उन सभी के साथ संचार करता है। रोटेशन समूह के लिए किलिंग फॉर्म सिर्फ क्रोनकर डेल्टा है, और इसलिए यह कासिमिर अपरिवर्तनीय केवल जेनरेटर के वर्गों का योग है, बीजगणित का

अर्थात्, कासिमिर अपरिवर्तनीय द्वारा दिया गया है

एकात्मक अघुलनशील लाई अलजेब्रा प्रतिनिधित्व के लिए Dj, इस अपरिवर्तनीय के अभिलाक्षणिक मान ​​​​वास्तविक और असतत हैं, और प्रत्येक प्रतिनिधित्व की विशेषता रखते हैं, जो कि आयामीता का परिमित आयामी है . अर्थात इस कासिमिर ऑपरेटर के अभिलाक्षणिक मान ​​हैं

जहाँ j पूर्णांक या अर्ध-पूर्णांक है, और इसे स्पिन (भौतिकी) या कोणीय गति के रूप में जाना जाता है।

तो, ऊपर प्रदर्शित 3 × 3 जनरेटर L ट्रिपलेट (स्पिन 1) प्रतिनिधित्व पर कार्य करते हैं, जबकि नीचे 2 × 2 जनरेटर, t, स्पिनर (स्पिन-1/2) प्रतिनिधित्व पर कार्य करते हैं। क्रोनकर उत्पाद लेकर D1/2 स्वयं के साथ बार-बार, कोई भी सभी उच्चतर अघुलनशील अभ्यावेदन का निर्माण कर सकता है Dj. अर्थात्,इच्छानुसार से बड़े के लिए, तीन स्थानिक आयामों में उच्च स्पिन सिस्टम के लिए परिणामी जनरेटर j, इन स्पिन ऑपरेटर और सीढ़ी ऑपरेटरों का उपयोग करके गणना की जा सकती है।

प्रत्येक एकात्मक अघुलनशील अभ्यावेदन के लिए Dj समतुल्य है, Dj−1. सभी अनंत-आयामी इरेड्यूसबल निरूपण गैर-एकात्मक होना चाहिए, क्योंकि समूह कॉम्पैक्ट है।

क्वांटम यांत्रिकी में, कासिमिर अपरिवर्तनीय कोणीय-संवेग-वर्ग ऑपरेटर है; स्पिन के पूर्णांक मान j बोसॉन को चिह्नित करता है, जबकि अर्ध-पूर्णांक फरमिओन्स को महत्व देता है। ऊपर उपयोग किए गए स्क्यू-हर्मिटियन आव्युह आव्युह को स्पिन ऑपरेटरों के रूप में उपयोग किया जाता है, उन्हें गुणा करने के बाद i, इसलिए वे अब हर्मिटियन आव्युह हैं (पॉली आव्युह की प्रकार )। इस प्रकार, इस भाषा में,

और इसलिए

इनके लिए स्पष्ट अभिव्यक्तियाँ Dj हैं,

जहाँ j इच्छानुसार है और .

उदाहरण के लिए, स्पिन के लिए परिणामी स्पिन आव्युह 1() हैं

ध्यान दें, चूँकि, ये उपरोक्त की समानता में समतुल्य, किन्तु भिन्न आधार, गोलाकार आधार आव्युह में परिवर्तन कैसे हैं iLकार्टेशियन आधार पर।[nb 3]

उच्च स्पिन के लिए, जैसे कि स्पिन 3/2 ():

स्पिन के लिए 5/2 (),

समरूपता 𝖘𝖚(2) के साथ

लाई अलजेब्रा और समरूपी हैं। के लिए आधार द्वारा दिया गया है[10]

ये पाउली आव्युह से संबंधित हैं

पाउली मैट्रिसेस लाई अलजेब्रा के लिए भौतिकविदों के सम्मेलन का पालन करते हैं। उस सम्मेलन में, बीजगणित तत्वों को गुणा किया जाता है i, घातीय मानचित्र (नीचे) को अतिरिक्त कारक के साथ परिभाषित किया गया है i घातांक और संरचना में स्थिरांक समान रहते हैं, किन्तु उनकी परिभाषा का कारक प्राप्त होता है i. इसी प्रकार , कम्यूटेशन संबंध का कारक प्राप्त होता है i. के लिए रूपान्तरण संबंध हैं

जहाँ εijk पूरी प्रकार से विरोधी-सममित प्रतीक है ε123 = 1. के बीच समरूपता और कई तरीकों से स्थापित किया जा सकता है. बाद की सुविधा के लिए, और मैपिंग द्वारा पहचान की जाती है

और रैखिकता द्वारा विस्तार।

घातांकीय मानचित्र

SO(3) के लिए घातीय मानचित्र, क्योंकि SO(3) आव्युह लाइ समूह है, जिसे मानक आव्युह घातीय श्रृंखला का उपयोग करके परिभाषित किया गया है,