स्वत: सहप्रसरण

From Vigyanwiki

संभाव्यता सिद्धांत और सांख्यिकी में, स्टोकेस्टिक प्रक्रिया को देखते हुए, स्वत: सहप्रसरण फलन है जो समय बिंदुओं के युग्म पर स्वयं के साथ प्रक्रिया का सहप्रसरण देता है। इस प्रकार स्वत: सहप्रसरण प्रश्न में प्रक्रिया के स्वसहसंबंध से निकटता से संबंधित है।

स्टोकेस्टिक प्रक्रियाओं का स्वत: सहप्रसरण

परिभाषा

इस प्रकार अपेक्षित मान संचालक के लिए सामान्य नोटेशन के साथ यदि स्टोकेस्टिक प्रक्रिया का माध्य फलन है तो स्वतः सहप्रसरण द्वारा दिया जाता है।[1]: p. 162 

 

 

 

 

(Eq.1)

जहाँ और समय में दो उदाहरण हैं.

अशक्त स्थिर प्रक्रिया की परिभाषा

यदि एक अशक्त रूप से स्थिर (डब्ल्यूएसएस) प्रक्रिया है, तो निम्नलिखित सत्य हैं:[1]: p. 163 

सभी के लिए

और

सभी के लिए

और

जहाँ अंतराल समय है, या समय की वह मात्रा जिसके द्वारा संकेत स्थानांतरित किया गया है।

इसलिए डब्ल्यूएसएस प्रक्रिया का स्वत: सहप्रसरण फलन इस प्रकार दिया गया है:[2]: p. 517 

 

 

 

 

(Eq.2)

जो समतुल्य है

.

सामान्यीकरण

इस प्रकार समय-निर्भर पियर्सन सहसंबंध गुणांक प्राप्त करने के लिए स्वतः सहप्रसरण फलन को सामान्य करना कुछ विषयों (जैसे सांख्यिकी और समय श्रृंखला विश्लेषण) में सामान्य है। चूंकि अन्य विषयों (उदाहरण के लिए इंजीनियरिंग) में सामान्यीकरण को सामान्यतः निरस्त कर दिया जाता है और स्वसहसंबंध और स्वतः सहप्रसरण शब्दों का परस्पर उपयोग किया जाता है।

स्टोकेस्टिक प्रक्रिया के सामान्यीकृत ऑटो-सहसंबंध की परिभाषा है

.

यदि फलन अच्छी तरह से परिभाषित है, तो इसका मान की सीमा में होना चाहिए, जिसमें 1 पूर्ण सहसंबंध दर्शाता है और −1 पूर्ण सहसंबंध विरोधी दर्शाता है।

डब्ल्यूएसएस प्रक्रिया के लिए, परिभाषा है

.

जहाँ

.

गुण

समरूपता गुण

[3]: p.169 

डब्ल्यूएसएस प्रक्रिया के लिए क्रमशः:

[3]: p.173 

रैखिक फ़िल्टरिंग

एक रैखिक रूप से फ़िल्टर की गई प्रक्रिया का स्वत: सहप्रसरण

है


टरबुलेंट प्रसार की गणना

इस प्रकार टरबुलेंट प्रसार की गणना के लिए स्वतः सहप्रसरण का उपयोग किया जा सकता है।[4] किसी प्रवाह में टर्बुलेन्स समष्टि और समय में वेग के अस्थिर का कारण बन सकती है। इस प्रकार, हम उन अस्थिर के सांख्यिकी के माध्यम से टर्बुलेन्स की पहचान करने में सक्षम हैं .

इस प्रकार रेनॉल्ड्स अपघटन का उपयोग वेग के अस्थिर को परिभाषित करने के लिए किया जाता है (मान लें कि अब हम 1डी समस्या के साथ कार्य कर रहे हैं और दिशा के साथ वेग है):


जहां वास्तविक वेग है और वेग का अपेक्षित मान है। यदि हम सही चुनते हैं तो टर्बुलेन्स वेग के सभी स्टोकेस्टिक घटकों को में सम्मिलित किया जाएगा। निर्धारित करने के लिए वेग माप के एक समुच्चय की आवश्यकता होती है जो समय में समष्टि क्षणों में बिंदुओं से एकत्र किया जाता है या दो प्रयोगों की आवश्यकता होती है।

यदि हम मानते हैं कि टरबुलेंट प्रवाह (, और सी एकाग्रता शब्द है) यादृच्छिक चलने के कारण हो सकता है, हम टरबुलेंट प्रवाह शब्द को व्यक्त करने के लिए फ़िक के प्रसार के नियमों का उपयोग कर सकते हैं:

वेग स्वतः सहप्रसरण को इस प्रकार परिभाषित किया गया है

या

जहाँ अंतराल समय है, और अंतराल दूरी है.

टरबुलेंट प्रसार की गणना निम्नलिखित 3 विधियों का उपयोग करके की जा सकती है:

  1. यदि हमारे निकट लैग्रेंजियन प्रक्षेपवक्र के साथ वेग डेटा है:
  2. यदि हमारे निकट एक निश्चित (यूलेरियन) पर वेग डेटा है:
  3. यदि हमारे निकट दो निश्चित (यूलेरियन) पर वेग की जानकारी है:
    जहाँ इन दो निश्चित समष्टि द्वारा पृथक की गई दूरी है।

यादृच्छिक सदिशों का स्वत: सहप्रसरण

यह भी देखें

संदर्भ

  1. 1.0 1.1 Hsu, Hwei (1997). संभाव्यता, यादृच्छिक चर और यादृच्छिक प्रक्रियाएँ. McGraw-Hill. ISBN 978-0-07-030644-8.
  2. Lapidoth, Amos (2009). डिजिटल संचार में एक फाउंडेशन. Cambridge University Press. ISBN 978-0-521-19395-5.
  3. 3.0 3.1 Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3
  4. Taylor, G. I. (1922-01-01). "सतत गति द्वारा प्रसार" (PDF). Proceedings of the London Mathematical Society (in English). s2-20 (1): 196–212. doi:10.1112/plms/s2-20.1.196. ISSN 1460-244X.


अग्रिम पठन