टॉर्शन टेंसर

From Vigyanwiki
Revision as of 13:50, 3 December 2022 by alpha>Ayushidixit
जियोडेसिक के साथ मरोड़।

विभेदक ज्यामिति में, आघूर्ण बल की धारणा एक वक्र के चारों ओर एक गतिमान तंत्र के मोड़ या पेंच सिद्धांत को चिह्नित करने का एक तरीका है। वक्र का मरोड़, जैसा कि फ्रेनेट-सेरेट फ़ार्मुलों में प्रकट होता है, उदाहरण के लिए, इसके स्पर्शरेखा सदिश के बारे में एक वक्र के मोड़ की मात्रा निर्धारित करता है क्योंकि वक्र विकसित होता है (या स्पर्शरेखा सदिश के बारे में फ़्रेनेट-सेरेट फ़्रेम का रोटेशन)। सतहों की ज्यामिति में, जियोडेसिक मरोड़ वर्णन करता है कि कैसे एक सतह सतह पर एक वक्र के बारे में मुड़ जाती है। वक्रता की साथी धारणा यह मापती है कि कैसे चलते हुए फ्रेम बिना मुड़े वक्र के साथ लुढ़कते हैं।

अधिक आम तौर पर, एक एफ़िन कनेक्शन (यानी, स्पर्शरेखा बंडल में एक कनेक्शन (वेक्टर बंडल)) से लैस एक अलग-अलग मैनिफोल्ड पर, मरोड़ और वक्रता कनेक्शन के दो मूलभूत आविष्कारों का निर्माण करते हैं। इस संदर्भ में, मरोड़ एक आंतरिक लक्षण वर्णन देता है कि कैसे स्पर्शरेखा रिक्त स्थान एक वक्र के बारे में मुड़ते हैं जब वे समानांतर परिवहन करते हैं; जबकि वक्रता बताती है कि कैसे स्पर्शरेखा रिक्त स्थान वक्र के साथ घूमती है। मरोड़ को ठोस रूप से एक टेन्सर के रूप में वर्णित किया जा सकता है, या वेक्टर-वैल्यू फॉर्म के रूप में | वेक्टर-वैल्यू 2-फॉर्म मैनिफोल्ड पर। अगर ∇ डिफरेंशियल मैनिफोल्ड पर एक एफ़िन कनेक्शन है, तो वेक्टर फ़ील्ड्स X और Y के संदर्भ में मरोड़ वाले टेंसर को परिभाषित किया जाता है।

जहां [X,Y] सदिश क्षेत्रों का लाइ ब्रैकेट है।

जियोडेसिक्स की ज्यामिति के अध्ययन में मरोड़ विशेष रूप से उपयोगी है। पैरामीट्रिज्ड जियोडेसिक्स की एक प्रणाली को देखते हुए, उन जियोडेसिक्स वाले एफाइन कनेक्शन के एक वर्ग को निर्दिष्ट कर सकते हैं, लेकिन उनके मरोड़ से भिन्न होते हैं। एक अनूठा कनेक्शन है जो मरोड़ को अवशोषित करता है, लेवी-सिविता कनेक्शन को अन्य, संभवतः गैर-मीट्रिक स्थितियों (जैसे फिन्सलर ज्यामिति) के लिए सामान्यीकृत करता है। मरोड़ के साथ एक संबंध और बिना मरोड़ के संबंधित संबंध के बीच का अंतर एक टेंसर है, जिसे कंटोर्शन टेंसर कहा जाता है। जी-संरचनाओं और कार्टन की तुल्यता पद्धति के अध्ययन में मरोड़ का अवशोषण भी एक मौलिक भूमिका निभाता है। संबंधित प्रक्षेप्य कनेक्शन के माध्यम से, जियोडेसिक्स के अप्रतिबंधित परिवारों के अध्ययन में मरोड़ भी उपयोगी है। सापेक्षता सिद्धांत में, इस तरह के विचारों को आइंस्टीन-कार्टन सिद्धांत के रूप में लागू किया गया है।

मरोड़ टेंसर

M को स्पर्शरेखा बंडल (उर्फ सहसंयोजक व्युत्पन्न) ∇ पर एक affine कनेक्शन के साथ कई गुना होने दें। ∇ का 'मरोड़ टेन्सर' (कभी-कभी कार्टन (मरोड़) टेन्सर कहा जाता है) सदिश-मूल्यवान रूप है | सदिश-मूल्यवान 2-रूप सदिश क्षेत्रों X और Y पर परिभाषित

कहाँ पे [X, Y] दो सदिश क्षेत्रों के सदिश क्षेत्रों का लाई कोष्ठक है। लीबनिज नियम (सामान्यीकृत उत्पाद नियम) द्वारा, किसी भी सुचारू कार्य f के लिए T(fX, Y) = T(X, fY) = fT(X, Y)। इसलिए टी टेंसोरियल है, कनेक्शन (वेक्टर बंडल) के संदर्भ में परिभाषित होने के बावजूद, जो एक प्रथम क्रम अंतर ऑपरेटर है: यह स्पर्शरेखा वैक्टर पर 2-फॉर्म देता है, जबकि सहसंयोजक व्युत्पन्न केवल वेक्टर क्षेत्रों के लिए परिभाषित किया गया है।

मरोड़ टेंसर के घटक

आघूर्ण बल प्रदिश के घटक सदिश स्थान के स्थानीय आधार के संदर्भ में (e1, ..., en) स्पर्शरेखा बंडल के खंड (फाइबर बंडल) की स्थापना करके प्राप्त किया जा सकता है X = ei, Y = ej और कम्यूटेटर गुणांक का परिचय देकर γkijek := [ei, ej]. मरोड़ के घटक तब हैं

यहां कनेक्शन को परिभाषित करने वाले कनेक्शन गुणांक हैं। यदि आधार होलोनोमिक आधार है तो झूठ कोष्ठक गायब हो जाते हैं, . इसलिए . विशेष रूप से (नीचे देखें), जबकि जियोडेसिक कनेक्शन के सममित भाग को निर्धारित करता है, मरोड़ टेंसर एंटीसिमेट्रिक भाग को निर्धारित करता है।

मरोड़ रूप

मरोड़ रूप, मरोड़ का एक वैकल्पिक लक्षण वर्णन, कई गुना एम के फ्रेम बंडल एफएम पर लागू होता है। यह प्रिंसिपल बंडल एक कनेक्शन (प्रिंसिपल बंडल) ω, a gl(n) से लैस है - वैल्यू वन-फॉर्म जो gl(n' में सही एक्शन के जनरेटर के लिए वर्टिकल वैक्टर को मैप करता है। ') और FM के स्पर्शरेखा बंडल पर GL(n) की सही क्रिया को समान रूप से परस्पर जोड़ता है, जो कि gl(n) पर एक लाइ समूह के आसन्न प्रतिनिधित्व के साथ है। फ्रेम बंडल में एक सोल्डर फॉर्म भी होता है। कैनोनिकल वन-फॉर्म θ, आर में मानों के साथn, एक फ्रेम में परिभाषित u ∈ FxM (एक रैखिक कार्य के रूप में माना जाता है u : Rn → TxM) द्वारा

कहाँ पे π  : FMM प्रिंसिपल बंडल के लिए प्रोजेक्शन मैपिंग है और π∗ इसका पुश-फॉरवर्ड है। मरोड़ रूप तब है

समतुल्य रूप से, Θ = Dθ, जहां D संबंध द्वारा निर्धारित बाह्य सहपरिवर्ती व्युत्पन्न है।

मरोड़ रूप 'आर' में मूल्यों के साथ एक (क्षैतिज) तन्य रूप हैn, जिसका अर्थ है कि की सही कार्रवाई के तहत g ∈ GL(n) यह समान रूप से रूपांतरित होता है:

जहां जी 'आर' पर अपने आसन्न प्रतिनिधित्व के माध्यम से दाहिने हाथ की ओर कार्य करता हैएन.

एक फ्रेम में मरोड़ रूप

टेंगेंट बंडल के एक विशेष फ्रेम में लिखे गए बेस मैनिफोल्ड एम पर एक कनेक्शन फॉर्म के रूप में टॉर्सन फॉर्म को व्यक्त किया जा सकता है (e1, ..., en). कनेक्शन प्रपत्र इन बुनियादी वर्गों के बाहरी सहसंयोजक व्युत्पन्न को व्यक्त करता है:

स्पर्शरेखा बंडल (इस फ्रेम के सापेक्ष) के लिए सोल्डर फॉर्म दोहरा आधार है θi ∈ TM तुझ सेi, ताकि θi(ej) = δij (क्रोनेकर डेल्टा)। फिर मरोड़ 2-रूप में घटक होते हैं

सबसे सही अभिव्यक्ति में,

मरोड़ टेंसर के फ्रेम-घटक हैं, जैसा कि पिछली परिभाषा में दिया गया है।

यह आसानी से दिखाया जा सकता है कि Θi अस्थायी रूप से इस अर्थ में रूपांतरित होता है कि यदि कोई भिन्न फ़्रेम है

कुछ उलटा मैट्रिक्स-मूल्यवान फ़ंक्शन के लिए (जीजम्मूi), फिर

दूसरे शब्दों में, Θ प्रकार का टेंसर है (1, 2) (एक प्रतिपरिवर्ती और दो सहपरिवर्ती सूचकांकों वाला)।

वैकल्पिक रूप से, सोल्डर फॉर्म को फ्रेम-स्वतंत्र फैशन में चित्रित किया जा सकता है क्योंकि एम पर टीएम-वैल्यू वन-फॉर्म θ द्वैत समरूपता के तहत स्पर्शरेखा बंडल की पहचान एंडोमोर्फिज्म के अनुरूप है। End(TM) ≈ TM ⊗ TM. फिर मरोड़ 2-रूप एक खंड है

के द्वारा दिया गया

जहां D बाहरी सहसंयोजक व्युत्पन्न है। (अधिक जानकारी के लिए कनेक्शन प्रपत्र देखें।)

अलघुकरणीय अपघटन

मरोड़ टेंसर को दो अलघुकरणीय प्रतिनिधित्व भागों में विघटित किया जा सकता है: एक ट्रेस (रैखिक बीजगणित) | ट्रेस-मुक्त भाग और दूसरा भाग जिसमें ट्रेस शब्द होते हैं। इंडेक्स नोटेशन का उपयोग करते हुए, T का ट्रेस दिया जाता है

और ट्रेस-मुक्त भाग है

जहां δमैंjक्रोनकर डेल्टा है।

आंतरिक रूप से, किसी के पास है

T, tr T का अंश, T का एक अवयव हैM को इस प्रकार परिभाषित किया गया है। तय प्रत्येक वेक्टर के लिए X ∈ TM, T एक तत्व T(X) को परिभाषित करता है Hom(TM, TM) के जरिए

तब (टीआर टी) (एक्स) को इस एंडोमोर्फिज्म के निशान के रूप में परिभाषित किया गया है। वह है,

T का ट्रेस-मुक्त भाग तब है

जहां ι आंतरिक उत्पाद को दर्शाता है।

वक्रता और बियांची पहचान

∇ का रीमैन वक्रता टेन्सर एक मानचित्रण है TM × TM → End(TM) सदिश क्षेत्रों X, Y और Z द्वारा परिभाषित

एक बिंदु पर वैक्टर के लिए, यह परिभाषा इस बात से स्वतंत्र है कि वेक्टर को बिंदु से दूर वेक्टर क्षेत्रों तक कैसे बढ़ाया जाता है (इस प्रकार यह एक टेन्सर को परिभाषित करता है, बहुत मरोड़ की तरह)।

बियांची की पहचान वक्रता और मरोड़ से संबंधित है।[1] होने देना X, Y और Z पर चक्रीय क्रमचय को निरूपित करें। उदाहरण के लिए,

फिर निम्नलिखित पहचान धारण करते हैं

  1. बियांची की पहली पहचान:
  2. बियांची की दूसरी पहचान:


वक्रता रूप और बियांची पहचान

वक्रता रूप gl(n)-मूल्यवान 2-रूप है

जहाँ, फिर से, D बाह्य सहसंयोजक व्युत्पन्न को दर्शाता है। वक्रता रूप और मरोड़ रूप के संदर्भ में, संबंधित बियांची पहचान हैं[2]

इसके अलावा, कोई वक्रता और मरोड़ वाले तनावों को वक्रता और मरोड़ वाले रूपों से निम्नानुसार पुनर्प्राप्त कर सकता है। F के एक बिंदु u परxएम, एक है[3]

कहाँ फिर से u : Rn → TxM फाइबर में फ्रेम निर्दिष्ट करने वाला कार्य है, और π के माध्यम से वैक्टरों की लिफ्ट की पसंद है-1 अप्रासंगिक है क्योंकि वक्रता और मरोड़ के रूप क्षैतिज हैं (वे अस्पष्ट लंबवत वैक्टर पर गायब हो जाते हैं)।

लक्षण और व्याख्याएं

इस खंड के दौरान, एम को अलग-अलग कई गुना माना जाता है, और ∇ एम के स्पर्शरेखा बंडल पर एक सहसंयोजक व्युत्पन्न होता है जब तक कि अन्यथा नोट नहीं किया जाता।

संदर्भ फ्रेम का घुमाव

कर्व्स की क्लासिकल डिफरेंशियल ज्योमेट्री में, फ्रेनेट-सेरेट सूत्र वर्णन करते हैं कि कैसे एक विशेष मूविंग फ्रेम (फ्रेनेट-सेरेट फ्रेम) वक्र के साथ मुड़ता है। भौतिक शब्दों में, मरोड़ वक्र के स्पर्शरेखा के साथ एक आदर्श शीर्ष बिंदु के कोणीय गति से मेल खाती है।

एक (मीट्रिक) कनेक्शन के साथ कई गुना का मामला एक समान व्याख्या को स्वीकार करता है। मान लीजिए कि एक पर्यवेक्षक कनेक्शन के लिए जियोडेसिक के साथ आगे बढ़ रहा है। इस तरह के एक पर्यवेक्षक को आमतौर पर जड़त्वीय संदर्भ फ्रेम के रूप में माना जाता है क्योंकि वे कोई त्वरण अनुभव नहीं करते हैं। मान लीजिए कि इसके अलावा पर्यवेक्षक अपने साथ कठोर सीधे मापने वाली छड़ों (एक समन्वय प्रणाली) की एक प्रणाली रखता है। प्रत्येक छड़ एक सीधा खंड है; एक जियोडेसिक। मान लें कि प्रत्येक छड़ को प्रक्षेपवक्र के समानांतर ले जाया जाता है। तथ्य यह है कि इन छड़ों को शारीरिक रूप से प्रक्षेपवक्र के साथ ले जाया जाता है, इसका मतलब है कि वे लेटे-घसीटे जाते हैं, या प्रचारित होते हैं ताकि स्पर्शरेखा के साथ प्रत्येक छड़ का व्युत्पन्न गायब हो जाए। हालांकि, वे फ्रेनेट-सेरेट फ्रेम में शीर्ष द्वारा महसूस किए गए टोक़ के अनुरूप टोक़ (या मरोड़ वाली ताकतों) का अनुभव कर सकते हैं। इस बल को मरोड़ से मापा जाता है।

अधिक सटीक रूप से, मान लीजिए कि प्रेक्षक एक जियोडेसिक पथ γ(t) के साथ चलता है और इसके साथ एक मापक छड़ ले जाता है। जब प्रेक्षक पथ के साथ यात्रा करता है तो छड़ सतह को झाडू देती है। प्राकृतिक निर्देशांक हैं (t, x) इस सतह के साथ, जहाँ t पर्यवेक्षक द्वारा लिया गया पैरामीटर समय है, और x मापने वाली छड़ के साथ स्थिति है। शर्त यह है कि रॉड की स्पर्शरेखा को वक्र के साथ अनुवादित समानांतर होना चाहिए

नतीजतन, मरोड़ द्वारा दिया जाता है

यदि यह शून्य नहीं है, तो छड़ पर अंकित बिन्दु (द x = constant कर्व्स) जियोडेसिक्स के बजाय हेलिक्स का पता लगाएगा। वे पर्यवेक्षक के चारों ओर घूमते रहेंगे। ध्यान दें कि इस तर्क के लिए यह जरूरी नहीं था कि एक जियोडेसिक है। कोई वक्र काम करेगा।

मरोड़ की यह व्याख्या टेलीपरेलिज्म के सिद्धांत में एक भूमिका निभाती है, जिसे आइंस्टीन-कार्टन सिद्धांत के रूप में भी जाना जाता है, जो सापेक्षता सिद्धांत का एक वैकल्पिक सूत्रीकरण है।

एक रेशा का मरोड़

सामग्री विज्ञान और विशेष रूप से प्रत्यास्थता सिद्धांत में, मरोड़ के विचार भी एक महत्वपूर्ण भूमिका निभाते हैं। एक समस्या बेलों के विकास का प्रतिरूप है, जो कि इस सवाल पर ध्यान केंद्रित करते हुए कि कैसे बेलें वस्तुओं के चारों ओर घूमने का प्रबंधन करती हैं।[4] बेल को एक दूसरे के चारों ओर मुड़े हुए प्रत्यास्थताओं की एक जोड़ी के रूप में तैयार किया गया है। अपनी ऊर्जा-न्यूनतम अवस्था में, बेल स्वाभाविक रूप से हेलिक्स के आकार में बढ़ती है। लेकिन इसकी सीमा (या लंबाई) को अधिकतम करने के लिए बेल को फैलाया भी जा सकता है। इस मामले में, बेल का मरोड़ तंतुओं की जोड़ी (या समतुल्य रूप से तंतुओं को जोड़ने वाले रिबन की सतह मरोड़) के मरोड़ से संबंधित है, और यह बेल की लंबाई-अधिकतम (जियोडेसिक) विन्यास के बीच के अंतर को दर्शाता है। और इसका ऊर्जा-न्यूनतम विन्यास।

मरोड़ और आवर्त

द्रव गतिकी में, आघूर्ण बल स्वाभाविक रूप से भंवर रेखाओं से जुड़ा होता है।


अल्पान्तरी और आघूर्ण बल का अवशोषण

मान लीजिए कि γ (टी) एम पर एक वक्र है। तब γ एक 'संबद्ध रूप से प्रचलीकरण अल्पान्तरी है, बशर्ते कि γ के प्रक्षेत्र में सभी समय t के लिए


हो।

γ के प्रक्षेत्र में सभी समय के लिए टी। (यहां डॉट टी के संबंध में भेदभाव को दर्शाता है, जो γ के साथ स्पर्शरेखा सदिश को संकेत करता है।) t = 0, .

एक संयोजन के आघूर्ण बल के एक अनुप्रयोग में अल्पान्तरी विस्मय शामिल होता है: मोटे तौर पर सभी समान रूप से प्रचलीकरण अल्पान्तरी का परिवार। आघूर्ण बल उनके अल्पान्तरी विस्मय के संदर्भ में संयोजक को वर्गीकृत करने की अस्पष्टता है:

  • दो संयोजक ∇ और ∇' जिनमें समान रूप से प्रचलीकरण अल्पान्तरी (यानी, एक ही अल्पान्तरी विस्मय) है, केवल आघूर्ण बल से भिन्न हैं।[5]

अधिक सटीक रूप से, यदि X और Y स्पर्शरेखा सदिशों की एक जोड़ी हैं pM, तो मान लें

पी से दूर एक्स और वाई के मनमाने विस्तार के संदर्भ में गणना की गई दो संयोजकों का अंतर हो। उत्पाद नियम से, कोई देखता है कि Δ वास्तव में X और Y पर कैसे निर्भर नहीं करता है{{′}} विस्तारित हैं (इसलिए यह M पर एक प्रदिश को परिभाषित करता है)। एस और ए को Δ के सममित और वैकल्पिक हिस्से होने दें:

फिर

  • आघूर्ण बल‌ प्रदिश का अंतर है।
  • ∇ और ∇' समान रूप से प्रचलीकरण अल्पान्तरी के समान परिवारों को परिभाषित करते हैं यदि और केवल यदि S(X, Y) = 0.

दूसरे शब्दों में, दो संयोजकों के अंतर का सममित भाग यह निर्धारित करता है कि क्या उनके पास समान प्रचलीकरण अल्पान्तरी है, जबकि अंतर का तिरछा हिस्सा दो संयोजकों के सापेक्ष आघूर्ण बल से निर्धारित होता है। एक और परिणाम है:

  • किसी भी संबंध संबंध को देखते हुए ∇, एक अद्वितीय आघूर्ण बल-मुक्त संयोजक ∇′ है, जो समान रूप से प्रचलीकरण अल्पान्तरी के एक ही परिवार के साथ है। इन दो संयोजकों के बीच का अंतर वास्तव में एक प्रदिश, कॉन्टोरसन प्रदिश है।

यह सामान्य संबंध (संभवतः गैर-मीट्रिक) संयोजक के लिए रिमेंनियन ज्यामिति के मौलिक प्रमेय का सामान्यीकरण है।

यह भी देखें

टिप्पणियाँ

  1. Kobayashi & Nomizu 1963, Volume 1, Proposition III.5.2.
  2. Kobayashi & Nomizu 1963, Volume 1, III.2.
  3. Kobayashi & Nomizu 1963, Volume 1, III.5.
  4. Goriely et al. 2006.
  5. See Spivak (1999) Volume II, Addendum 1 to Chapter 6. See also Bishop and Goldberg (1980), section 5.10.


इस पेज में लापता आंतरिक लिंक की सूची

संदर्भ