क्रमविनिमेय वलय

From Vigyanwiki
Revision as of 09:45, 12 December 2022 by alpha>Nitya (text)

गणित में, क्रमविनिमेय वलय में गुणन संक्रिया क्रमविनिमेय होती है। क्रमविनिमेय वलयों के अध्ययन को क्रमविनिमेय बीजगणित कहा जाता है। पूरक रूप से, गैर विनिमेय बीजगणित वलय गुणों का अध्ययन है जो क्रमविनिमेय वलय के लिए विशिष्ट नहीं हैं। यह अंतर क्रमविनिमेय वलय के मूलभूत गुणों की उच्च संख्या से उत्पन्न होता है जो गैर विनिमेय वलय तक विस्तारित नहीं होते हैं।

परिभाषा और पहले उदाहरण

वलय एक समुच्चय है (गणित) जो दो द्विआधारी संक्रिया से सुसज्जित है, यानी वलय के किसी भी दो तत्व को एक तिहाई से जोड़ता है। उन्हें जोड़ और गुणा कहा जाता है और सामान्यतः तथा; उदा. तथा .बनाने के लिए इन दो परिचालनों को कई गुणों को पूरा करना पड़ता है: अंगूठी को एक एबेलियन समूह के साथ-साथ गुणन के तहत एक मोनोइड होना चाहिए, जहां गुणा अतिरिक्त रूप से वितरित होता है; अर्थात।, . जोड़ और गुणा के लिए तत्समक तत्व निरूपित किए गए हैं तथा , क्रमश।

यदि गुणन क्रमविनिमेय है, अर्थात

फिर वलय क्रमविनिमेय कहा जाता है। इस लेख के शेष भाग में, सभी अंगूठियां क्रमविनिमेय होंगी, जब तक कि स्पष्ट रूप से अन्यथा न कहा गया हो।

पहला उदाहरण

एक महत्वपूर्ण उदाहरण, और कुछ अर्थों में महत्वपूर्ण, पूर्णांकों का वलय है जोड़ और गुणा के दो संक्रियाओं के साथ। चूँकि पूर्णांकों का गुणन क्रमविनिमेय संक्रिया है, यह क्रमविनिमेय वलय है। इसे सामान्यतः जर्मन शब्दज़ाहलेन (नंबर) के संक्षिप्त नाम के रूप में दर्शाया जाता है।

एक क्षेत्र (गणित) एक क्रमविनिमेय वलय है जहाँ और प्रत्येक गैर-शून्य तत्व व्युत्क्रमणीय है; यानी, एक गुणक व्युत्क्रम है जैसे कि इसलिए, परिभाषा के अनुसार, कोई भी क्षेत्र क्रमविनिमेय वलय है। परिमेय संख्या, वास्तविक संख्या और जटिल संख्याएँ फ़ील्ड बनाती हैं।

यदिएक दी गई क्रमविनिमेय वलय है, तो चर में सभी बहुपदों का समुच्चय है जिनके गुणांक में हैंबहुपद वलय बनाता है, जिसे निरूपित किया जाता है । वही कई चरों के लिए सही है।

यदिकुछ टोपोलॉजिकल स्पेस है, उदाहरण के लिए कुछ का एक उपसमुच्चय, वास्तविक- या जटिल-मूल्यवान निरंतर फ़ंक्शन क्रमविनिमेय वलय बनाता है। अलग-अलग याहोलोमॉर्फिक फ़ंक्शन के लिए भी यही सच है, जब दो अवधारणाओं को परिभाषित किया जाता है, जैसे किएक जटिल कई गुना।

विभाज्यता

क्षेत्रों के विपरीत, जहां प्रत्येक अशून्य तत्व गुणात्मक रूप से व्युत्क्रमणीय होता है, छल्ले के लिए विभाज्यता की अवधारणा अधिक समृद्ध होती है। एक तत्व वलय काको एक इकाई कहा जाता है यदि इसमें गुणक व्युत्क्रम होता है। एक अन्य विशेष प्रकार का तत्व शून्य विभाजक है, अर्थात एक तत्व ऐसा है कि रिंग का एक गैर-शून्य तत्व मौजूद है जैसे कि अगरके पास कोई गैर-शून्य शून्य विभाजक नहीं है, तो इसे एक अभिन्न डोमेन (या डोमेन) कहा जाता है। एक तत्व संतोषजनक किसी धनात्मक पूर्णांक के लिए शून्य तत्व कहा जाता है।

स्थानीयकरण

एक वलय का स्थानीयकरण एक ऐसी प्रक्रिया है जिसमें कुछ तत्वों को उल्टा कर दिया जाता है, यानी गुणक व्युत्क्रम को अंगूठी में जोड़ दिया जाता है। निश्चित रूप , का गुणात्मक रूप से बंद उपसमुच्चय है((अर्थात जब भी तो ऐसा है ) तो पर का स्थानीयकरण, या हर के साथ भिन्नों का छल्ला, सामान्यतः प्रतीकों के होते हैं

with

कुछ नियमों के अधीन जो परिमेय संख्याओं से परिचित निरस्तीकरण की नकल करते हैं। वास्तव में, इस भाषा में का सभी शून्येतर पूर्णांकों पर स्थानीयकरण है। यह निर्माण के बजाय किसी भी अभिन्न डोमेन के लिए काम करता है। स्थानीयकरण एक क्षेत्र है, जिसे का भागफल क्षेत्र कहा जाता है।

आदर्श और मॉड्यूल

अनिवार्य रूप से क्रमविनिमेय वलय के लिए निम्न में से कई धारणाएं मौजूद हैं, लेकिन परिभाषाएं और गुण सामान्यतः अधिक जटिल होते हैं। उदाहरण के लिए, एक क्रमविनिमेय वलय में सभी आदर्श स्वतः ही दो-पक्षीय आदर्श होते हैं|दो-पक्षीय, जो स्थिति को काफी सरल करता है।

मॉड्यूल

एक वलय मापांकएक फ़ील्ड के लिए वेक्टर स्पेस के समान है। अर्थात्, मॉड्यूल में तत्वों को जोड़ा जा सकता है; उन्हेंके तत्वों से गुणा किया जा सकता है, जो सदिश स्थान के समान स्वयंसिद्धों के अधीन है।

वेक्टर रिक्त स्थान की तुलना में मॉड्यूल का अध्ययन महत्वपूर्ण रूप से अधिक शामिल है, क्योंकि ऐसे मॉड्यूल हैं जिनका कोई आधार नहीं है, अर्थात, एक फैले हुए सेट को शामिल नहीं करते हैं जिनके तत्व रैखिक रूप से स्वतंत्र हैं। एक मॉड्यूल जिसका एक आधार होता है, उसेमुफ्त मॉड्यूल कहा जाता है, और एक फ्री मॉड्यूल के सबमॉड्यूल को फ्री होने की जरूरत नहीं है।

परिमित प्रकार का एक मॉड्यूल एक मॉड्यूल है जिसमें परिमित फैलाव सेट होता है। परिमित प्रकार के मॉड्यूल रैखिक बीजगणित में परिमित-आयामी वेक्टर रिक्त स्थान की भूमिका के समान क्रमविनिमेय छल्ले के सिद्धांत में एक मौलिक भूमिका निभाते हैं। विशेष रूप से, नोथेरियन रिंग्स है (नीचे § नोथेरियन रिंग्सभी देखें) को रिंग्स के रूप में परिभाषित किया जा सकता है जैसे कि परिमित प्रकार के मॉड्यूल का प्रत्येक सबमॉड्यूल भी परिमित प्रकार का होता है।

आदर्श

एक वलय के आदर्शके सबमॉड्यूल हैं, यानी, इसमें निहित मॉड्यूल। अधिक विस्तार से, एक आदर्श का एक गैर-रिक्त उपसमुच्चय है, जैसे कि सभी , औरमें, दोनोंतथामें हैं। विभिन्न अनुप्रयोगों के लिए, एक अंगूठी के आदर्शों को समझना विशेष महत्व का है, लेकिन अक्सर सामान्य रूप से मॉड्यूल का अध्ययन करके आगे बढ़ता है।

किसी भी वलय की दो आदर्शहोते हैं, अर्थात् शून्य आदर्शतथा, पूरी वलय।यदि एक क्षेत्र है, तो ये दो आदर्श ही ठीक हैं। किसी भी उपसमुच्चय को देखते हुए का (जहाँकुछ इंडेक्स समुच्चय है), द्वारा जनरेट किया गया आदर्श सबसे छोटा आदर्श है जिसमें .शामिल है। समतुल्य रूप से, यह परिमित रैखिक संयोजन द्वारा दिया जाता है

प्रमुख आदर्श डोमेन

यदि में एक ही तत्व होता है, तो द्वारा उत्पन्न आदर्श में के गुणक होते हैं, अर्थात, यानी फॉर्म के तत्वमनमाने तत्वों के लिए.ऐसे आदर्श को प्रधान आदर्श कहा जाता है। यदि प्रत्येक गुणजगुण एक प्रधान गुणजावली है, को प्रधान आदर्श वलय कहा जाता है; दो महत्वपूर्ण मामले हैं तथा , एक क्षेत्र पर बहुपद वलय. ये दोनों अतिरिक्त डोमेन हैं, इसलिए इन्हें प्रमुख आदर्श डोमेन कहा जाता है।

सामान्य छल्लों के विपरीत, एक प्रमुख आदर्श डोमेन के लिए, व्यक्तिगत तत्वों के गुण पूरी तरह से अंगूठी के गुणों से दृढ़ता से बंधे होते हैं। उदाहरण के लिए, कोई भी प्रिंसिपल आइडियल डोमेन एक यूनीक फैक्टराइज़ेशन डोमेन (UFD) है, जिसका मतलब है कि कोई भी एलीमेंट इर्रिड्यूसिबल तत्व का प्रोडक्ट है, एक अनोखे तरीके से (फैक्टर्स को रीऑर्डर करने तक)। यहां, एक डोमेन में एक तत्व को एक उत्पाद के रूप में व्यक्त करने का एकमात्र तरीका इर्रेड्यूबल कहा जाता है

या तो या एक इकाई है। एक उदाहरण, क्षेत्र सिद्धांत में महत्वपूर्ण, अलघुकरणीय बहुपद हैं, अर्थात्, में एकअलघुकरणीय तत्व . यह तथ्य कि ' एक UFD है, यह कहकर अधिक प्राथमिक रूप से कहा जा सकता है कि किसी भी प्राकृतिक संख्या को अभाज्य संख्याओं की शक्तियों के उत्पाद के रूप में अद्वितीय रूप से विघटित किया जा सकता है। इसे अंकगणित के मौलिक प्रमेय के रूप में भी जाना जाता है।

एक तत्व एक प्रमुख तत्व है यदि जब भी किसी उत्पाद को विभाजित करता है,विभाजितया। एक डोमेन में, प्रधान होने का अर्थ है अलघुकरणीय होना। एक विशिष्ट गुणनखंडन डोमेन में विलोम सत्य है, लेकिन सामान्य रूप से असत्य है।

कारक अँगूठी

आदर्शों की परिभाषा ऐसी है जो बांटती हैout एक और वलय देता है, फैक्टर वलय/: यह सहसमुच्चय का समुच्चय हैएक साथ संचालन के साथ

तथा. उदाहरण के लिए, वलय (भी दर्शाया गया है ), कहाँ पेएक पूर्णांक है, पूर्णांक मॉड्यूलो का वलय है. यह मॉड्यूलर अंकगणित का आधार है।

एक आदर्श उचित है अगर यह पूरी अंगूठी से सख्ती से छोटा है। एक आदर्श जो किसी भी उचित आदर्श में कड़ाई से निहित नहीं है, उसे अधिकतम कहा जाता है। एक आदर्शअधिकतम होता है यदि और केवल यदि /एक फ़ील्ड हो। शून्य वलय को छोड़कर, किसी भी वलय (पहचान के साथ) में कम से कम एक अधिकतम आदर्श होता है; यह ज़ोर्न के लेम्मा से आता है।

नोथेरियन रिंग्स

एक वलय को नोथेरियन कहा जाता है (एमी नोथेर के सम्मान में, जिन्होंने इस अवधारणा को विकसित किया था) यदि प्रत्येक आरोही श्रृंखला की स्थिति

स्थिर हो जाता है, अर्थात किसी सूचकांक से परे स्थिर हो जाता है। समतुल्य रूप से, कोई भी आदर्श सूक्ष्म रूप से कई तत्वों द्वारा उत्पन्न होता है, या समतुल्य, सूक्ष्म रूप से उत्पन्न मॉड्यूल के सबमॉड्यूल सूक्ष्म रूप से उत्पन्न होते हैं।

नोथेरियन होना एक अत्यधिक महत्वपूर्ण परिमितता की स्थिति है, और स्थिति को ज्यामिति में अक्सर होने वाले कई कार्यों के तहत संरक्षित किया जाता है। उदाहरण के लिए, यदि नोथेरियन है, तो बहुपद वलय (हिल्बर्ट के आधार प्रमेय द्वारा), कोई स्थानीयकरण , और कोई भी कारक रिंग /.

कोई भी गैर-नोथेरियन वलयअपने नोथेरियन सबरिंग्स का संघ (समुच्चय सिद्धांत) है। यह तथ्य, जिसे नोथेरियन सन्निकटनके रूप में जाना जाता है, कुछ प्रमेयों को गैर-नोएथेरियन रिंगों तक विस्तारित करने की अनुमति देता है।

आर्टिनियन रिंग्स

आदर्शों की प्रत्येक अवरोही श्रृंखला होने पर एक वलय को आर्टिनियन वलय (एमिल आर्टिन के बाद) कहा जाता है

अंततः स्थिर हो जाता है। सममित दिखाई देने वाली दो स्थितियों के बावजूद, नोथेरियन रिंग्स आर्टिनियन रिंग्स की तुलना में बहुत अधिक सामान्य हैं। उदाहरण के लिए, ' नोथेरियन है, क्योंकि प्रत्येक आदर्श एक तत्व द्वारा उत्पन्न किया जा सकता है, लेकिन श्रृंखला के रूप में आर्टिनियन नहीं है

दिखाता है। वास्तव में, हॉपकिंस-लेविट्ज़की प्रमेय द्वारा, प्रत्येक आर्टिनियन रिंग नोथेरियन है। अधिक सटीक रूप से, आर्टिनियन रिंग्स को नोथेरियन रिंग्स के रूप में चित्रित किया जा सकता है जिसका क्रुल आयाम शून्य है।

क्रमविनिमेय वलय का स्पेक्ट्रम

प्रधान आदर्श

जैसा कि ऊपर बताया गया था, एक अद्वितीय कारककरण डोमेन है। यह अधिक सामान्य छल्लों के लिए सही नहीं है, जैसा कि बीजगणितियों ने 19वीं शताब्दी में महसूस किया था। उदाहरण के लिए, में

एक गुणनफल के रूप में 6 लिखने के वास्तव में दो भिन्न तरीके हैं:
प्रधान तत्वों के विपरीत प्रधान आदर्श, इस समस्या को दरकिनार करने का एक तरीका प्रदान करते हैं। एक प्रमुख आदर्श एक उचित (यानी, सख्ती से) आदर्श होता है, जैसे कि, जब भी उत्पाद किसी भी दो रिंग तत्वों तथा , में है, कम से कम दो तत्वों में से एक पहले से ही में है (विपरीत निष्कर्ष किसी भी आदर्श के लिए लागू होता है) , परिभाषा के अनुसार।) इस प्रकार, यदि एक प्रधान आदर्श प्रमुख है, तो यह एक प्रमुख तत्व द्वारा समान रूप से उत्पन्न होता है। हालांकि, जैसे रिंग्स में दाएं],} प्रमुख आदर्शों को प्रिंसिपल होने की जरूरत नहीं है। यह रिंग थ्योरी में प्रमुख तत्वों के उपयोग को सीमित करता है। हालांकि, बीजगणितीय संख्या सिद्धांत की आधारशिला यह तथ्य है कि किसी भी डेडेकाइंड वलयमें (जिसमें और अधिक आम तौर पर एक संख्या क्षेत्र में बीजगणितीय पूर्णांककी अंगूठी) कोई आदर्श (जैसे कि 6 द्वारा उत्पन्न एक) प्रमुख आदर्शों के उत्पाद के रूप में विशिष्ट रूप से विघटित होता है।

कोई भी अधिकतम आदर्श एक प्रमुख आदर्श है या अधिक संक्षेप में, प्रमुख है। इसके अलावा, एक आदर्श प्राइम है अगर और केवल अगर कारक रिंग एक अभिन्न डोमेन है। यह साबित करना कि एक आदर्श प्रधान है, या समतुल्य है कि एक अंगूठी में कोई शून्य-भाजक नहीं है, यह बहुत कठिन हो सकता है। इसे व्यक्त करने का दूसरा तरीका यह कहना है कि पूरक (समुच्चय सिद्धांत) गुणात्मक रूप से बंद है। स्थानीयकरण अपने स्वयं के अंकन के लिए पर्याप्त महत्वपूर्ण है : इस वलय की केवल एक अधिकतम गुणजावली है, जिसका नाम . ऐसे छल्लों को स्थानीय वलय कहा जाता है।

स्पेक्ट्रम

युक्ति (Z) में शून्य आदर्श के लिए एक बिंदु होता है। इस बिंदु का बंद होना संपूर्ण स्थान है। शेष अंक आदर्शों (पी) के अनुरूप हैं, जहां पी एक अभाज्य संख्या है। ये प्वाइंट बंद हैं।

एक वलय का स्पेक्ट्रम ,[nb 1] द्वारा चिह्नित, के सभी प्रमुख आदर्शों का समुच्चय है. यह एक टोपोलॉजी, जरिस्की टोपोलॉजी से सुसज्जित है, जो बीजगणितीय गुणों को दर्शाता है: खुले उपसमुच्चय का आधार किसके द्वारा दिया गया है

, जहां कोई वलय एलिमेंट है।

व्याख्याकी व्याख्या एक ऐसे फंक्शन के रूप में करना जो मान f mod p लेता है (अर्थात्, अवशिष्ट क्षेत्र R/p में f की छवि), यह उपसमुच्चय वह लोकस है जहाँ f गैर-शून्य है। स्पेक्ट्रम सटीक अंतर्ज्ञान भी बनाता है कि स्थानीयकरण और कारक के छल्ले पूरक हैं: प्राकृतिक मानचित्र आर → आरf और आर → आर / एफआर अनुरूप हैं, उनके ज़ारिस्की टोपोलॉजी के साथ रिंगों के स्पेक्ट्रा को समाप्त करने के बाद क्रमशः पूरक खुले और बंद विसर्जन के लिए। . यहां तक कि बुनियादी छल्ले के लिए, जैसे कि आर = जेड के लिए दाईं ओर सचित्र, ज़ारिस्की टोपोलॉजी वास्तविक संख्याओं के सेट पर एक से काफी अलग है।

स्पेक्ट्रम में अधिकतम आदर्शों का समुच्चय होता है, जिसे कभी-कभी mSpec (R) के रूप में दर्शाया जाता है। बीजगणितीय रूप से बंद फ़ील्ड के लिए mSpec (k[T1, ..., टीn] / (एफ1, ..., एफm)) समुच्चय के साथ विरोध में है

{x =(x1, ..., xn) ∊ kn

इस प्रकार, अधिकतम आदर्श बहुपदों के समाधान सेट के ज्यामितीय गुणों को दर्शाते हैं, जो क्रमविनिमेय छल्लों के अध्ययन के लिए एक प्रारंभिक प्रेरणा है। हालांकि, अंगूठी के ज्यामितीय गुणों के हिस्से के रूप में गैर-अधिकतम आदर्शों का विचार कई कारणों से उपयोगी है। उदाहरण के लिए, न्यूनतम प्रधान आदर्श (अर्थात्, जो सख्ती से छोटे वाले नहीं होते हैं) स्पेक आर के अलघुकरणीय घटकके अनुरूप होते हैं। यह प्राथमिक अपघटनका एक ज्यामितीय पुनर्कथन है, जिसके अनुसार किसी भी आदर्श को सूक्ष्म रूप से कई प्राथमिक आदर्शके उत्पाद के रूप में विघटित किया जा सकता है। यह तथ्य डेडेकिंड के छल्ले में प्रमुख आदर्शों में अपघटन का अंतिम सामान्यीकरण है।

Affine योजनाएं

एक स्पेक्ट्रम की धारणा क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति का सामान्य आधार है। बीजगणितीय ज्यामिति युक्ति R को एक शीफ (गणित) (एक इकाई जो स्थानीय रूप से परिभाषित कार्यों को एकत्र करती है, यानी अलग-अलग खुले उपसमुच्चय पर) के साथ समाप्त करके आगे बढ़ती है। स्पेस और शीफ के डेटम को एफाइन स्कीम कहा जाता है। एक affine योजनादी गई है, अंतर्निहित रिंग R को वैके वैश्विक वर्गों के रूप में पुनर्प्राप्त किया जा सकता है। इसके अलावा, रिंग और एफ़िन योजनाओं के बीच यह एक-से-एक पत्राचार भी रिंग होमोमोर्फिज़्म के साथ संगत है: कोई भी f : R → S विपरीत दिशा में एक सतत मानचित्र को जन्म देता है

Spec S → Spec R, qf−1(q), i.e. any prime ideal of S is mapped to its preimage under f, which is a prime ideal of R.

दो उक्त श्रेणियों की श्रेणियों की परिणामी समानता ज्यामितीय तरीके से छल्लों के बीजगणितीय गुणों को उपयुक्त रूप से दर्शाती है।

इस तथ्य के समान कि कई गुना (गणित) स्थानीय रूप से आर के खुले उपसमुच्चय द्वारा दिए गए हैंn, affineयोजनाएं योजना (गणित) के लिए स्थानीय मॉडल हैं, जो बीजगणितीय ज्यामिति में अध्ययन की वस्तु हैं। इसलिए, क्रमविनिमेय वलय से संबंधित कई धारणाएं ज्यामितीय अंतर्ज्ञान से उत्पन्न होती हैं।

आयाम

वलय R का क्रुल डायमेंशन (या डायमेंशन) डिम R, R में स्वतंत्र तत्वों की गिनती करके, मोटे तौर पर बोलकर, वलय के आकार को मापता है। एक क्षेत्र k पर बीजगणित के आयाम को चार गुणों द्वारा स्वयंसिद्ध किया जा सकता है:

  • आयाम एक स्थानीय संपत्ति है: मंद आर = सुपरp ∊ Spec R मंद आरp.
  • आयाम निलपोटेंट तत्वों से स्वतंत्र है: यदि I ⊆ R निलपोटेंट है तो डिम आर = डिम आर / आई।
  • परिमित विस्तार के तहत आयाम स्थिर रहता है: यदि एस एक आर-बीजगणित है जो आर-मॉड्यूल के रूप में अंतिम रूप से उत्पन्न होता है, तो मंद एस = मंद आर।
  • आयाम को मंद k [X द्वारा कैलिब्रेट किया जाता है1, ..., एक्सn] = एन। यह अभिगृहीत n चरों में बहुपद वलय को affine space|n-आयामी स्थान के बीजगणितीय अनुरूप के रूप में प्रेरित करता है।

आयाम परिभाषित किया गया है, किसी भी वलय आर के लिए, प्रमुख आदर्शों की श्रृंखलाओं की लंबाई n के उच्चतम के रूप में

p0p1 ⊊ ... ⊊ pn.

उदाहरण के लिए, एक क्षेत्र शून्य-आयामी है, क्योंकि एकमात्र प्रमुख आदर्श शून्य आदर्श है। पूर्णांक एक-विमीय होते हैं, क्योंकि शृंखलाएँ (0) ⊊ (p) के रूप की होती हैं, जहाँ p एकअभाज्य संख्या है। गैर-नोथेरियन रिंगों और गैर-स्थानीय रिंगों के लिए, आयाम अनंत हो सकता है, लेकिन नोथेरियन स्थानीय रिंगों का परिमित आयाम होता है। उपरोक्त चार स्वयंसिद्धों में से, पहले दो परिभाषा के प्रारंभिक परिणाम हैं, जबकि शेष दो क्रमविनिमेय बीजगणित में महत्वपूर्ण तथ्यों पर टिका है, ऊपर जाने वाला प्रमेय और क्रुल का प्रमुख आदर्श प्रमेय।

वलय समरूपता

एक वलय समरूपता या, अधिक बोलचाल की भाषा में, केवल एक मानचित्र, एक मानचित्र f : R → S ऐसा है कि

f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1.

ये स्थितियाँ f(0) = 0 सुनिश्चित करती हैं। इसी तरह अन्य बीजगणितीय संरचनाओं के लिए, एक वलय समरूपता इस प्रकार एक नक्शा है जो प्रश्न में बीजगणितीय वस्तुओं की संरचना के अनुकूल है। ऐसी स्थिति में S को एक R-बीजगणित भी कहा जाता है, यह समझकर कि S में s को R के कुछ r से गुणा किया जा सकता है, सेट करके

r · s := f(r) · s.

कर्नेल और f की छवि ker (f) = {r ∈ R, f(r) = 0} और im (f) = f(R) = {f(r), r ∈ R} द्वारा परिभाषित की गई है। कर्नेल आर का एक आदर्श है, और छवि एस का एक उप-वलय है।

एक वलय समरूपता को एक समरूपता कहा जाता है यदि यह विशेषण है। रिंग आइसोमोर्फिज़्म का एक उदाहरण, जिसे चीनी शेष प्रमेय के रूप में जाना जाता है, है

जहाँ n = p1p2...pk जोड़ीदार भिन्न अभाज्य संख्याओं का गुणनफल है।

क्रमविनिमेय वलय, वलय समरूपता के साथ मिलकर एक श्रेणी बनाते हैं। वलय Z इस श्रेणी की प्रारंभिक वस्तुहै, जिसका अर्थ है कि किसी भी क्रमविनिमेय वलय R के लिए, एक अद्वितीय वलय समरूपता Z → R है। इस मानचित्र के माध्यम से, एक पूर्णांक n को R का एक तत्व माना जा सकता है। उदाहरण के लिए , द्विपद सूत्र

जो किसी भी क्रमविनिमेय वलय R में किन्हीं दो तत्वों a और b के लिए मान्य है, इस मानचित्र का उपयोग करके द्विपद गुणांकों को R के तत्वों के रूप में व्याख्या करके इस अर्थ में समझा जाता है।

एस ⊗ की सार्वभौमिक संपत्तिR टी बताता है कि किन्हीं दो मानचित्रों S → W और T → W के लिए जो बाहरी चतुर्भुज आवागमन करते हैं, एक अद्वितीय मानचित्र S ⊗ हैR टी → डब्ल्यू जो पूरे आरेख को कम्यूट करता है।

दो R-बीजगणित S और T उनके टेन्सर गुणनफल दिए गए हैं

SR T

पुनः क्रमविनिमेय R-बीजगणित है। कुछ मामलों में, टेंसर उत्पाद एक टी-बीजगणित खोजने के लिए काम कर सकता है जो जेड से संबंधित है क्योंकि एस आर से संबंधित है। उदाहरण के लिए,

R[X] ⊗R T = T[X].


परिमित पीढ़ी

एक आर-बीजगणित एस को परिमित रूप से उत्पन्न (बीजगणित के रूप में) कहा जाता है यदि बहुत से तत्व एस 1, ..., एसएन हैं जैसे कि एस के किसी भी तत्व को सी में बहुपद के रूप में अभिव्यक्त किया जा सकता है। समतुल्य रूप से, S तुल्याकारी है

R[T1, ..., Tn] / I.

क बहुत मजबूत स्थिति यह है कि एस को आर-मॉड्यूल के रूप में परिमित रूप से उत्पन्न किया जाता है, जिसका अर्थ है कि किसी भी एस को कुछ सीमित सेट एस 1, ..., एसएन के आर-रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।

स्थानीय छल्ले

एक वलय को स्थानीय कहा जाता है यदि इसमें केवल एक अधिकतम आदर्श होता है, जिसे m द्वारा निरूपित किया जाता है। किसी भी (जरूरी नहीं कि स्थानीय) रिंग आर के लिए, स्थानीयकरण

Rp

एक प्रमुख आदर्श पर पी स्थानीय है। यह स्थानीयकरण स्पेक आर "पी के आसपास" के ज्यामितीय गुणों को दर्शाता है। क्रमविनिमेय बीजगणित में कई धारणाओं और समस्याओं को उस मामले में कम किया जा सकता है जब आर स्थानीय होता है, जिससे स्थानीय छल्ले विशेष रूप से गहराई से अध्ययन किए जाने वाले छल्ले बनते हैं। R के अवशेष क्षेत्र को रूप में परिभाषित किया गया है

k = R / m.

कोई भी आर-मॉड्यूल एम एम/एमएम द्वारा दिए गए के-वेक्टर स्थान को उत्पन्न करता है। नाकायमा की लेम्मा से पता चलता है कि यह मार्ग महत्वपूर्ण जानकारी को संरक्षित कर रहा है: एक अंतिम रूप से उत्पन्न मॉड्यूल एम शून्य है अगर और केवल अगर एम/एमएम शून्य है।

नियमित स्थानीय छल्ले

घन समतल वक्र (लाल) समीकरण y द्वारा परिभाषित2</सुप> = एक्स2(x + 1) मूल बिंदु पर विलक्षणता (गणित) है, यानी, वलय k[x, y] / y2 − x2(x + 1), एक नियमित वलय नहीं है। स्पर्शरेखा शंकु (नीला) दो रेखाओं का मिलन है, जो विलक्षणता को भी दर्शाता है।

k-वेक्टर स्पेस m/m2 स्पर्शरेखा स्थान का एक बीजगणितीय अवतार है। अनौपचारिक रूप से, m के तत्वों को उन कार्यों के रूप में माना जा सकता है जो बिंदु p पर गायब हो जाते हैं, जबकि एम2में वे शामिल होते हैं जो कम से कम 2 क्रम के साथ गायब हो जाते हैं। किसी भी नोथेरियन स्थानीय वलय R के लिए, असमानता

dimk m/m2 ≥ dim R

सत्य धारण करता है, इस विचार को दर्शाता है कि cotangent (या समतुल्य रूप से स्पर्शरेखा) अंतरिक्ष में कम से कम अंतरिक्ष विनिर्देश R का आयाम है। यदि समानता इस अनुमान में सही है, तो R को एक नियमित स्थानीय वलय कहा जाता है। एक नोथेरियन स्थानीय वलय नियमित है यदि और केवल यदि वलय (जो स्पर्शरेखा शंकु पर कार्यों की वलय है)

k पर एक बहुपद वलय के लिए समरूप है। मोटे तौर पर, नियमित स्थानीय वलय कुछ हद तक बहुपद वलय के समान होते हैं। [1] नियमित स्थानीय रिंग UFD's हैं।[1]

असतत मूल्यांकन वलय एक फ़ंक्शन से सुसज्जित हैं जो किसी भी तत्व r को एक पूर्णांक प्रदान करता है। आर के मूल्यांकन नामक इस संख्या को अनौपचारिक रूप से आर के शून्य या ध्रुव क्रम के रूप में माना जा सकता है। असतत मूल्यांकन के छल्ले ठीक एक आयामी नियमित स्थानीय छल्ले हैं। उदाहरण के लिए,रीमैन सतहपर होलोमोर्फिक कार्यों के कीटाणुओं का वलय एक असतत मूल्यांकन वलय है।

पूर्ण चौराहे

मुड़ घन (हरा) एक समुच्चय-सैद्धांतिक पूर्ण चौराहा है, लेकिन एक पूर्ण चौराहा नहीं है।

क्रुल के प्रमुख आदर्श प्रमेय द्वारा, अंगूठियों के आयाम सिद्धांत (बीजगणित)में एक मूलभूत परिणाम, का आयाम

R = k[T1, ..., Tr] / (f1, ..., fn)

कम से कम r - n है। एक वलय R को एक पूर्ण प्रतिच्छेदन वलय कहा जाता है यदि इसे इस तरह से प्रस्तुत किया जा सकता है जो इस न्यूनतम सीमा को प्राप्त करता है। यह धारणा ज्यादातर स्थानीय छल्लों के लिए भी अध्ययन की जाती है। कोई भी नियमित स्थानीय रिंग एकपूर्ण चौराहे की वलय है, लेकिन इसके विपरीत नहीं।

एक वलय R एक समुच्चय-सैद्धांतिक पूर्ण चौराहा है यदि R से संबंधित घटा हुआ वलय, अर्थात, सभी निलपोटेंट तत्वों को विभाजित करके प्राप्त किया गया एक पूर्ण चौराहा है। 2017 तक, यह सामान्य रूप से अज्ञात है, कि क्या त्रि-आयामी अंतरिक्ष में वक्र सेट-सैद्धांतिक पूर्ण चौराहे हैं।[2]

कोहेन-मैकाले के छल्ले

एक स्थानीय वलय R की गहराई कुछ में तत्वों की संख्या है (या, जैसा कि दिखाया जा सकता है, कोई भी) अधिकतम नियमित अनुक्रम, यानी, एक अनुक्रम a1, ..., एक ∈ m जैसे कि सभी ai गैर-शून्य विभाजक हैं में

R / (a1, ..., ai−1).

किसी भी स्थानीय नोथेरियन रिंग के लिए, असमानता

depth (R) ≤ dim (R)

रखती है। एक स्थानीय वलय जिसमें समानता होती है, कोहेन-मैकाले वलय कहलाता है। स्थानीय पूर्ण चौराहे के छल्ले, और एक फोर्टियोरी, नियमित स्थानीय छल्ले कोहेन-मैकाले हैं, लेकिन इसके विपरीत नहीं। कोहेन-मैकाले नियमित छल्ले के वांछनीय गुणों को जोड़ते हैं (जैसे कि सार्वभौमिक रूप से कैटेनरी वलय होने का गुण, जिसका अर्थ है कि प्राइम्स का (सह) आयाम अच्छी तरह से व्यवहार किया जाता है), लेकिन नियमित स्थानीय रिंगों की तुलना में अधिक मजबूत होते हैं।[3]

विनिमेय वलयों का निर्माण

दिए गए छल्लों में से नए छल्ले बनाने के कई तरीके हैं। इस तरह के निर्माण का उद्देश्य अक्सर रिंग के कुछ गुणों में सुधार करना होता है ताकि इसे और अधिक आसानी से समझा जा सके। उदाहरण के लिए, एक अभिन्न डोमेन जो अपने अंशों के क्षेत्र में अभिन्न रूप से बंद है, सामान्य कहलाता है। यह एक वांछनीय संपत्ति है, उदाहरण के लिए कोई भी सामान्य एक-आयामी अंगूठी आवश्यक रूप से नियमित है। रेंडरिंग[clarification needed] एक अंगूठी सामान्य सामान्यीकरण के रूप में जाना जाता है।

प्राप्तियां

यदि I एक क्रमविनिमेय वलय R में एक आदर्श है, तो I की शक्तियाँ 0 के टोपोलॉजिकलपड़ोस (टोपोलॉजी)बनाती हैं जो R को एक सांस्थितिक वलय के रूप में देखने की अनुमति देती हैं। इस टोपोलॉजी को आई-एडिक टोपोलॉजी कहा जाता है। आर तो इस टोपोलॉजी के संबंध में पूरा किया जा सकता है। औपचारिक रूप से, I-adic पूर्णता रिंगों R/In की व्युत्क्रम सीमा है। उदाहरण के लिए, यदि k एक क्षेत्र है, kX, k से अधिक एक चर मेंऔपचारिक शक्ति श्रृंखलावलय, k[X] का I-adic पूर्णता है जहाँ I X द्वारा उत्पन्न प्रमुख आदर्श है। यह वलय डिस्क के बीजगणितीय एनालॉग के रूप में कार्य करता है। अनुरूप रूप से, p-adic पूर्णांकों का वलय मुख्य आदर्श (p) के संबंध में Z की पूर्णता है। कोई भी वलय जो अपनी पूर्णता के लिए समरूपी है, पूर्ण कहलाता है।

पूर्ण स्थानीय वलय हेंसल के लेम्मा को संतुष्ट करते हैं, जो मोटे तौर पर बोलकर अवशेष क्षेत्र k से R तक समाधान (विभिन्न समस्याओं के) को विस्तारित करने की अनुमति देता है।

सजातीय धारणाएँ

क्रमविनिमेय वलयों के कई गहरे पहलुओं का समजातीय बीजगणित के तरीकों का उपयोग करके अध्ययन किया गया है। Hochster (2007) सक्रिय अनुसंधान के इस क्षेत्र में कुछ खुले प्रश्नों को सूचीबद्ध करता है।

प्रोजेक्टिव मॉड्यूल और एक्सट्रीम फंक्शनल

प्रोजेक्टिव मॉड्यूल को मुक्त मॉड्यूल के प्रत्यक्ष योगरूप में परिभाषित किया जा सकता है। यदि आर स्थानीय है, तो कोई भी अंतिम रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल वास्तव में मुफ़्त है, जो प्रोजेक्टिव मॉड्यूल और वेक्टर बंडलोंके बीच सादृश्य को सामग्री देता है।[4] क्विलेन-सुस्लिन प्रमेय का दावा है कि k[T1, ..., Tn] (k a फ़ील्ड) पर कोई भी अंतिम रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल मुक्त है, लेकिन सामान्य तौर पर ये दो अवधारणाएँ भिन्न हैं। एक स्थानीय नोथेरियन वलय नियमित है यदि और केवल यदि इसका वैश्विक आयाम परिमित है, तो n कहें, जिसका अर्थ है कि किसी भी सूक्ष्म रूप से उत्पन्न आर-मॉड्यूल में अधिकतम लंबाई के प्रक्षेपी मॉड्यूल द्वारा संकल्प होता है।

इस और अन्य संबंधित कथनों का प्रमाण होमोलॉजिकल तरीकों के उपयोग पर निर्भर करता है, जैसे कि एक्सट ऑपरेटर । यह functor functor का व्युत्पन्न functor है

HomR(M, −).

बाद वाला फ़ंक्टर सटीक है यदि एम प्रक्षेपी है, लेकिन अन्यथा नहीं: विशेषण मानचित्र ई → आर-मॉड्यूल के एफ के लिए, एक मानचित्र एम → एफ को एक मानचित्र एम → ई तक विस्तारित करने की आवश्यकता नहीं है। उच्च एक्सटी फ़ंक्शंस गैर-सटीकता को मापते हैं होम-फ़ंक्टर का। समरूप बीजगणित तनों में इस मानक निर्माण के महत्व को इस तथ्य से देखा जा सकता है कि अवशेष क्षेत्र k के साथ एक स्थानीय नोथेरियन वलय R नियमित है यदि और केवल यदि

Extn(k, k)

काफी बड़े n के लिए गायब हो जाता है। इसके अलावा, इन एक्सट-ग्रुप्स के आयाम, जिन्हें बेट्टी संख्या के रूप में जाना जाता है, n में बहुपद रूप से बढ़ते हैं यदि और केवल यदि R एकस्थानीय पूर्ण प्रतिच्छेदन वलय है।[5]इस तरह के विचारों में एक महत्वपूर्ण तर्क कोज़ुल कॉम्प्लेक्सहै, जो एक नियमित अनुक्रम के संदर्भ में एक स्थानीय रिंग R के अवशेष क्षेत्र k का स्पष्ट मुक्त रिज़ॉल्यूशन प्रदान करता है।

समतलता

टेन्सर उत्पाद एक अन्य गैर-सटीक फ़ंक्टर है जो क्रमविनिमेय रिंगों के संदर्भ में प्रासंगिक है: एक सामान्य आर-मॉड्यूल एम के लिए, फ़ैक्टर

MR

केवल सटीक है। यदि यह सटीक है, तो M को समतल कहा जाता है।यदि आर स्थानीय है, तो कोई भी अंतिम रूप से प्रस्तुत फ्लैट मॉड्यूल परिमित रैंक से मुक्त है, इस प्रकार प्रोजेक्टिव है। होमोलॉजिकल बीजगणित के संदर्भ में परिभाषित होने के बावजूद, समतलता का गहरा ज्यामितीय प्रभाव है। उदाहरण के लिए, यदि एक आर-बीजगणित एस सपाट है, तंतुओं के आयाम

S / pS = SR R / p

(आर में प्रमुख आदर्श पी के लिए) अपेक्षित आयाम हैं, अर्थात् मंद एस - मंद आर + मंद (आर / पी)।

गुण

वेडरबर्न की छोटी प्रमेय के अनुसार | वेडरबर्न की प्रमेय, प्रत्येक परिमित विभाजन वलय क्रमविनिमेय है, और इसलिए एक परिमित क्षेत्र है। नाथन जैकबसन के कारण एक वलय की क्रमविनिमेयता सुनिश्चित करने वाली एक अन्य शर्त निम्नलिखित है: R के प्रत्येक तत्व r के लिए एक पूर्णांक मौजूद है n > 1 ऐसा है कि rn = r.[6] अगर, आर2 = r प्रत्येक r के लिए, वलय को बूलियन वलय कहा जाता है। अधिक सामान्य स्थितियाँ जो एक वलय की क्रमविनिमेयता की गारंटी देती हैं, भी जानी जाती हैं।[7]


सामान्यीकरण

ग्रेडेड-क्रमविनिमेय वलय

पैंट की एक जोड़ी (गणित) एक वृत्त और दो विसंधित वृत्तों के बीच सह-बंधन है। गुणन के रूप में कार्तीय गुणनफल के साथ सह-बोर्डवाद वर्ग और योग के रूप में असंयुक्त संघ, कोबोर्डवाद वलय बनाते हैं।

एक वर्गीकृत अंगूठी R = ⨁iZ Ri ग्रेडेड-कम्यूटेटिव रिंग कहा जाता है|ग्रेडेड-कम्यूटेटिव अगर, सभी सजातीय तत्वों ए और बी के लिए,

ab = (−1)deg a ⋅ deg b ba.

यदि आरi अंतर ∂ द्वारा जुड़े हुए हैं जैसे कि उत्पाद नियम का एक अमूर्त रूप धारण करता है, अर्थात,

∂(ab) = ∂(a)b + (−1)deg a∂(b),

R को अंतर वर्गीकृत बीजगणित (cdga) कहा जाता है। एक उदाहरण कई गुना (गणित) पर अंतर रूपों का परिसर है, बाहरी उत्पाद द्वारा दिए गए गुणन के साथ, एक सीडीजीए है। सीडीजीए का कोहोलॉजी एक ग्रेडेड-कम्यूटेटिव वलय है, जिसे कभी-कभी कोहोलॉजी वलय के रूप में संदर्भित किया जाता है। ग्रेडेड रिंग्स की एक विस्तृत श्रृंखला के उदाहरण इस तरह से सामने आते हैं। उदाहरण के लिए, लाज़ार्ड की सार्वभौमिक वलय जटिल मैनिफोल्ड्स के सह-बोर्डवाद वर्गों की वलय है।

'Z'/2 ('Z' के विपरीत) द्वारा ग्रेडिंग के संबंध में एक ग्रेडेड-कम्यूटेटिव वलय को algebra कहा जाता है।

एक संबंधित धारणा एक लगभग क्रमविनिमेय वलय है, जिसका अर्थ है कि R इस तरह से छानना (गणित) है कि संबद्ध श्रेणीबद्ध वलय

gr R := ⨁ FiR / ⨁ Fi−1R

क्रमविनिमेय है। एक उदाहरण वेइल बीजगणित और अंतर ऑपरेटरों के अधिक सामान्य छल्ले हैं।

सिंपल क्रमविनिमेय वलय

एक साधारण क्रमविनिमेय वलय क्रमविनिमेय छल्ले की श्रेणी में एक साधारण वस्तु है। वे (संयोजी) व्युत्पन्न बीजगणितीय ज्यामिति के लिए ब्लॉक बना रहे हैं। एक करीबी से संबंधित लेकिन अधिक सामान्य धारणा ई-इन्फिनिटी वलय|ई की है-वलय।

क्रमविनिमेय वलयों के अनुप्रयोग

यह भी देखें

टिप्पणियाँ

  1. This notion can be related to the spectrum of a linear operator, see Spectrum of a C*-algebra and Gelfand representation.



उद्धरण


संदर्भ

  • Christensen, Lars Winther; Striuli, Janet; Veliche, Oana (2010), "Growth in the minimal injective resolution of a local ring", Journal of the London Mathematical Society, Second Series, 81 (1): 24–44, arXiv:0812.4672, doi:10.1112/jlms/jdp058, S2CID 14764965
  • Eisenbud, David (1995), Commutative algebra. With a view toward algebraic geometry., Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
  • Hochster, Melvin (2007), "Homological conjectures, old and new", Illinois J. Math., 51 (1): 151–169, doi:10.1215/ijm/1258735330
  • Jacobson, Nathan (1945), "Structure theory of algebraic algebras of bounded degree", Annals of Mathematics, 46 (4): 695–707, doi:10.2307/1969205, ISSN 0003-486X, JSTOR 1969205
  • Lyubeznik, Gennady (1989), "A survey of problems and results on the number of defining equations", Representations, resolutions and intertwining numbers, pp. 375–390, Zbl 0753.14001
  • Matsumura, Hideyuki (1989), Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (2nd ed.), Cambridge University Press, ISBN 978-0-521-36764-6
  • Pinter-Lucke, James (2007), "Commutativity conditions for rings: 1950–2005", Expositiones Mathematicae, 25 (2): 165–174, doi:10.1016/j.exmath.2006.07.001, ISSN 0723-0869


अग्रिम पठन

  • Atiyah, Michael; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley Publishing Co.
  • Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Commutative Noetherian and Krull rings, Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-13-155615-7
  • Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Dimension, multiplicity and homological methods, Ellis Horwood Series: Mathematics and its Applications., Chichester: Ellis Horwood Ltd., ISBN 978-0-13-155623-2
  • Kaplansky, Irving (1974), Commutative rings (Revised ed.), University of Chicago Press, MR 0345945
  • Nagata, Masayoshi (1975) [1962], Local rings, Interscience Tracts in Pure and Applied Mathematics, vol. 13, Interscience Publishers, pp. xiii+234, ISBN 978-0-88275-228-0, MR 0155856
  • Zariski, Oscar; Samuel, Pierre (1958–60), Commutative Algebra I, II, University series in Higher Mathematics, Princeton, N.J.: D. van Nostrand, Inc. (Reprinted 1975-76 by Springer as volumes 28-29 of Graduate Texts in Mathematics.)