अवकल समीकरण

From Vigyanwiki
Revision as of 13:14, 29 November 2022 by alpha>Sadafsiddiqui
गर्मी समीकरण को हल करके बनाए गए एक पंप आवरण में गर्मी हस्तांतरण का दृश्य। आवरण में आंतरिक रूप से गर्मी उत्पन्न की जा रही है और सीमा पर ठंडा किया जा रहा है, जिससे एक स्थिर राज्य तापमान वितरण प्रदान किया जा रहा है।

गणित में, अवकल समीकरण एक समीकरण है जो एक या एक से अधिक अज्ञात फलनों और उनके व्युत्पन्नों से संबंधित होता है।[1] अनुप्रयोगों में, फलन प्रायः भौतिक मात्रा का प्रतिनिधित्व करते हैं, व्युत्पन्न परिवर्तन की अपनी दरों का प्रतिनिधित्व करते हैं, और अवकल समीकरण दोनों के बीच संबंध को परिभाषित करता है। इस तरह के संबंध सामान्य हैं इसलिए अभियांत्रिकी, भौतिकी, अर्थशास्त्र और जीव विज्ञान सहित कई विषयों में अवकल समीकरण प्रमुख भूमिका निभाते हैं।

मुख्य रूप से अवकल समीकरणों के अध्ययन में उनके समाधान (प्रत्येक समीकरण को संतुष्ट करने वाले फलनों का समूह) और उनके समाधान के गुणों का अध्ययन सम्मिलित है। स्पष्ट सूत्रों द्वारा केवल सबसे सरल अवकल समीकरणों को हल किया जा सकता है हालाँकि, किसी दिए गए अवकल समीकरण के समाधान के कई गुणों को उनकी सटीक गणना किए बिना निर्धारित किया जा सकता है।

प्रायः जब समाधान के लिए एक संवृत रूप अभिव्यक्ति उपलब्ध नहीं होती है, तो कंप्यूटर का उपयोग करके समाधान को संख्यात्मक रूप से अनुमानित किया जा सकता है। गतिशील प्रणालियों का सिद्धांत अवकल समीकरणों द्वारा वर्णित प्रणालियों के गुणात्मक विश्लेषण पर जोर देता है, जबकि सटीकता की एक निश्चित डिग्री के साथ समाधान निर्धारित करने के लिए कई संख्यात्मक तरीके विकसित किए गए हैं।

इतिहास

अवकल समीकरण सर्वप्रथम आइजैक न्यूटन और लीबनिज द्वारा कलन के आविष्कार के साथ अस्तित्व में आया। उनके 1671 के कार्य मेथडस फ्लक्सियोनम एट सेरीरम इनफिनिटरम के अध्याय 2 में,[2] आइजैक न्यूटन ने तीन प्रकार के अवकल समीकरणों को सूचीबद्ध किया।

इन सभी स्थितियों में, y, x (या x1और x2 का) का एक अज्ञात फलन है, और f एक दिया हुआ फलन है।

वह इन उदाहरणों और अन्य को अनंत श्रृंखला का उपयोग करके हल करता है और समाधानों की गैर-विशिष्टता पर चर्चा करता है।

जैकब बर्नौली ने 1695 में बरनौली अवकल समीकरण प्रस्तावित किया।[3] यह प्ररूप का एक साधारण अवकल समीकरण है।

जिसके लिए अगले वर्ष लीबनिज ने इसे सरल करके समाधान प्राप्त किया।[4]

ऐतिहासिक रूप से, एक कंपन तार की समस्या जैसे कि एक संगीत वाद्ययंत्र की समस्या का अध्ययन जीन ले रोंड डी'अलेम्बर्ट, लियोनहार्ड यूलर, डेनियल बर्नौली और जोसेफ-लुई लैग्रेंज द्वारा किया गया था।[5][6][7][8] 1746 में, डी'अलेम्बर्ट ने एक आयामी तरंग समीकरण की खोज की, और दस वर्षों के भीतर यूलर ने त्रि-आयामी तरंग समीकरण की खोज की।[9]

यूलर-लैग्रेंज समीकरण को 1750 के दशक में यूलर और लैग्रेंज द्वारा टौटोक्रोन समस्या के अपने अध्ययन के संबंध में विकसित किया गया था। यह एक वक्र निर्धारित करने की समस्या है जिस पर एक भारित कण प्रारंभिक बिंदु से स्वतंत्र, निश्चित समय में एक निश्चित बिंदु पर गिर जाएगा। लैग्रेंज ने 1755 में इस समस्या को हल किया और इसका समाधान यूलर को भेजा। दोनों ने लैग्रेंज की पद्धति को और विकसित किया और इसे यांत्रिकी पर लागू किया, जिससे लैग्रेंजियन यांत्रिकी का निर्माण हुआ।

1822 में, जोसेफ फूरियर ने थ्योरी एनालिटिक डे ला चालुर (ऊष्मा का विश्लेषणात्मक सिद्धांत) में ऊष्मा के प्रवाह पर अपना काम प्रकाशित किया,[10] जिसमें उन्होंने न्यूटन के शीतलन के नियम पर अपने तर्क को आधारित किया, अर्थात्, दो आसन्न अणुओं के बीच ऊष्मा का प्रवाह उनके तापमान के अत्यंत छोटे अंतर के समानुपाती होता है। इस पुस्तक में ऊष्मा के प्रवाहकीय प्रसार के लिए फूरियर के अपने ताप समीकरण का प्रस्ताव था। यह आंशिक अवकल समीकरण अब गणितीय भौतिकी के प्रत्येक छात्र को पढ़ाया जाता है।

उदाहरण

चिरसम्मत यांत्रिकी में, किसी पिंड की गति को उसकी स्थिति और वेग द्वारा वर्णित किया जाता है क्योंकि समय मान भिन्न होता है। न्यूटन के नियम समय के फलन के रूप में पिंड की अज्ञात स्थिति के लिए अवकल समीकरण के रूप में इन चरों (स्थिति, वेग, त्वरण और पिंड पर कार्यरत विभिन्न बल) को गतिशील रूप से व्यक्त करने की अनुमति देते हैं।

कुछ स्थितियों में, यह अवकल समीकरण (जिसे गति का समीकरण कहा जाता है) को स्पष्ट रूप से हल किया जा सकता है।

अवकल समीकरणों का उपयोग करके वास्तविक दुनिया की समस्या का मॉडलिंग करने का एक उदाहरण केवल गुरुत्वाकर्षण और वायु प्रतिरोध पर विचार करते हुए हवा के माध्यम से गिरने वाली गेंद के वेग का निर्धारण है। जमीन की ओर गेंद का त्वरण गुरुत्वाकर्षण के कारण होने वाला त्वरण है, जो वायु प्रतिरोध के कारण मंदी को घटाता है। गुरुत्वाकर्षण को स्थिर माना जाता है, और वायु प्रतिरोध को गेंद के वेग के समानुपाती के रूप में प्रतिरूपित किया जा सकता है। इसका मतलब यह है कि गेंद का त्वरण, जो उसके वेग का व्युत्पन्न है, वेग पर निर्भर करता है (और वेग समय पर निर्भर करता है)। समय के फलन के रूप में वेग का पता लगाने में एक अवकल समीकरण को हल करना और उसकी वैधता की पुष्टि करना सम्मिलित है।

प्रकार

अवकल समीकरणों को कई प्रकारों में विभाजित किया जा सकता है। समीकरण के गुणों का वर्णन करने के अलावा, अवकल समीकरणों के ये वर्ग समाधान के दृष्टिकोण के विकल्प को सूचित करने में सहायता कर सकते हैं। प्रायः इस्तेमाल किए जाने वाले भेदों में यह सम्मिलित है कि समीकरण सामान्य या आंशिक, रैखिक या गैर-रैखिक, और सजातीय या विषम है। यह सूची संपूर्ण से बहुत दूर है अवकल समीकरणों के कई अन्य गुण और उपवर्ग हैं जो विशिष्ट संदर्भों में बहुत उपयोगी हो सकते हैं।

सामान्य अवकल समीकरण

एक सामान्य अवकल समीकरण (ODE) एक समीकरण है जिसमें एक वास्तविक या जटिल चर x, इसके व्युत्पन्न और x के कुछ दिए गए फलनों का अज्ञात फलन होता है। अज्ञात फलन प्रायः एक चर (सामान्यतः y) द्वारा निरूपित किया जाता है, जो, इसलिए, x पर निर्भर करता है। इस प्रकार x को प्राय: समीकरण का स्वतंत्र चर कहा जाता है। शब्द "साधारण" का प्रयोग आंशिक अवकल समीकरण शब्द के विपरीत किया जाता है, जो एक से अधिक स्वतंत्र चर के संबंध में हो सकता है।

रेखीय अवकल समीकरण वे अवकल समीकरण होते हैं जो अज्ञात फलन और उसके व्युत्पन्नों में रेखीय होते हैं। उनका सिद्धांत अच्छी तरह से विकसित है, और कई स्थितियों में उनके समाधानों को अभिन्न के रूप में व्यक्त किया जा सकता है।

भौतिकी में पाए जाने वाले अधिकांश ओडीई रैखिक होते हैं। इसलिए, अधिकांश विशेष फलनों को रेखीय अवकल समीकरणों के हल के रूप में परिभाषित किया जा सकता है (देखें होलोनोमिक फलन)।

जैसा कि, सामान्य तौर पर, एक अवकल समीकरण के समाधान को एक संवृत रूप अभिव्यक्ति द्वारा व्यक्त नहीं किया जा सकता है, कंप्यूटर पर अवकल समीकरणों को हल करने के लिए प्रायः संख्यात्मक विधियों का उपयोग किया जाता है।

आंशिक अवकल समीकरण

एक आंशिक अंतर समीकरण (पीडीई) एक अंतर समीकरण है जिसमें अज्ञात बहुभिन्नरूपी कलन और उनके आंशिक डेरिवेटिव शामिल हैं। (यह सामान्य अंतर समीकरणों के विपरीत है, जो एक चर और उनके डेरिवेटिव के कार्यों से निपटते हैं।) पीडीई का उपयोग कई चर के कार्यों से संबंधित समस्याओं को तैयार करने के लिए किया जाता है, और या तो बंद रूप में हल किया जाता है, या एक प्रासंगिक कंप्यूटर बनाने के लिए उपयोग किया जाता है। नमूना।

पीडीई का उपयोग प्रकृति में ध्वनि, गर्मी, इलेक्ट्रोस्टाटिक्स, बिजली का गतिविज्ञान, द्रव प्रवाह, लोच (भौतिकी), या क्वांटम यांत्रिकी जैसी विभिन्न प्रकार की घटनाओं का वर्णन करने के लिए किया जा सकता है। पीडीई के संदर्भ में समान रूप से अलग-अलग भौतिक घटनाओं को औपचारिक रूप से औपचारिक रूप दिया जा सकता है। जिस तरह साधारण अंतर समीकरण अक्सर एक-आयामी गतिशील प्रणालियों का मॉडल करते हैं, आंशिक अंतर समीकरण अक्सर बहुआयामी प्रणालियों का मॉडल करते हैं। स्टोचैस्टिक आंशिक अंतर समीकरण मॉडलिंग यादृच्छिकता के लिए आंशिक अंतर समीकरणों का सामान्यीकरण करते हैं।

गैर रेखीय अंतर समीकरण

एक गैर-रैखिक अंतर समीकरण एक अंतर समीकरण है जो अज्ञात फ़ंक्शन और उसके डेरिवेटिव में रैखिक समीकरण नहीं है (फ़ंक्शन के तर्कों में रैखिकता या गैर-रैखिकता पर विचार नहीं किया जाता है)। अरैखिक अवकल समीकरणों को सटीक रूप से हल करने की बहुत कम विधियाँ हैं; जो ज्ञात हैं वे विशेष रूप से समरूपता वाले समीकरण पर निर्भर करते हैं। गैर-रैखिक अंतर समीकरण विस्तारित समय अंतराल पर बहुत जटिल व्यवहार प्रदर्शित कर सकते हैं, अराजकता सिद्धांत की विशेषता। यहां तक ​​कि अरैखिक अंतर समीकरणों के लिए अस्तित्व, अद्वितीयता, और समाधानों की विस्तारशीलता के मौलिक प्रश्न, और अरैखिक पीडीई के लिए प्रारंभिक और सीमा मूल्य समस्याओं की अच्छी तरह से प्रस्तुत की गई कठिन समस्याएं हैं और विशेष मामलों में उनके समाधान को गणितीय में एक महत्वपूर्ण प्रगति माना जाता है। सिद्धांत (cf. नेवियर-स्टोक्स अस्तित्व और सहजता)। हालांकि, अगर अंतर समीकरण एक सार्थक भौतिक प्रक्रिया का सही ढंग से तैयार किया गया प्रतिनिधित्व है, तो कोई उम्मीद करता है कि इसका समाधान होगा।[11] रेखीय अवकल समीकरण अक्सर अरैखिक समीकरणों के रेखीयकरण के रूप में दिखाई देते हैं। ये सन्निकटन प्रतिबंधित शर्तों के तहत ही मान्य हैं। उदाहरण के लिए, हार्मोनिक थरथरानवाला समीकरण गैर-रैखिक पेंडुलम समीकरण का एक अनुमान है जो छोटे आयाम दोलनों के लिए मान्य है (नीचे देखें)।

समीकरण क्रम

विभेदक समीकरणों को उनके क्रम द्वारा वर्णित किया जाता है, जो व्युत्पन्न # उच्च डेरिवेटिव वाले शब्द द्वारा निर्धारित किया जाता है। एक समीकरण जिसमें केवल पहला डेरिवेटिव होता है, एक फर्स्ट-ऑर्डर डिफरेंशियल इक्वेशन होता है, दूसरा डेरिवेटिव वाला एक समीकरण एक सेकेंड-ऑर्डर डिफरेंशियल इक्वेशन होता है, और इसी तरह।[12][13] विभेदक समीकरण जो प्राकृतिक घटनाओं का वर्णन करते हैं उनमें लगभग हमेशा पहले और दूसरे क्रम के डेरिवेटिव होते हैं, लेकिन कुछ अपवाद हैं, जैसे थिन-फिल्म समीकरण, जो चौथा क्रम आंशिक अंतर समीकरण है।

उदाहरण

उदाहरणों के पहले समूह में यू एक्स का एक अज्ञात कार्य है, और सी और ω स्थिरांक हैं जिन्हें ज्ञात माना जाता है। साधारण और आंशिक अंतर समीकरणों के दो व्यापक वर्गीकरण में रैखिक अंतर समीकरण और गैर-रैखिक अंतर समीकरण, और सजातीय अंतर समीकरण और विषम समीकरणों के बीच अंतर करना शामिल है।

  • विषम प्रथम-क्रम रैखिक निरंतर गुणांक साधारण अंतर समीकरण:
  • सजातीय द्वितीय क्रम रैखिक साधारण अंतर समीकरण:
  • लयबद्ध दोलक का वर्णन करने वाला सजातीय दूसरा क्रम रैखिक निरंतर गुणांक साधारण अंतर समीकरण:
  • विषम प्रथम-क्रम अरैखिक साधारण अंतर समीकरण:
  • दूसरा क्रम अरैखिक (साइन फ़ंक्शन के कारण) लंबाई L के लंगर की गति का वर्णन करने वाला साधारण अंतर समीकरण:

उदाहरणों के अगले समूह में, अज्ञात फलन u दो चरों x और t या x और y पर निर्भर करता है।

  • सजातीय प्रथम-क्रम रैखिक आंशिक अंतर समीकरण:
  • सजातीय दूसरे क्रम रैखिक निरंतर गुणांक अण्डाकार प्रकार का आंशिक अंतर समीकरण, लाप्लास समीकरण:
  • सजातीय तीसरे क्रम गैर रेखीय आंशिक अंतर समीकरण :


समाधान का अस्तित्व

अवकल समीकरणों को हल करना बीजगणितीय समीकरणों को हल करने जैसा नहीं है। न केवल उनके समाधान अक्सर अस्पष्ट होते हैं, बल्कि क्या समाधान अद्वितीय हैं या बिल्कुल मौजूद हैं, यह भी रुचि के उल्लेखनीय विषय हैं।

पहले क्रम की प्रारंभिक मूल्य समस्याओं के लिए, पीआनो अस्तित्व प्रमेय परिस्थितियों का एक सेट देता है जिसमें एक समाधान मौजूद होता है। किसी भी बिंदु को देखते हुए xy-तल में, कुछ आयताकार क्षेत्र परिभाषित करें , ऐसा है कि तथा के भीतरी भाग में है . अगर हमें एक अंतर समीकरण दिया जाता है और शर्त है कि जब , तो स्थानीय रूप से इस समस्या का समाधान है यदि तथा दोनों लगातार चालू हैं . यह समाधान अपने केंद्र के साथ कुछ अंतराल पर मौजूद है . समाधान अद्वितीय नहीं हो सकता। (अन्य परिणामों के लिए साधारण अंतर समीकरण देखें।)

हालाँकि, यह हमें केवल प्रथम क्रम के प्रारंभिक मूल्य समस्याओं में मदद करता है। मान लीजिए हमारे पास nवें क्रम की एक रैखिक प्रारंभिक मूल्य समस्या है:

ऐसा है कि

किसी भी अशून्य के लिए , यदि तथा कुछ अंतराल युक्त पर निरंतर हैं , अद्वितीय है और मौजूद है।[14]


संबंधित अवधारणाएं

अंतर समीकरणों से संबंध

विभेदक समीकरणों का सिद्धांत अंतर समीकरणों के सिद्धांत से निकटता से संबंधित है, जिसमें निर्देशांक केवल असतत मान ग्रहण करते हैं, और संबंध में अज्ञात फ़ंक्शन या फ़ंक्शन के मान और पास के निर्देशांक पर मान शामिल होते हैं। अवकल समीकरणों के संख्यात्मक हलों की गणना करने या अवकल समीकरणों के गुणों का अध्ययन करने की कई विधियों में संगत अंतर समीकरण के हल द्वारा अवकल समीकरण के हल का सन्निकटन शामिल होता है।

अनुप्रयोग

अवकल समीकरणों का अध्ययन शुद्ध गणित और अनुप्रयुक्त गणित, भौतिकी और इंजीनियरिंग में एक विस्तृत क्षेत्र है। इन सभी विषयों का संबंध विभिन्न प्रकार के अवकल समीकरणों के गुणों से है। शुद्ध गणित समाधानों के अस्तित्व और अद्वितीयता पर ध्यान केंद्रित करता है, जबकि अनुप्रयुक्त गणित समाधानों के सन्निकटन के तरीकों के कठोर औचित्य पर जोर देता है। डिफरेंशियल इक्वेशन लगभग हर भौतिक, तकनीकी या जैविक प्रक्रिया, खगोलीय गति से लेकर पुल डिजाइन, न्यूरॉन्स के बीच बातचीत के मॉडलिंग में महत्वपूर्ण भूमिका निभाते हैं। वास्तविक जीवन की समस्याओं को हल करने के लिए उपयोग किए जाने वाले विभेदक समीकरण आवश्यक रूप से प्रत्यक्ष रूप से हल करने योग्य नहीं हो सकते हैं, अर्थात उनके पास बंद-रूप अभिव्यक्ति समाधान नहीं हैं। इसके बजाय, संख्यात्मक साधारण अंतर समीकरणों का उपयोग करके समाधानों का अनुमान लगाया जा सकता है।

भौतिक विज्ञान और रसायन विज्ञान के कई मूलभूत नियमों को अवकल समीकरणों के रूप में तैयार किया जा सकता है। जीव विज्ञान और अर्थशास्त्र में, जटिल प्रणालियों के व्यवहार को गणितीय मॉडलिंग के लिए अंतर समीकरणों का उपयोग किया जाता है। विभेदक समीकरणों का गणितीय सिद्धांत सबसे पहले उन विज्ञानों के साथ मिलकर विकसित हुआ जहाँ समीकरणों की उत्पत्ति हुई थी और जहाँ परिणामों का अनुप्रयोग पाया गया था। हालांकि, विविध समस्याएं, कभी-कभी काफी विशिष्ट वैज्ञानिक क्षेत्रों में उत्पन्न होती हैं, समान अंतर समीकरणों को जन्म दे सकती हैं। जब भी ऐसा होता है, समीकरणों के पीछे गणितीय सिद्धांत को विविध परिघटनाओं के पीछे एकीकृत सिद्धांत के रूप में देखा जा सकता है। एक उदाहरण के रूप में, वातावरण में प्रकाश और ध्वनि के प्रसार और तालाब की सतह पर तरंगों के प्रसार पर विचार करें। उन सभी को उसी दूसरे क्रम के आंशिक अंतर समीकरण, तरंग समीकरण द्वारा वर्णित किया जा सकता है, जो हमें प्रकाश और ध्वनि को तरंगों के रूप में सोचने की अनुमति देता है, पानी में परिचित तरंगों की तरह। ऊष्मा का संचालन, जिसका सिद्धांत जोसेफ फूरियर द्वारा विकसित किया गया था, दूसरे क्रम के आंशिक अंतर समीकरण, ऊष्मा समीकरण द्वारा नियंत्रित होता है। यह पता चला है कि कई प्रसार प्रक्रियाएं, जबकि अलग-अलग प्रतीत होती हैं, एक ही समीकरण द्वारा वर्णित हैं; वित्त में ब्लैक-स्कोल्स समीकरण, उदाहरण के लिए, ऊष्मा समीकरण से संबंधित है।

भिन्न-भिन्न वैज्ञानिक क्षेत्रों में जितने अवकल समीकरणों को नाम मिला है, वह विषय के महत्व का साक्षी है। नामांकित अवकल समीकरणों की सूची देखें।

सॉफ्टवेयर

कुछ कंप्यूटर बीजगणित सिस्टम सॉफ़्टवेयर अवकल समीकरणों को हल कर सकते हैं। ये कंप्यूटर बीजगणित प्रणाली सॉफ्टवेयर और उनके आदेश उल्लेखनीय हैं:


यह भी देखें


संदर्भ

  1. Dennis G. Zill (15 March 2012). मॉडलिंग अनुप्रयोगों के साथ विभेदक समीकरणों में पहला कोर्स. Cengage Learning. ISBN 978-1-285-40110-2.
  2. Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
  3. Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum
  4. Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0
  5. Frasier, Craig (July 1983). "जॉन टी. कैनन और सिगलिया डोस्त्रोव्स्की द्वारा 1687 से 1742 तक गतिकी का विकास, कंपन सिद्धांत की समीक्षा" (PDF). Bulletin of the American Mathematical Society. New Series. 9 (1).
  6. Wheeler, Gerard F.; Crummett, William P. (1987). "वाइब्रेटिंग स्ट्रिंग विवाद". Am. J. Phys. 55 (1): 33–37. Bibcode:1987AmJPh..55...33W. doi:10.1119/1.15311.
  7. For a special collection of the 9 groundbreaking papers by the three authors, see First Appearance of the wave equation: D'Alembert, Leonhard Euler, Daniel Bernoulli. - the controversy about vibrating strings Archived 2020-02-09 at the Wayback Machine (retrieved 13 Nov 2012). Herman HJ Lynge and Son.
  8. For de Lagrange's contributions to the acoustic wave equation, can consult Acoustics: An Introduction to Its Physical Principles and Applications Allan D. Pierce, Acoustical Soc of America, 1989; page 18.(retrieved 9 Dec 2012)
  9. Speiser, David. Discovering the Principles of Mechanics 1600-1800, p. 191 (Basel: Birkhäuser, 2008).
  10. Fourier, Joseph (1822). ऊष्मा का विश्लेषणात्मक सिद्धांत (in français). Paris: Firmin Didot Père et Fils. OCLC 2688081.
  11. Boyce, William E.; DiPrima, Richard C. (1967). प्राथमिक विभेदक समीकरण और सीमा मूल्य समस्याएं (4th ed.). John Wiley & Sons. p. 3.
  12. Weisstein, Eric W. "Ordinary Differential Equation Order." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/OrdinaryDifferentialEquationOrder.html
  13. Order and degree of a differential equation Archived 2016-04-01 at the Wayback Machine, accessed Dec 2015.
  14. Zill, Dennis G. (2001). डिफरेंशियल इक्वेशन में पहला कोर्स (5th ed.). Brooks/Cole. ISBN 0-534-37388-7.
  15. "dsolve - मेपल प्रोग्रामिंग सहायता". www.maplesoft.com. Retrieved 2020-05-09.
  16. "DSolve - वोल्फ्राम लैंग्वेज डॉक्यूमेंटेशन". www.wolfram.com. Retrieved 2020-06-28.
  17. Schelter, William F. Gaertner, Boris (ed.). "विभेदक समीकरण - प्रतीकात्मक समाधान". The Computer Algebra Program Maxima - a Tutorial (in Maxima documentation on SourceForge). Archived from the original on 2022-10-04.
  18. "मूल बीजगणित और कैलकुलस - सेज ट्यूटोरियल v9.0". doc.sagemath.org. Retrieved 2020-05-09.
  19. "स्तोत्र". SymPy 1.11 documentation. 2022-08-22. Archived from the original on 2022-09-26.
  20. "Xcas के साथ प्रतीकात्मक बीजगणित और गणित" (PDF).


अग्रिम पठन


बाहरी संबंध

{{Navbox

| name =गणित के क्षेत्र

|state = collapsed

| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* '

}}