वृत्तीय गति
| Part of a series on |
| चिरसम्मत यांत्रिकी |
|---|
भौतिकी में, वृत्ताकार गति वृत्त की परिधि के साथ किसी वस्तु की गति या वृत्ताकार पथ के साथ घूमना है। यह रोटेशन की निरंतर कोणीय दर और निरंतर गति के साथ, या रोटेशन की बदलती दर के साथ गैर-समान हो सकता है। त्रि-आयामी शरीर के निश्चित अक्ष के चारों ओर घूमने में इसके भागों की गोलाकार गति शामिल होती है। गति के समीकरण किसी पिंड के द्रव्यमान के केंद्र की गति का वर्णन करते हैं। वृत्ताकार गति में, पिंड और सतह पर निश्चित बिंदु के बीच की दूरी समान रहती है।
वृत्ताकार गति के उदाहरणों में शामिल हैं: कृत्रिम उपग्रह जो स्थिर ऊंचाई पर पृथ्वी की परिक्रमा कर रहा है, छत के पंखे के ब्लेड हब के चारों ओर घूम रहे हैं, पत्थर जो रस्सी से बंधा हुआ है और हलकों में घुमाया जा रहा है, कार दौड़ में वक्र के माध्यम से घूम रही है ट्रैक, समान चुंबकीय क्षेत्र के लंबवत चलने वाला इलेक्ट्रॉन, और तंत्र के अंदर घूमने वाला उपकरण।
चूँकि वस्तु का वेग सदिश लगातार दिशा बदल रहा है, गतिमान वस्तु केन्द्रापसारक बल द्वारा घूर्णन के केंद्र की दिशा में त्वरण से गुजर रही है। इस त्वरण के बिना, वस्तु न्यूटन के गति के नियमों के अनुसार सीधी रेखा में गति करेगी।
एकसमान वर्तुलाकार गति
भौतिकी में, एकसमान वृत्तीय गति वृत्त पथ पर स्थिर गति से चलने वाले पिंड की गति का वर्णन करती है। चूंकि पिंड वृत्तीय गति का वर्णन करता है, घूर्णन के अक्ष से इसकी दूरी हर समय स्थिर रहती है। हालांकि शरीर की गति स्थिर है, इसका वेग स्थिर नहीं है: वेग, यूक्लिडियन वेक्टर मात्रा, शरीर की गति और इसकी यात्रा की दिशा दोनों पर निर्भर करती है। यह बदलता वेग त्वरण की उपस्थिति को इंगित करता है; यह केन्द्रापसारक त्वरण निरंतर परिमाण का है और हर समय रोटेशन के अक्ष की ओर निर्देशित होता है। यह त्वरण, बदले में, अभिकेन्द्र बल द्वारा निर्मित होता है जो परिमाण में भी स्थिर होता है और घूर्णन के अक्ष की ओर निर्देशित होता है।
एक कठोर पिंड के निश्चित अक्ष के चारों ओर घूमने की स्थिति में, जो पथ की त्रिज्या की तुलना में नगण्य रूप से छोटा नहीं है, पिंड का प्रत्येक कण समान कोणीय वेग के साथ समान गोलाकार गति का वर्णन करता है, लेकिन वेग और त्वरण के साथ भिन्न होता है। अक्ष के संबंध में स्थिति।
सूत्र
त्रिज्या के चक्र में गति के लिए r, वृत्त की परिधि है C = 2πr. यदि घूर्णन की अवधि है T, घूर्णन की कोणीय दर, जिसे कोणीय वेग के रूप में भी जाना जाता है, ω है:
और मात्रक रेडियन/सेकंड हैं।वृत्त में यात्रा करने वाली वस्तु की गति है:
कोण θ समय में बह गया t है: कोणीय त्वरण, α, कण का है: एकसमान वर्तुल गति के मामले में, α शून्य होगा।दिशा में परिवर्तन के कारण त्वरण है:
अभिकेन्द्री बल और केन्द्रापसारक बल (घूर्णन संदर्भ फ्रेम) बल भी त्वरण का उपयोग करके पाया जा सकता है: वेक्टर संबंधों को चित्र 1 में दिखाया गया है। रोटेशन की धुरी को वेक्टर के रूप में दिखाया गया है ω कक्षा के तल के लंबवत और परिमाण के साथ ω = dθ / dt. इसकी दिशा ω दाहिने हाथ के नियम का उपयोग करके चुना जाता है। रोटेशन के चित्रण के लिए इस सम्मेलन के साथ, वेक्टर क्रॉस उत्पाद के रूप में वेग दिया जाता हैसबसे सरल मामले में गति, द्रव्यमान और त्रिज्या स्थिर होती है।
एक किलोग्राम के शरीर पर विचार करें, कांति प्रति दूसरा के कोणीय वेग के साथ, मीटर त्रिज्या के चक्र में घूम रहा है।
- गति 1 मीटर प्रति सेकंड है।
- आवक त्वरण 1 मीटर प्रति वर्ग सेकंड है, v2/r.
- यह 1 किलोग्राम मीटर प्रति वर्ग सेकंड के अभिकेन्द्र बल के अधीन है, जो 1 न्यूटन (इकाई) है।
- पिंड का संवेग 1 kg·m·s होता है-1.
- जड़त्व आघूर्ण 1 kg·m है2</उप>।
- कोणीय संवेग 1 किग्रा · मी है2·एस-1.
- गतिज ऊर्जा 1 जूल होती है।
- कक्षा की परिधि 2Pi| हैπ(~6.283) मीटर।
- गति की अवधि 2 हैπ सेकंड प्रति मोड़ (ज्यामिति)।
- आवृत्ति है (2π)-1 हेटर्स।
ध्रुवीय निर्देशांक में
वृत्ताकार गति के दौरान शरीर वक्र पर चलता है जिसे ध्रुवीय समन्वय प्रणाली में निश्चित दूरी के रूप में वर्णित किया जा सकता है R मूल के रूप में ली गई कक्षा के केंद्र से, कोण पर उन्मुख θ(t) किसी संदर्भ दिशा से। चित्रा 4 देखें। विस्थापन वेक्टर रेडियल वेक्टर मूल से कण स्थान तक है:
वेग विस्थापन का समय व्युत्पन्न है:
जटिल संख्याओं का उपयोग करना
जटिल संख्याओं का उपयोग करके परिपत्र गति का वर्णन किया जा सकता है। चलो x अक्ष वास्तविक अक्ष हो और अक्ष काल्पनिक अक्ष हो। शरीर की स्थिति तब के रूप में दी जा सकती है , जटिल सदिश :
चूंकि त्रिज्या स्थिर है:
इस अंकन के साथ वेग बन जाता है:
वेग
चित्रा 1 कक्षा में चार अलग-अलग बिंदुओं पर समान गति के लिए वेग और त्वरण वैक्टर दिखाता है। क्योंकि वेग v वृत्ताकार पथ की स्पर्शरेखा है, कोई भी दो वेग ही दिशा में इंगित नहीं करते हैं। यद्यपि वस्तु की गति स्थिर होती है, उसकी दिशा सदैव बदलती रहती है। वेग में यह परिवर्तन त्वरण के कारण होता है a, जिसका परिमाण (वेग की तरह) स्थिर रहता है, लेकिन जिसकी दिशा भी हमेशा बदलती रहती है। त्वरण रेडियल रूप से अंदर की ओर (केंद्रीय रूप से) इंगित करता है और वेग के लंबवत होता है। इस त्वरण को केन्द्रापसारक त्वरण के रूप में जाना जाता है।
त्रिज्या के पथ के लिए r, जब कोण θ बाहर कर दिया जाता है, तो विकट पर तय की गई दूरी: कक्षा की परिधि है s = rθ. इसलिए, कक्षा के चारों ओर यात्रा की गति है
सापेक्षिक परिपत्र गति
इस मामले में तीन-त्वरण वेक्टर तीन-वेग वेक्टर के लंबवत है,
त्वरण
चित्र 2 में बाएँ हाथ का वृत्त वह कक्षा है जो दो निकटवर्ती समयों पर वेग सदिशों को दर्शाती है। दाईं ओर, इन दो वेगों को स्थानांतरित किया जाता है, इसलिए उनकी पूंछ मेल खाती है। क्योंकि गति स्थिर है, दाहिनी ओर वेग सदिश समय बढ़ने के साथ-साथ वृत्त को पार कर जाते हैं। स्वेप्ट एंगल के लिए dθ = ω dt में परिवर्तन v के समकोण पर सदिश है v और परिमाण का v dθ, जिसका अर्थ है कि त्वरण का परिमाण द्वारा दिया गया है
|v| r
|
1 m/s 3.6 km/h 2.2 mph |
2 m/s 7.2 km/h 4.5 mph |
5 m/s 18 km/h 11 mph |
10 m/s 36 km/h 22 mph |
20 m/s 72 km/h 45 mph |
50 m/s 180 km/h 110 mph |
100 m/s 360 km/h 220 mph | |
|---|---|---|---|---|---|---|---|---|
| धीरे चलना | साइकिल | शहर की गाड़ी | Aerobatics | |||||
| 10 cm 3.9 in |
प्रयोगशाला | 10 m/s2 1.0 g |
40 m/s2 4.1 g |
250 m/s2 25 g |
1.0 km/s2 100 g |
4.0 km/s2 410 g |
25 km/s2 2500 g |
100 km/s2 10000 g |
| 20 cm 7.9 in |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g |
130 m/s2 13 g |
500 m/s2 51 g |
2.0 km/s2 200 g |
13 km/s2 1300 g |
50 km/s2 5100 g | |
| 50 cm 1.6 ft |
2.0 m/s2 0.20 g |
8.0 m/s2 0.82 g |
50 m/s2 5.1 g |
200 m/s2 20 g |
800 m/s2 82 g |
5.0 km/s2 510 g |
20 km/s2 2000 g | |
| 1 m 3.3 ft |
खेल का मैदान हिंडोला |
1.0 m/s2 0.10 g |
4.0 m/s2 0.41 g |
25 m/s2 2.5 g |
100 m/s2 10 g |
400 m/s2 41 g |
2.5 km/s2 250 g |
10 km/s2 1000 g |
| 2 m 6.6 ft |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
13 m/s2 1.3 g |
50 m/s2 5.1 g |
200 m/s2 20 g |
1.3 km/s2 130 g |
5.0 km/s2 510 g | |
| 5 m 16 ft |
200 mm/s2 0.020 g |
800 mm/s2 0.082 g |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g |
80 m/s2 8.2 g |
500 m/s2 51 g |
2.0 km/s2 200 g | |
| 10 m 33 ft |
रोलर कॉस्टर ऊर्ध्वाधर पाश |
100 mm/s2 0.010 g |
400 mm/s2 0.041 g |
2.5 m/s2 0.25 g |
10 m/s2 1.0 g |
40 m/s2 4.1 g |
250 m/s2 25 g |
1.0 km/s2 100 g |
| 20 m 66 ft |
50 mm/s2 0.0051 g |
200 mm/s2 0.020 g |
1.3 m/s2 0.13 g |
5.0 m/s2 0.51 g |
20 m/s2 2 g |
130 m/s2 13 g |
500 m/s2 51 g | |
| 50 m 160 ft |
20 mm/s2 0.0020 g |
80 mm/s2 0.0082 g |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
8.0 m/s2 0.82 g |
50 m/s2 5.1 g |
200 m/s2 20 g | |
| 100 m 330 ft |
फ़्रीवे ऑन रैंप |
10 mm/s2 0.0010 g |
40 mm/s2 0.0041 g |
250 mm/s2 0.025 g |
1.0 m/s2 0.10 g |
4.0 m/s2 0.41 g |
25 m/s2 2.5 g |
100 m/s2 10 g |
| 200 m 660 ft |
5.0 mm/s2 0.00051 g |
20 mm/s2 0.0020 g |
130 m/s2 0.013 g |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
13 m/s2 1.3 g |
50 m/s2 5.1 g | |
| 500 m 1600 ft |
2.0 mm/s2 0.00020 g |
8.0 mm/s2 0.00082 g |
50 mm/s2 0.0051 g |
200 mm/s2 0.020 g |
800 mm/s2 0.082 g |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g | |
| 1 km 3300 ft |
उच्च गति रेल-मार्ग |
1.0 mm/s2 0.00010 g |
4.0 mm/s2 0.00041 g |
25 mm/s2 0.0025 g |
100 mm/s2 0.010 g |
400 mm/s2 0.041 g |
2.5 m/s2 0.25 g |
10 m/s2 1.0 g |
गैर-वर्दी
असमान वृत्तीय गति में कोई वस्तु वृत्तीय पथ में परिवर्ती गति से गति कर रही है। चूंकि गति बदल रही है, सामान्य त्वरण के अतिरिक्त स्पर्शरेखा त्वरण भी है।
असमान वृत्तीय गति में शुद्ध त्वरण (a) की दिशा में होता है Δv, जो सर्कल के अंदर निर्देशित है लेकिन इसके केंद्र से नहीं गुजरती है (आंकड़ा देखें)। शुद्ध त्वरण को दो घटकों में हल किया जा सकता है: स्पर्शरेखा त्वरण और सामान्य त्वरण जिसे केन्द्रापसारक या रेडियल त्वरण भी कहा जाता है। स्पर्शरेखा त्वरण के विपरीत, केन्द्रापसारक त्वरण समान और गैर-समान परिपत्र गति दोनों में मौजूद है।
असमान वृत्तीय गति में, सामान्य बल हमेशा भार की विपरीत दिशा में नहीं होता है। यहाँ उदाहरण है जिसमें वस्तु सीधे रास्ते में यात्रा करती है और फिर लूप को फिर से सीधे रास्ते में घुमाती है।
यह आरेख भार बल के विपरीत के बजाय अन्य दिशाओं में इंगित करने वाले सामान्य बल को दर्शाता है। सामान्य बल वास्तव में रेडियल और स्पर्शरेखा बलों का योग है। भार बल का घटक यहाँ स्पर्शरेखा बल के लिए उत्तरदायी है (हमने घर्षण बल की उपेक्षा की है)। रेडियल बल (केन्द्रीय बल) वेग की दिशा में परिवर्तन के कारण होता है जैसा कि पहले चर्चा की गई थी।
असमान वृत्तीय गति में, सामान्य बल और भार ही दिशा में हो सकते हैं। दोनों बल नीचे की ओर इशारा कर सकते हैं, फिर भी वस्तु सीधे नीचे गिरे बिना गोलाकार पथ में बनी रहेगी। आइए पहले देखें कि सामान्य बल पहले स्थान पर नीचे की ओर क्यों इंगित कर सकता है। पहले आरेख में, मान लें कि वस्तु विमान के अंदर बैठा व्यक्ति है, दो बल तभी नीचे की ओर इशारा करते हैं जब वह वृत्त के शीर्ष पर पहुँचता है। इसका कारण यह है कि सामान्य बल स्पर्शरेखा बल और अभिकेन्द्र बल का योग होता है। शीर्ष पर स्पर्शरेखा बल शून्य है (चूंकि गति लागू बल की दिशा के लंबवत होने पर कोई कार्य नहीं किया जाता है। यहां भार बल वृत्त के शीर्ष पर वस्तु की गति की दिशा के लंबवत होता है) और केन्द्रापसारक बल बिंदु नीचे, इस प्रकार सामान्य बल भी नीचे की ओर इंगित करेगा। तार्किक दृष्टिकोण से, व्यक्ति जो विमान में यात्रा कर रहा है वह चक्र के शीर्ष पर उल्टा होगा। उस समय, व्यक्ति का आसन वास्तव में व्यक्ति को नीचे धकेल रहा होता है, जो कि सामान्य बल है।
केवल नीचे की ओर बलों के अधीन होने पर वस्तु नीचे क्यों नहीं गिरती इसका कारण साधारण है। इस बारे में सोचें कि किसी वस्तु को फेंकने के बाद क्या ऊपर रखता है। बार जब किसी वस्तु को हवा में फेंका जाता है, तो पृथ्वी के गुरुत्वाकर्षण का केवल नीचे की ओर बल होता है जो वस्तु पर कार्य करता है। इसका मतलब यह नहीं है कि बार किसी वस्तु को हवा में फेंके जाने पर वह तुरंत गिर जाएगी। जो चीज उस वस्तु को हवा में ऊपर रखती है, वह उसका वेग है। न्यूटन के गति के नियमों में से पहला कहता है कि किसी वस्तु की जड़ता उसे गति में रखती है, और चूंकि हवा में वस्तु का वेग होता है, इसलिए वह उस दिशा में चलती रहती है।
एक वृत्ताकार पथ में गतिमान वस्तु के लिए भिन्न-भिन्न कोणीय गति भी प्राप्त की जा सकती है यदि घूर्णन करने वाले पिंड में समरूप द्रव्यमान वितरण न हो। विषम वस्तुओं के लिए, समस्या के रूप में संपर्क करना आवश्यक है।[2]
अनुप्रयोग
असमान वृत्तीय गति से संबंधित अनुप्रयोगों को हल करने में बल विश्लेषण शामिल है। समान वृत्तीय गति के साथ, वृत्त में यात्रा करने वाली वस्तु पर लगने वाला एकमात्र बल अभिकेन्द्र बल है। गैर-समान परिपत्र गति में, गैर-शून्य स्पर्शरेखा त्वरण के कारण वस्तु पर अतिरिक्त बल कार्य करते हैं। हालाँकि वस्तु पर अतिरिक्त बल कार्य कर रहे हैं, वस्तु पर कार्य करने वाले सभी बलों का योग अभिकेन्द्र बल के बराबर होना चाहिए।
का उपयोग करते हुए , हम किसी वस्तु पर कार्य करने वाली सभी शक्तियों को सूचीबद्ध करने के लिए मुक्त शरीर आरेख बना सकते हैं और फिर इसे बराबर सेट कर सकते हैं . बाद में, हम अज्ञात के लिए हल कर सकते हैं (यह द्रव्यमान, वेग, वक्रता की त्रिज्या, घर्षण का गुणांक, सामान्य बल, आदि हो सकता है)। उदाहरण के लिए, अर्धवृत्त के शीर्ष पर वस्तु को दर्शाने वाला ऊपर का दृश्य इस रूप में व्यक्त किया जाएगा .
एकसमान वृत्तीय गति में, वृत्ताकार पथ में किसी वस्तु का कुल त्वरण रेडियल त्वरण के बराबर होता है। असमान वृत्तीय गति में स्पर्शरेखा त्वरण की उपस्थिति के कारण, यह अब सत्य नहीं है। असमान वृत्ताकार में किसी वस्तु का कुल त्वरण ज्ञात करने के लिए, स्पर्शरेखा त्वरण और रेडियल त्वरण का सदिश योग ज्ञात करें।
यह भी देखें
- कोनेदार गति
- गति के समीकरण निरंतर वर्तुल त्वरण
- समय व्युत्पन्न उदाहरण: परिपत्र गति § Notes
- बनावटी बल
- भूस्थैतिक कक्षा
- भू-समकालिक कक्षा
- पेंडुलम (गणित)
- प्रतिक्रियाशील केन्द्रापसारक बल
- प्रत्यागामी गति
- सरल आवर्त गति एकसमान वर्तुल गति § Notes
- गोफन (हथियार)
संदर्भ
- ↑ Knudsen, Jens M.; Hjorth, Poul G. (2000). न्यूटोनियन यांत्रिकी के तत्व: अरैखिक गतिकी सहित (3 ed.). Springer. p. 96. ISBN 3-540-67652-X.
- ↑ Gomez, R W; Hernandez-Gomez, J J; Marquina, V (25 July 2012). "झुके हुए तल पर उछलता हुआ बेलन". Eur. J. Phys. IOP. 33 (5): 1359–1365. arXiv:1204.0600. Bibcode:2012EJPh...33.1359G. doi:10.1088/0143-0807/33/5/1359. S2CID 55442794. Retrieved 25 April 2016.
इस पेज में लापता आंतरिक लिंक की सूची
- पंखा
- एक निश्चित अक्ष के चारों ओर घूमना
- रेस ट्रैक
- सेंटर ऑफ मास
- घेरा
- केन्द्राभिमुख शक्ति
- भौतिक विज्ञान
- सख्त शरीर
- केन्द्राभिमुख त्वरण
- रफ़्तार
- त्रिज्या
- कोणीय गति
- दाहिने हाथ का नियम
- अन्योन्य गुणन
- गति
- न्यूटन (यूनिट)
- निष्क्रियता के पल
- कोनेदार गति
- जौल
- की परिक्रमा
- केंद्र की ओर जानेवाला
- वजन
- पारस्परिक गति
बाहरी कड़ियाँ
- Physclips: Mechanics with animations and video clips from the University of New South Wales
- Circular Motion – a chapter from an online textbook
- Circular Motion Lecture – a video lecture on CM
- [1] – an online textbook with different analysis for circular motion
श्रेणी:रोटेशन श्रेणी:शास्त्रीय यांत्रिकी श्रेणी: गति (भौतिकी)