फेजर: Difference between revisions
No edit summary |
|||
| Line 1: | Line 1: | ||
{{short description|Complex number representing a particular sine wave}} | {{short description|Complex number representing a particular sine wave}} | ||
{{other uses}} {{confused|phaser (disambiguation){{!}}phaser}} | {{other uses}} {{confused|phaser (disambiguation){{!}}phaser}} | ||
{{redirect| | {{redirect|जटिल आयाम|क्वांटम-मैकेनिकल अवधारणा|जटिल संभाव्यता आयाम}} | ||
[[Image:Wykres wektorowy by Zureks.svg|thumb|300px|एक विशिष्ट के लिए श्रृंखला [[आरएलसी सर्किट]] और संबंधित फेजर आरेख का एक उदाहरण {{mvar|ω}}. ऊपरी आरेख में तीर फ़ैसर हैं, जो फ़ैसर आरेख (दिखाए गए धुरी के बिना [[जटिल विमान]]) में खींचे गए हैं, जिन्हें निचले आरेख में तीरों से भ्रमित नहीं किया जाना चाहिए, जो [[वोल्टेज]] के लिए संदर्भ ध्रुवीयता और विद्युत के लिए संदर्भ दिशा हैं मौजूदा।]]भौतिकी और [[अभियांत्रिकी]] में, एक चरण (चरण सदिश का एक | [[Image:Wykres wektorowy by Zureks.svg|thumb|300px|एक विशिष्ट के लिए श्रृंखला [[आरएलसी सर्किट]] और संबंधित फेजर आरेख का एक उदाहरण {{mvar|ω}}. ऊपरी आरेख में तीर फ़ैसर हैं, जो फ़ैसर आरेख (दिखाए गए धुरी के बिना [[जटिल विमान]]) में खींचे गए हैं, जिन्हें निचले आरेख में तीरों से भ्रमित नहीं किया जाना चाहिए, जो [[वोल्टेज]] के लिए संदर्भ ध्रुवीयता और विद्युत के लिए संदर्भ दिशा हैं मौजूदा।]]भौतिकी और [[अभियांत्रिकी]] में, एक चरण (चरण सदिश का एक पोर्टमैंटू <ref name="FoxBolton2002">{{cite book|author1=Huw Fox|author2=William Bolton|title=Mathematics for Engineers and Technologists|url=https://archive.org/details/mathematicsforen00foxh_204|url-access=limited|year=2002|publisher=Butterworth-Heinemann|isbn=978-0-08-051119-1|page=[https://archive.org/details/mathematicsforen00foxh_204/page/n36 30]}}</ref><ref name="Rawlins2000">{{cite book|author=Clay Rawlins|title=Basic AC Circuits|url=https://archive.org/details/basicaccircuits00mscl|url-access=limited|year=2000 |publisher=Newnes|isbn=978-0-08-049398-5|page=[https://archive.org/details/basicaccircuits00mscl/page/n134 124]|edition=2nd}}</ref>) [[साइन लहर]] का प्रतिनिधित्व करने वाली एक [[जटिल संख्या]] है जिसका [[आयाम]] ({{mvar|A}}), [[कोणीय आवृत्ति]] ({{mvar|ω}}), और चरण (तरंगें) ({{mvar|θ}}) [[समय-अपरिवर्तनीय प्रणाली]] हैं| समय-अपरिवर्तनीय हैं। यह [[विश्लेषणात्मक संकेत]] नामक एक अधिक सामान्य अवधारणा से संबंधित है,<ref name=Bracewell>Bracewell, Ron. ''The Fourier Transform and Its Applications''. McGraw-Hill, 1965. p269</ref> जो समय और आवृत्ति के आधार पर एक जटिल स्थिरांक और एक कारक के उत्पाद में एक साइनसॉइड को विघटित करता है। जटिल स्थिरांक, जो आयाम और चरण पर निर्भर करता है, को फेजर या जटिल आयाम के रूप में जाना जाता है,<ref name="Kumar2008">{{cite book|author=K. S. Suresh Kumar|title=Electric Circuits and Networks|year=2008|publisher=Pearson Education India|isbn=978-81-317-1390-7|page=272}}</ref><ref name="ZhangLi2007">{{cite book|author1=Kequian Zhang|author2=Dejie Li|title=Electromagnetic Theory for Microwaves and Optoelectronics|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-74296-8|page=13|edition=2nd}}</ref> और (पुराने ग्रंथों में) सिनर <ref name="Hindmarsh2014"/> या यहां तक कि जटिल कहा जाता है।<ref name="Hindmarsh2014">{{cite book|author=J. Hindmarsh|title=Electrical Machines & their Applications|year=1984|edition=4th|publisher=Elsevier|isbn=978-1-4832-9492-6|page=58}}</ref> | ||
[[प्रत्यावर्ती धारा]] द्वारा संचालित [[विद्युत नेटवर्क]] में एक सामान्य स्थिति एक ही आवृत्ति के साथ कई साइनसोइड्स का अस्तित्व है, लेकिन विभिन्न आयाम और चरण हैं। उनके विश्लेषणात्मक अभ्यावेदन में एकमात्र अंतर जटिल आयाम (फासर) है। ऐसे कार्यों के एक रैखिक संयोजन को चरणों के एक रैखिक संयोजन के रूप में दर्शाया जा सकता है (जिसे चरण अंकगणित या चरण बीजगणित के रूप में जाना जाता है)<ref name=":02">{{Cite book |last=Gross |first=Charles A. |title=Fundamentals of electrical engineering |date=2012 |publisher=CRC Press |others=Thaddeus Adam Roppel |isbn=978-1-4398-9807-9 |location=Boca Raton, FL |oclc=863646311}}</ref>{{Rp|page=53}} | [[प्रत्यावर्ती धारा]] द्वारा संचालित [[विद्युत नेटवर्क]] में एक सामान्य स्थिति एक ही आवृत्ति के साथ कई साइनसोइड्स का अस्तित्व है, लेकिन विभिन्न आयाम और चरण हैं। उनके विश्लेषणात्मक अभ्यावेदन में एकमात्र अंतर जटिल आयाम (फासर) है। ऐसे कार्यों के एक रैखिक संयोजन को चरणों के एक रैखिक संयोजन के रूप में दर्शाया जा सकता है (जिसे चरण अंकगणित या चरण बीजगणित के रूप में जाना जाता है)<ref name=":02">{{Cite book |last=Gross |first=Charles A. |title=Fundamentals of electrical engineering |date=2012 |publisher=CRC Press |others=Thaddeus Adam Roppel |isbn=978-1-4398-9807-9 |location=Boca Raton, FL |oclc=863646311}}</ref>{{Rp|page=53}} और समय आवृत्ति पर निर्भर कारक जो उन सभी में समान है। | ||
फेजर शब्द की उत्पत्ति ठीक ही बताती है कि [[यूक्लिडियन वेक्टर]] के लिए संभव के समान एक (डायग्रामेटिक) कैलकुलस फेजर के लिए भी संभव है।<ref name="Hindmarsh2014"/>फेजर ट्रांसफॉर्म की एक महत्वपूर्ण अतिरिक्त विशेषता यह है कि साइनसॉइडल | फेजर शब्द की उत्पत्ति ठीक ही बताती है कि [[यूक्लिडियन वेक्टर]] के लिए संभव के समान एक (डायग्रामेटिक) कैलकुलस फेजर के लिए भी संभव है।<ref name="Hindmarsh2014"/> फेजर ट्रांसफॉर्म की एक महत्वपूर्ण अतिरिक्त विशेषता यह है कि साइनसॉइडल संकेत के व्युत्पन्न और [[अभिन्न]] (स्थिर आयाम, अवधि और चरण वाले) फेजर्स पर सरल बीजगणितीय संचालन से मेल खाते हैं; चरण रूपांतरण इस प्रकार आरएलसी सर्किट के वैकल्पिक वर्तमान [[स्थिर स्थिति (इलेक्ट्रॉनिक्स)]] के [[नेटवर्क विश्लेषण (विद्युत सर्किट)]] (गणना) को [[अंतर समीकरण]] को हल करने के अतिरिक्त फेजर डोमेन में सरल [[बीजगणितीय समीकरण]] (यद्यपि जटिल गुणांक के साथ) को हल करके (वास्तविक के साथ) की अनुमति देता है। संख्या गुणांक समय डोमेन में।<ref name="Eccles2011">{{cite book|author=William J. Eccles|title=Pragmatic Electrical Engineering: Fundamentals|year=2011| publisher=Morgan & Claypool Publishers|isbn=978-1-60845-668-0|page=51}}</ref><ref name="DorfSvoboda2010">{{cite book| author1=Richard C. Dorf|author2=James A. Svoboda|title=Introduction to Electric Circuits|url=https://archive.org/details/introductiontoel00dorf_304|url-access=limited|year=2010|publisher=John Wiley & Sons|isbn=978-0-470-52157-1|page=[https://archive.org/details/introductiontoel00dorf_304/page/n680 661]|edition=8th}}</ref>{{Efn|name="ac-circuits"|Including analysis of the AC circuits.{{r|:02|pp=53}}}} चरण परिवर्तन के प्रवर्तक 19वीं शताब्दी के अंत में [[सामान्य विद्युतीय]] में काम कर रहे [[चार्ल्स प्रोटियस स्टेनमेट्ज़]] थे।<ref name="RobbinsMiller2012">{{cite book|author1=Allan H. Robbins|author2=Wilhelm Miller|title=Circuit Analysis: Theory and Practice|year=2012| edition=5th| publisher=Cengage Learning|isbn=978-1-285-40192-8|page=536}}</ref><ref name="YangLee2008"/> | ||
कुछ गणितीय विवरणों पर प्रकाश डालते हुए, चरण परिवर्तन को [[लाप्लास रूपांतरण]] के एक विशेष | कुछ गणितीय विवरणों पर प्रकाश डालते हुए, चरण परिवर्तन को [[लाप्लास रूपांतरण]] के एक विशेष स्थितियों के रूप में भी देखा जा सकता है, जिसका अतिरिक्त रूप से उपयोग किया जा सकता है (एक साथ) एक आरएलसी सर्किट की क्षणिक प्रतिक्रिया प्राप्त करने के लिए।<ref name="DorfSvoboda2010"/><ref name="YangLee2008">{{cite book|author1=Won Y. Yang|author2=Seung C. Lee|title=Circuit Systems with MATLAB and PSpice|year=2008|publisher=John Wiley & Sons|isbn=978-0-470-82240-1|pages=256–261}}</ref> चुकीं ,लाप्लास परिवर्तन गणितीय रूप से लागू करने के लिए अधिक कठिन है और यदि केवल स्थिर स्थिति विश्लेषण की आवश्यकता है तो प्रयास अनुचित हो सकता है।<ref name="YangLee2008"/> | ||
[[File:unfasor.gif|thumb|right|अंजीर 2. जब समारोह <math>A \cdot e^{i(\omega t + \theta)}</math> जटिल विमान में दर्शाया गया है, इसकी जटिल संख्या द्वारा गठित वेक्टर मूल के चारों ओर घूमता है। इसका परिमाण A है और यह प्रत्येक 2 में एक चक्र पूरा करता है{{pi}}/ω सेकंड। θ वह कोण है जिस पर यह धनात्मक वास्तविक अक्ष के साथ बनता है {{math|1=''t'' = 0}} (और कम से {{math|1=''t'' = ''n'' 2''π''/''ω''}} के सभी [[पूर्णांक]] मानों के लिए {{mvar|n}}).]] | [[File:unfasor.gif|thumb|right|अंजीर 2. जब समारोह <math>A \cdot e^{i(\omega t + \theta)}</math> जटिल विमान में दर्शाया गया है, इसकी जटिल संख्या द्वारा गठित वेक्टर मूल के चारों ओर घूमता है। इसका परिमाण A है और यह प्रत्येक 2 में एक चक्र पूरा करता है{{pi}}/ω सेकंड। θ वह कोण है जिस पर यह धनात्मक वास्तविक अक्ष के साथ बनता है {{math|1=''t'' = 0}} (और कम से {{math|1=''t'' = ''n'' 2''π''/''ω''}} के सभी [[पूर्णांक]] मानों के लिए {{mvar|n}}).]] | ||
| Line 72: | Line 72: | ||
जोड़ देखने का दूसरा तरीका यह है कि निर्देशांक वाले दो वैक्टर {{math|[''A''<sub>1</sub> cos(''ωt'' + ''θ''<sub>1</sub>), ''A''<sub>1</sub> sin(''ωt'' + ''θ''<sub>1</sub>)]}} और {{math|[''A''<sub>2</sub> cos(''ωt'' + ''θ''<sub>2</sub>), ''A''<sub>2</sub> sin(''ωt'' + ''θ''<sub>2</sub>)]}} वेक्टर हैं (ज्यामितीय)#जोड़ और घटाव निर्देशांक के साथ एक परिणामी वेक्टर का उत्पादन करने के लिए {{math|[''A''<sub>3</sub> cos(''ωt'' + ''θ''<sub>3</sub>), ''A''<sub>3</sub> sin(''ωt'' + ''θ''<sub>3</sub>)]}} (एनीमेशन देखें)। | जोड़ देखने का दूसरा तरीका यह है कि निर्देशांक वाले दो वैक्टर {{math|[''A''<sub>1</sub> cos(''ωt'' + ''θ''<sub>1</sub>), ''A''<sub>1</sub> sin(''ωt'' + ''θ''<sub>1</sub>)]}} और {{math|[''A''<sub>2</sub> cos(''ωt'' + ''θ''<sub>2</sub>), ''A''<sub>2</sub> sin(''ωt'' + ''θ''<sub>2</sub>)]}} वेक्टर हैं (ज्यामितीय)#जोड़ और घटाव निर्देशांक के साथ एक परिणामी वेक्टर का उत्पादन करने के लिए {{math|[''A''<sub>3</sub> cos(''ωt'' + ''θ''<sub>3</sub>), ''A''<sub>3</sub> sin(''ωt'' + ''θ''<sub>3</sub>)]}} (एनीमेशन देखें)। | ||
[[Image:destructive interference.png|thumb|right|पूर्ण विनाशकारी हस्तक्षेप में तीन तरंगों का फेजर आरेख]]भौतिकी में, इस प्रकार का जोड़ तब होता है जब साइनसॉइड [[हस्तक्षेप (तरंग प्रसार)]] एक दूसरे के साथ, रचनात्मक या विनाशकारी रूप से होता है। स्थैतिक वेक्टर अवधारणा इस तरह के प्रश्नों में उपयोगी अंतर्दृष्टि प्रदान करती है: पूर्ण रद्दीकरण के लिए तीन समान साइनसोइड्स के बीच किस चरण के अंतर की आवश्यकता होगी? इस | [[Image:destructive interference.png|thumb|right|पूर्ण विनाशकारी हस्तक्षेप में तीन तरंगों का फेजर आरेख]]भौतिकी में, इस प्रकार का जोड़ तब होता है जब साइनसॉइड [[हस्तक्षेप (तरंग प्रसार)]] एक दूसरे के साथ, रचनात्मक या विनाशकारी रूप से होता है। स्थैतिक वेक्टर अवधारणा इस तरह के प्रश्नों में उपयोगी अंतर्दृष्टि प्रदान करती है: पूर्ण रद्दीकरण के लिए तीन समान साइनसोइड्स के बीच किस चरण के अंतर की आवश्यकता होगी? इस स्थितियों में, बस समान लंबाई के तीन वैक्टर लेने की कल्पना करें और उन्हें सिर से पूंछ तक इस तरह रखें कि आखिरी सिर पहली पूंछ से मेल खाता हो। स्पष्ट रूप से, जो आकृति इन शर्तों को संतुष्ट करती है वह एक समबाहु त्रिभुज है, इसलिए प्रत्येक चरण से अगले चरण के बीच का कोण 120° ({{frac|2{{pi}}|3}}रेडियन), या तरंग दैर्ध्य का एक तिहाई {{frac|{{var|λ}}|3}}. तो प्रत्येक तरंग के बीच का चरण अंतर भी 120 ° होना चाहिए, जैसा कि [[तीन चरण की शक्ति]] में होता है। | ||
दूसरे शब्दों में, यह क्या दर्शाता है कि: | दूसरे शब्दों में, यह क्या दर्शाता है कि: | ||
| Line 162: | Line 162: | ||
फेजर्स के साथ, [[एकदिश धारा]] सर्किट को हल करने की तकनीक को रैखिक एसी सर्किट को हल करने के लिए लागू किया जा सकता है।{{Efn|name="ac-circuits"}} | फेजर्स के साथ, [[एकदिश धारा]] सर्किट को हल करने की तकनीक को रैखिक एसी सर्किट को हल करने के लिए लागू किया जा सकता है।{{Efn|name="ac-circuits"}} | ||
; प्रतिरोधों के लिए ओम का नियम: एक प्रतिरोधक के पास समय की देरी नहीं होती है और इसलिए | ; प्रतिरोधों के लिए ओम का नियम: एक प्रतिरोधक के पास समय की देरी नहीं होती है और इसलिए संकेत के चरण को नहीं बदलता है {{math|1=''V'' = ''IR''}} वैध रहता है। | ||
; प्रतिरोधों, प्रेरकों और संधारित्रों के लिए ओम का नियम: {{math|1=''V'' = ''IZ''}} कहाँ {{mvar|Z}} जटिल विद्युत प्रतिबाधा है।<!-- we probably want a justification of this somewhere--> | ; प्रतिरोधों, प्रेरकों और संधारित्रों के लिए ओम का नियम: {{math|1=''V'' = ''IZ''}} कहाँ {{mvar|Z}} जटिल विद्युत प्रतिबाधा है।<!-- we probably want a justification of this somewhere--> | ||
; किरचॉफ के सर्किट नियम: वोल्टेज और करंट के साथ जटिल फेजर्स के रूप में कार्य करें। | ; किरचॉफ के सर्किट नियम: वोल्टेज और करंट के साथ जटिल फेजर्स के रूप में कार्य करें। | ||
| Line 169: | Line 169: | ||
इसे देखते हुए हम रेसिस्टर्स, कैपेसिटर और [[प्रारंभ करनेवाला]]्स युक्त सिंगल फ्रीक्वेंसी लीनियर एसी सर्किट का विश्लेषण करने के लिए फेजर्स के साथ रेसिस्टिव सर्किट के विश्लेषण की तकनीकों को लागू कर सकते हैं। बहु आवृत्ति रैखिक एसी सर्किट और विभिन्न तरंगों के साथ एसी सर्किट का विश्लेषण वोल्टेज और धाराओं को खोजने के लिए किया जा सकता है, सभी तरंगों को परिमाण और चरण के साथ साइन वेव घटकों (फूरियर श्रृंखला का उपयोग करके) में परिवर्तित करके, फिर प्रत्येक आवृत्ति का अलग-अलग विश्लेषण किया जा सकता है, जैसा कि [[सुपरपोजिशन प्रमेय]] द्वारा अनुमत है। यह समाधान विधि केवल उन इनपुटों पर लागू होती है जो ज्यावक्रीय हैं और उन समाधानों के लिए जो स्थिर अवस्था में हैं, अर्थात, सभी ट्रांज़िएंट के समाप्त हो जाने के बाद।<ref>{{Cite book|title=Introduction to electromagnetic compatibility| last=Clayton|first=Paul| publisher=Wiley|year=2008|isbn=978-81-265-2875-2|pages=861}}</ref> | इसे देखते हुए हम रेसिस्टर्स, कैपेसिटर और [[प्रारंभ करनेवाला]]्स युक्त सिंगल फ्रीक्वेंसी लीनियर एसी सर्किट का विश्लेषण करने के लिए फेजर्स के साथ रेसिस्टिव सर्किट के विश्लेषण की तकनीकों को लागू कर सकते हैं। बहु आवृत्ति रैखिक एसी सर्किट और विभिन्न तरंगों के साथ एसी सर्किट का विश्लेषण वोल्टेज और धाराओं को खोजने के लिए किया जा सकता है, सभी तरंगों को परिमाण और चरण के साथ साइन वेव घटकों (फूरियर श्रृंखला का उपयोग करके) में परिवर्तित करके, फिर प्रत्येक आवृत्ति का अलग-अलग विश्लेषण किया जा सकता है, जैसा कि [[सुपरपोजिशन प्रमेय]] द्वारा अनुमत है। यह समाधान विधि केवल उन इनपुटों पर लागू होती है जो ज्यावक्रीय हैं और उन समाधानों के लिए जो स्थिर अवस्था में हैं, अर्थात, सभी ट्रांज़िएंट के समाप्त हो जाने के बाद।<ref>{{Cite book|title=Introduction to electromagnetic compatibility| last=Clayton|first=Paul| publisher=Wiley|year=2008|isbn=978-81-265-2875-2|pages=861}}</ref> | ||
अवधारणा अक्सर एक विद्युत प्रतिबाधा का प्रतिनिधित्व करने में शामिल होती है। इस | अवधारणा अक्सर एक विद्युत प्रतिबाधा का प्रतिनिधित्व करने में शामिल होती है। इस स्थितियों में, चरण कोण प्रतिबाधा पर लागू वोल्टेज और इसके माध्यम से संचालित वर्तमान के बीच का [[चरण अंतर]] है। | ||
=== पावर इंजीनियरिंग === | === पावर इंजीनियरिंग === | ||
तीन चरण एसी बिजली प्रणालियों के विश्लेषण में, आमतौर पर फेजर्स का एक सेट एकता के तीन जटिल घन जड़ों के रूप में परिभाषित किया जाता है, जो ग्राफिक रूप से 0, 120 और 240 डिग्री के कोण पर इकाई परिमाण के रूप में दर्शाया जाता है। पॉलीपेज़ एसी सर्किट मात्राओं को फ़ैसर के रूप में इलाज करके, संतुलित सर्किट को सरल बनाया जा सकता है और असंतुलित सर्किट को [[सममित घटक]]ों के बीजगणितीय संयोजन के रूप में माना जा सकता है। यह दृष्टिकोण वोल्टेज ड्रॉप, पावर फ्लो और शॉर्ट-सर्किट धाराओं की विद्युत गणना में आवश्यक कार्य को बहुत सरल करता है। पावर सिस्टम विश्लेषण के संदर्भ में, चरण कोण अक्सर डिग्री (कोण) में दिया जाता है, और साइनसॉइड के शिखर आयाम के | तीन चरण एसी बिजली प्रणालियों के विश्लेषण में, आमतौर पर फेजर्स का एक सेट एकता के तीन जटिल घन जड़ों के रूप में परिभाषित किया जाता है, जो ग्राफिक रूप से 0, 120 और 240 डिग्री के कोण पर इकाई परिमाण के रूप में दर्शाया जाता है। पॉलीपेज़ एसी सर्किट मात्राओं को फ़ैसर के रूप में इलाज करके, संतुलित सर्किट को सरल बनाया जा सकता है और असंतुलित सर्किट को [[सममित घटक]]ों के बीजगणितीय संयोजन के रूप में माना जा सकता है। यह दृष्टिकोण वोल्टेज ड्रॉप, पावर फ्लो और शॉर्ट-सर्किट धाराओं की विद्युत गणना में आवश्यक कार्य को बहुत सरल करता है। पावर सिस्टम विश्लेषण के संदर्भ में, चरण कोण अक्सर डिग्री (कोण) में दिया जाता है, और साइनसॉइड के शिखर आयाम के अतिरिक्त [[वर्गमूल औसत का वर्ग]] वैल्यू में परिमाण। | ||
[[तुल्यकालिक]] की तकनीक ट्रांसमिशन नेटवर्क में व्यापक बिंदुओं पर ट्रांसमिशन सिस्टम वोल्टेज का प्रतिनिधित्व करने वाले चरणों को मापने के लिए डिजिटल उपकरणों का उपयोग करती है। फेजर्स के बीच अंतर शक्ति प्रवाह और सिस्टम स्थिरता का संकेत देते हैं। | [[तुल्यकालिक]] की तकनीक ट्रांसमिशन नेटवर्क में व्यापक बिंदुओं पर ट्रांसमिशन सिस्टम वोल्टेज का प्रतिनिधित्व करने वाले चरणों को मापने के लिए डिजिटल उपकरणों का उपयोग करती है। फेजर्स के बीच अंतर शक्ति प्रवाह और सिस्टम स्थिरता का संकेत देते हैं। | ||
| Line 183: | Line 183: | ||
फेजर की लंबाई होती है <math>A</math>, की दर से वामावर्त घुमाता है <math>f_0</math> प्रति सेकंड और समय पर क्रांतियाँ <math>t = 0</math> का कोण बनाता है <math>\theta</math> सकारात्मक वास्तविक अक्ष के संबंध में। | फेजर की लंबाई होती है <math>A</math>, की दर से वामावर्त घुमाता है <math>f_0</math> प्रति सेकंड और समय पर क्रांतियाँ <math>t = 0</math> का कोण बनाता है <math>\theta</math> सकारात्मक वास्तविक अक्ष के संबंध में। | ||
तरंग <math>x(t)</math> फिर वास्तविक अक्ष पर इस सदिश के प्रक्षेपण के रूप में देखा जा सकता है। इस फेजर (वाहक) और दो अतिरिक्त फेजर्स (मॉड्यूलेशन फेजर्स) द्वारा एक संग्राहक तरंग का प्रतिनिधित्व किया जाता है। यदि मॉड्यूलेटिंग | तरंग <math>x(t)</math> फिर वास्तविक अक्ष पर इस सदिश के प्रक्षेपण के रूप में देखा जा सकता है। इस फेजर (वाहक) और दो अतिरिक्त फेजर्स (मॉड्यूलेशन फेजर्स) द्वारा एक संग्राहक तरंग का प्रतिनिधित्व किया जाता है। यदि मॉड्यूलेटिंग संकेत फॉर्म का सिंगल टोन है <math>Am \cos{2\pi f_m t} </math>, कहाँ <math>m</math> मॉडुलन गहराई है और <math>f_m</math> मॉडुलक संकेत की आवृत्ति है, तो आयाम मॉडुलन के लिए दो मॉडुलन चरणों द्वारा दिया जाता है, | ||
<math>{1 \over 2} Am e^{i \theta} \cdot e^{i 2\pi (f_0+f_m) t}</math>, और | <math>{1 \over 2} Am e^{i \theta} \cdot e^{i 2\pi (f_0+f_m) t}</math>, और | ||
| Line 195: | Line 195: | ||
<math>{1 \over 2} Am e^{i \theta} \cdot e^{-i 2\pi f_m t}</math>. | <math>{1 \over 2} Am e^{i \theta} \cdot e^{-i 2\pi f_m t}</math>. | ||
फ़्रीक्वेंसी मॉड्यूलेशन एक समान प्रतिनिधित्व है, सिवाय इसके कि मॉडुलेटिंग चरण वाहक के साथ चरण में नहीं हैं। इस | फ़्रीक्वेंसी मॉड्यूलेशन एक समान प्रतिनिधित्व है, सिवाय इसके कि मॉडुलेटिंग चरण वाहक के साथ चरण में नहीं हैं। इस स्थितियों में मॉड्यूलेटिंग फेजर्स का वेक्टर योग वाहक चरण से 90 डिग्री स्थानांतरित हो जाता है। कड़ाई से, आवृत्ति मॉडुलन प्रतिनिधित्व के लिए अतिरिक्त छोटे मॉडुलन चरणों की आवश्यकता होती है <math>2f_m, 3f_m</math> आदि, लेकिन अधिकांश व्यावहारिक उद्देश्यों के लिए इनकी उपेक्षा की जाती है क्योंकि इनका प्रभाव बहुत कम होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 17:01, 9 February 2023
भौतिकी और अभियांत्रिकी में, एक चरण (चरण सदिश का एक पोर्टमैंटू [1][2]) साइन लहर का प्रतिनिधित्व करने वाली एक जटिल संख्या है जिसका आयाम (A), कोणीय आवृत्ति (ω), और चरण (तरंगें) (θ) समय-अपरिवर्तनीय प्रणाली हैं| समय-अपरिवर्तनीय हैं। यह विश्लेषणात्मक संकेत नामक एक अधिक सामान्य अवधारणा से संबंधित है,[3] जो समय और आवृत्ति के आधार पर एक जटिल स्थिरांक और एक कारक के उत्पाद में एक साइनसॉइड को विघटित करता है। जटिल स्थिरांक, जो आयाम और चरण पर निर्भर करता है, को फेजर या जटिल आयाम के रूप में जाना जाता है,[4][5] और (पुराने ग्रंथों में) सिनर [6] या यहां तक कि जटिल कहा जाता है।[6]
प्रत्यावर्ती धारा द्वारा संचालित विद्युत नेटवर्क में एक सामान्य स्थिति एक ही आवृत्ति के साथ कई साइनसोइड्स का अस्तित्व है, लेकिन विभिन्न आयाम और चरण हैं। उनके विश्लेषणात्मक अभ्यावेदन में एकमात्र अंतर जटिल आयाम (फासर) है। ऐसे कार्यों के एक रैखिक संयोजन को चरणों के एक रैखिक संयोजन के रूप में दर्शाया जा सकता है (जिसे चरण अंकगणित या चरण बीजगणित के रूप में जाना जाता है)[7]: 53 और समय आवृत्ति पर निर्भर कारक जो उन सभी में समान है।
फेजर शब्द की उत्पत्ति ठीक ही बताती है कि यूक्लिडियन वेक्टर के लिए संभव के समान एक (डायग्रामेटिक) कैलकुलस फेजर के लिए भी संभव है।[6] फेजर ट्रांसफॉर्म की एक महत्वपूर्ण अतिरिक्त विशेषता यह है कि साइनसॉइडल संकेत के व्युत्पन्न और अभिन्न (स्थिर आयाम, अवधि और चरण वाले) फेजर्स पर सरल बीजगणितीय संचालन से मेल खाते हैं; चरण रूपांतरण इस प्रकार आरएलसी सर्किट के वैकल्पिक वर्तमान स्थिर स्थिति (इलेक्ट्रॉनिक्स) के नेटवर्क विश्लेषण (विद्युत सर्किट) (गणना) को अंतर समीकरण को हल करने के अतिरिक्त फेजर डोमेन में सरल बीजगणितीय समीकरण (यद्यपि जटिल गुणांक के साथ) को हल करके (वास्तविक के साथ) की अनुमति देता है। संख्या गुणांक समय डोमेन में।[8][9][lower-alpha 1] चरण परिवर्तन के प्रवर्तक 19वीं शताब्दी के अंत में सामान्य विद्युतीय में काम कर रहे चार्ल्स प्रोटियस स्टेनमेट्ज़ थे।[10][11]
कुछ गणितीय विवरणों पर प्रकाश डालते हुए, चरण परिवर्तन को लाप्लास रूपांतरण के एक विशेष स्थितियों के रूप में भी देखा जा सकता है, जिसका अतिरिक्त रूप से उपयोग किया जा सकता है (एक साथ) एक आरएलसी सर्किट की क्षणिक प्रतिक्रिया प्राप्त करने के लिए।[9][11] चुकीं ,लाप्लास परिवर्तन गणितीय रूप से लागू करने के लिए अधिक कठिन है और यदि केवल स्थिर स्थिति विश्लेषण की आवश्यकता है तो प्रयास अनुचित हो सकता है।[11]
नोटेशन
फेजर नोटेशन (एंगल नोटेशन के रूप में भी जाना जाता है) इलेक्ट्रॉनिक्स इंजीनियरिंग और विद्युत अभियन्त्रण में इस्तेमाल होने वाला एक गणितीय संकेतन है। यूक्लिडियन वेक्टर का प्रतिनिधित्व कर सकता है या जटिल संख्या , साथ , दोनों में 1 का परिमाण (गणित) है। एक सदिश जिसका ध्रुवीय निर्देशांक # जटिल संख्याएं परिमाण हैं और कोण लिखा है [12] कोण को डिग्री (कोण) में डिग्री से कांति में निहित रूपांतरण के साथ कहा जा सकता है। उदाहरण के लिए माना जाएगा जो वेक्टर है या संख्या
परिभाषा
निरंतर आयाम, आवृत्ति और चरण के साथ वास्तविक मूल्यवान साइनसॉइड का रूप है:
जहां केवल पैरामीटर समय-भिन्न है। एक काल्पनिक भाग का समावेश:
यूलर के फार्मूले के अनुसार, लेड पैराग्राफ में वर्णित फैक्टरिंग संपत्ति देता है:
जिसका वास्तविक भाग मूल साइनसॉइड है। जटिल प्रतिनिधित्व का लाभ यह है कि अन्य जटिल प्रस्तुतियों के साथ रैखिक संचालन एक जटिल परिणाम उत्पन्न करता है जिसका वास्तविक भाग अन्य जटिल साइनसॉइड के वास्तविक भागों के साथ समान रैखिक संचालन को दर्शाता है। इसके अलावा, सभी गणित सिर्फ चरणों के साथ किया जा सकता है और सामान्य कारक परिणाम के वास्तविक भाग से पहले पुन: सम्मिलित किया जाता है।
कार्यक्रम का विश्लेषणात्मक निरूपण कहा जाता है चित्र 2 इसे जटिल तल में घूमते हुए सदिश के रूप में दर्शाता है। कभी-कभी संपूर्ण कार्य को चरण के रूप में संदर्भित करना सुविधाजनक होता है,[13] जैसा कि हम अगले भाग में करते हैं। लेकिन फेजर शब्द का अर्थ आमतौर पर केवल स्थिर जटिल संख्या होता है
अंकगणित
एक स्थिर (अदिश) द्वारा गुणा
चरण का गुणन एक जटिल स्थिरांक द्वारा, , एक और चरण पैदा करता है। इसका मतलब है कि इसका एकमात्र प्रभाव अंतर्निहित साइनसॉइड के आयाम और चरण को बदलना है:
जोड़
एकाधिक चरणों का योग एक और चरण उत्पन्न करता है। ऐसा इसलिए है क्योंकि समान आवृत्ति वाले साइनसोइड्स का योग भी उस आवृत्ति के साथ एक साइनसॉइड होता है:
- अगर साथ साइन समारोह;
- अगर ;
- अगर .
या, जटिल तल पर कोसाइन के कानून के माध्यम से (या त्रिकोणमितीय पहचान # कोण योग और अंतर पहचान):
भौतिकी में, इस प्रकार का जोड़ तब होता है जब साइनसॉइड हस्तक्षेप (तरंग प्रसार) एक दूसरे के साथ, रचनात्मक या विनाशकारी रूप से होता है। स्थैतिक वेक्टर अवधारणा इस तरह के प्रश्नों में उपयोगी अंतर्दृष्टि प्रदान करती है: पूर्ण रद्दीकरण के लिए तीन समान साइनसोइड्स के बीच किस चरण के अंतर की आवश्यकता होगी? इस स्थितियों में, बस समान लंबाई के तीन वैक्टर लेने की कल्पना करें और उन्हें सिर से पूंछ तक इस तरह रखें कि आखिरी सिर पहली पूंछ से मेल खाता हो। स्पष्ट रूप से, जो आकृति इन शर्तों को संतुष्ट करती है वह एक समबाहु त्रिभुज है, इसलिए प्रत्येक चरण से अगले चरण के बीच का कोण 120° (2π⁄3रेडियन), या तरंग दैर्ध्य का एक तिहाई λ⁄3. तो प्रत्येक तरंग के बीच का चरण अंतर भी 120 ° होना चाहिए, जैसा कि तीन चरण की शक्ति में होता है।
दूसरे शब्दों में, यह क्या दर्शाता है कि:
चूंकि एकल वेक्टर वामावर्त दिशा में घूमता है, बिंदु A पर इसकी नोक 360° या 2 की एक पूर्ण क्रांति को घुमाएगीπरेडियंस एक पूर्ण चक्र का प्रतिनिधित्व करते हैं। यदि इसकी गतिमान नोक की लंबाई समय में अलग-अलग कोणीय अंतरालों पर एक ग्राफ में स्थानांतरित की जाती है, जैसा कि ऊपर दिखाया गया है, तो एक साइनसॉइडल तरंग को शून्य समय के साथ बाईं ओर से खींचा जाएगा। क्षैतिज अक्ष के साथ प्रत्येक स्थिति उस समय को इंगित करती है जो शून्य समय से बीत चुका है, t = 0. जब वेक्टर क्षैतिज होता है तो वेक्टर की नोक 0°, 180° और 360° पर कोणों का प्रतिनिधित्व करती है।
इसी तरह, जब वेक्टर की नोक लंबवत होती है तो यह सकारात्मक शिखर मान का प्रतिनिधित्व करती है, (+Amax) 90° पर या π⁄2 और ऋणात्मक शिखर मान, (−Amax) 270° पर या 3π⁄2. तब तरंग का समय अक्ष या तो डिग्री या रेडियन में कोण का प्रतिनिधित्व करता है जिसके माध्यम से फेजर चला गया है। तो हम कह सकते हैं कि फेजर एक स्केल्ड वोल्टेज या घूर्णन वेक्टर के वर्तमान मूल्य का प्रतिनिधित्व करता है जो किसी समय में जमे हुए हैं, (t) और ऊपर हमारे उदाहरण में, यह 30° के कोण पर है।
कभी-कभी जब हम प्रत्यावर्ती तरंगों का विश्लेषण कर रहे होते हैं, तो हमें फेजर की स्थिति जानने की आवश्यकता हो सकती है, जो समय में किसी विशेष क्षण में वैकल्पिक मात्रा का प्रतिनिधित्व करती है, खासकर जब हम एक ही अक्ष पर दो अलग-अलग तरंगों की तुलना करना चाहते हैं। उदाहरण के लिए, वोल्टेज और करंट। हमने ऊपर तरंग रूप में मान लिया है कि तरंग समय पर शुरू होती है t = 0 डिग्री या रेडियन में संबंधित चरण कोण के साथ।
लेकिन अगर एक दूसरी तरंग इस शून्य बिंदु के बाईं ओर या दाईं ओर शुरू होती है, या यदि हम दो तरंगों के बीच के संबंध को फेजर नोटेशन में प्रस्तुत करना चाहते हैं, तो हमें इस चरण के अंतर को ध्यान में रखना होगा, Φ तरंग का। पिछले चरण अंतर ट्यूटोरियल से नीचे दिए गए आरेख पर विचार करें।
विभेदीकरण और एकीकरण
फेजर का समय व्युत्पन्न या अभिन्न एक और फेजर पैदा करता है।[lower-alpha 2] उदाहरण के लिए:
इसी प्रकार, एक फेजर को एकीकृत करना गुणा से मेल खाता है समय-निर्भर कारक, अप्रभावित है।
जब हम फेजर अंकगणित के साथ एक रेखीय अंतर समीकरण को हल करते हैं, तो हम केवल गुणनखण्ड कर रहे होते हैं समीकरण की सभी शर्तों से बाहर, और इसे उत्तर में पुनः सम्मिलित करना। उदाहरण के लिए, आरसी सर्किट में संधारित्र के पार वोल्टेज के लिए निम्नलिखित अंतर समीकरण पर विचार करें:
फेजर शॉर्टहैंड नोटेशन में, डिफरेंशियल इक्वेशन कम हो जाता है:
{{math proof|title=Derivation|proof=
-
(Eq.1)
चूंकि यह सभी के लिए होना चाहिए , विशेष रूप से: यह इस प्रकार है कि:
Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ब" found.in 2:131"): {\displaystyle \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Im}\left(V_\text{c} \cdot e^{i\omega t}\right) + \frac{1}{RC} \operatorname{Im}\ बायां(V_\text{c} \cdot e^{i\omega t}\right) = \frac{1}{RC}\operatorname{Im}\left(V_\text{s} \cdot e^{i\omega t}\right). </ गणित> |{{EquationRef|Eq.2}} }} यह भी आसानी से देखा जा सकता है कि: <math display="block">\begin{align} \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Re}\left( V_\text{c} \cdot e^{i\omega t} \right) &= \operatorname{Re}\left(\frac{\mathrm{d}}{\mathrm{d}t} \mathord\left( V_\text{c} \cdot e^{i\omega t} \right)\right) = \operatorname{Re}\left(i\omega V_\text{c} \cdot e^{i\omega t} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Im}\left( V_\text{c} \cdot e^{i\omega t} \right) &= \operatorname{Im}\left(\frac{\mathrm{d}}{\mathrm{d}t} \mathord\left( V_\text{c} \cdot e^{i\omega t} \right) \right) = \operatorname{Im}\left(i\omega V_\text{c} \cdot e^{i\omega t} \right). \end{align}}
इन्हें प्रतिस्थापित करना Eq.1 और Eq.2, गुणा करना Eq.2 द्वारा और दोनों समीकरणों को जोड़ने से मिलता है: |
|
({{{3}}}) |
फेजर कैपेसिटर वोल्टेज के लिए समाधान देता है:
इसलिए:
चरणों का अनुपात
जटिल विद्युत प्रतिबाधा नामक एक मात्रा दो फेजर्स का अनुपात है, जो फेजर नहीं है, क्योंकि यह साइनसोइडली भिन्न फ़ंक्शन के अनुरूप नहीं है।
अनुप्रयोग
सर्किट कानून
फेजर्स के साथ, एकदिश धारा सर्किट को हल करने की तकनीक को रैखिक एसी सर्किट को हल करने के लिए लागू किया जा सकता है।[lower-alpha 1]
- प्रतिरोधों के लिए ओम का नियम
- एक प्रतिरोधक के पास समय की देरी नहीं होती है और इसलिए संकेत के चरण को नहीं बदलता है V = IR वैध रहता है।
- प्रतिरोधों, प्रेरकों और संधारित्रों के लिए ओम का नियम
- V = IZ कहाँ Z जटिल विद्युत प्रतिबाधा है।
- किरचॉफ के सर्किट नियम
- वोल्टेज और करंट के साथ जटिल फेजर्स के रूप में कार्य करें।
एसी सर्किट में हमारे पास वास्तविक शक्ति होती है (P) जो सर्किट और प्रतिक्रियाशील शक्ति (क्यू) में औसत शक्ति का प्रतिनिधित्व है जो आगे और पीछे बहने वाली शक्ति को इंगित करता है। हम जटिल शक्ति को भी परिभाषित कर सकते हैं S = P + jQ और स्पष्ट शक्ति जो की परिमाण है S. फेजर्स में व्यक्त एसी सर्किट के लिए शक्ति कानून तब है S = VI* (कहाँ I* का जटिल संयुग्म है I, और वोल्टेज और वर्तमान चरण के परिमाण V और का I वोल्टेज और करंट के मूल माध्य वर्ग # परिभाषा मान क्रमशः हैं)।
इसे देखते हुए हम रेसिस्टर्स, कैपेसिटर और प्रारंभ करनेवाला्स युक्त सिंगल फ्रीक्वेंसी लीनियर एसी सर्किट का विश्लेषण करने के लिए फेजर्स के साथ रेसिस्टिव सर्किट के विश्लेषण की तकनीकों को लागू कर सकते हैं। बहु आवृत्ति रैखिक एसी सर्किट और विभिन्न तरंगों के साथ एसी सर्किट का विश्लेषण वोल्टेज और धाराओं को खोजने के लिए किया जा सकता है, सभी तरंगों को परिमाण और चरण के साथ साइन वेव घटकों (फूरियर श्रृंखला का उपयोग करके) में परिवर्तित करके, फिर प्रत्येक आवृत्ति का अलग-अलग विश्लेषण किया जा सकता है, जैसा कि सुपरपोजिशन प्रमेय द्वारा अनुमत है। यह समाधान विधि केवल उन इनपुटों पर लागू होती है जो ज्यावक्रीय हैं और उन समाधानों के लिए जो स्थिर अवस्था में हैं, अर्थात, सभी ट्रांज़िएंट के समाप्त हो जाने के बाद।[14] अवधारणा अक्सर एक विद्युत प्रतिबाधा का प्रतिनिधित्व करने में शामिल होती है। इस स्थितियों में, चरण कोण प्रतिबाधा पर लागू वोल्टेज और इसके माध्यम से संचालित वर्तमान के बीच का चरण अंतर है।
पावर इंजीनियरिंग
तीन चरण एसी बिजली प्रणालियों के विश्लेषण में, आमतौर पर फेजर्स का एक सेट एकता के तीन जटिल घन जड़ों के रूप में परिभाषित किया जाता है, जो ग्राफिक रूप से 0, 120 और 240 डिग्री के कोण पर इकाई परिमाण के रूप में दर्शाया जाता है। पॉलीपेज़ एसी सर्किट मात्राओं को फ़ैसर के रूप में इलाज करके, संतुलित सर्किट को सरल बनाया जा सकता है और असंतुलित सर्किट को सममित घटकों के बीजगणितीय संयोजन के रूप में माना जा सकता है। यह दृष्टिकोण वोल्टेज ड्रॉप, पावर फ्लो और शॉर्ट-सर्किट धाराओं की विद्युत गणना में आवश्यक कार्य को बहुत सरल करता है। पावर सिस्टम विश्लेषण के संदर्भ में, चरण कोण अक्सर डिग्री (कोण) में दिया जाता है, और साइनसॉइड के शिखर आयाम के अतिरिक्त वर्गमूल औसत का वर्ग वैल्यू में परिमाण।
तुल्यकालिक की तकनीक ट्रांसमिशन नेटवर्क में व्यापक बिंदुओं पर ट्रांसमिशन सिस्टम वोल्टेज का प्रतिनिधित्व करने वाले चरणों को मापने के लिए डिजिटल उपकरणों का उपयोग करती है। फेजर्स के बीच अंतर शक्ति प्रवाह और सिस्टम स्थिरता का संकेत देते हैं।
दूरसंचार: अनुरूप मॉडुलन
फेजर का उपयोग कर घूर्णन फ्रेम चित्र एनालॉग मॉड्यूलेशन जैसे आयाम मॉड्यूलेशन (और इसके वेरिएंट) को समझने के लिए एक शक्तिशाली उपकरण हो सकता है[15]) और आवृत्ति मॉडुलन।
फेजर की लंबाई होती है , की दर से वामावर्त घुमाता है प्रति सेकंड और समय पर क्रांतियाँ का कोण बनाता है सकारात्मक वास्तविक अक्ष के संबंध में।
तरंग फिर वास्तविक अक्ष पर इस सदिश के प्रक्षेपण के रूप में देखा जा सकता है। इस फेजर (वाहक) और दो अतिरिक्त फेजर्स (मॉड्यूलेशन फेजर्स) द्वारा एक संग्राहक तरंग का प्रतिनिधित्व किया जाता है। यदि मॉड्यूलेटिंग संकेत फॉर्म का सिंगल टोन है , कहाँ मॉडुलन गहराई है और मॉडुलक संकेत की आवृत्ति है, तो आयाम मॉडुलन के लिए दो मॉडुलन चरणों द्वारा दिया जाता है,
, और
.
दो मॉडुलन चरणों को चरणबद्ध किया जाता है जैसे कि उनका वेक्टर योग हमेशा वाहक चरण के साथ चरण में होता है। एक वैकल्पिक प्रतिनिधित्व एक दर पर वाहक चरण के अंत के चारों ओर घूमने वाले दो चरण हैं वाहक चरण के सापेक्ष। वह है,
, और
.
फ़्रीक्वेंसी मॉड्यूलेशन एक समान प्रतिनिधित्व है, सिवाय इसके कि मॉडुलेटिंग चरण वाहक के साथ चरण में नहीं हैं। इस स्थितियों में मॉड्यूलेटिंग फेजर्स का वेक्टर योग वाहक चरण से 90 डिग्री स्थानांतरित हो जाता है। कड़ाई से, आवृत्ति मॉडुलन प्रतिनिधित्व के लिए अतिरिक्त छोटे मॉडुलन चरणों की आवश्यकता होती है आदि, लेकिन अधिकांश व्यावहारिक उद्देश्यों के लिए इनकी उपेक्षा की जाती है क्योंकि इनका प्रभाव बहुत कम होता है।
यह भी देखें
- इन-फेज और क्वाडरेचर घटक
- विश्लेषणात्मक संकेत, समय-भिन्न आयाम, चरण और आवृत्ति के लिए चरणों का एक सामान्यीकरण।
- चरण कारक, इकाई परिमाण का एक चरण
फुटनोट्स
- ↑ 1.0 1.1 Including analysis of the AC circuits.[7]: 53
- ↑ This results from which means that the complex exponential is the eigenfunction of the derivative operator.
संदर्भ
- ↑ Huw Fox; William Bolton (2002). Mathematics for Engineers and Technologists. Butterworth-Heinemann. p. 30. ISBN 978-0-08-051119-1.
- ↑ Clay Rawlins (2000). Basic AC Circuits (2nd ed.). Newnes. p. 124. ISBN 978-0-08-049398-5.
- ↑ Bracewell, Ron. The Fourier Transform and Its Applications. McGraw-Hill, 1965. p269
- ↑ K. S. Suresh Kumar (2008). Electric Circuits and Networks. Pearson Education India. p. 272. ISBN 978-81-317-1390-7.
- ↑ Kequian Zhang; Dejie Li (2007). Electromagnetic Theory for Microwaves and Optoelectronics (2nd ed.). Springer Science & Business Media. p. 13. ISBN 978-3-540-74296-8.
- ↑ 6.0 6.1 6.2 J. Hindmarsh (1984). Electrical Machines & their Applications (4th ed.). Elsevier. p. 58. ISBN 978-1-4832-9492-6.
- ↑ 7.0 7.1 Gross, Charles A. (2012). Fundamentals of electrical engineering. Thaddeus Adam Roppel. Boca Raton, FL: CRC Press. ISBN 978-1-4398-9807-9. OCLC 863646311.
- ↑ William J. Eccles (2011). Pragmatic Electrical Engineering: Fundamentals. Morgan & Claypool Publishers. p. 51. ISBN 978-1-60845-668-0.
- ↑ 9.0 9.1 Richard C. Dorf; James A. Svoboda (2010). Introduction to Electric Circuits (8th ed.). John Wiley & Sons. p. 661. ISBN 978-0-470-52157-1.
- ↑ Allan H. Robbins; Wilhelm Miller (2012). Circuit Analysis: Theory and Practice (5th ed.). Cengage Learning. p. 536. ISBN 978-1-285-40192-8.
- ↑ 11.0 11.1 11.2 Won Y. Yang; Seung C. Lee (2008). Circuit Systems with MATLAB and PSpice. John Wiley & Sons. pp. 256–261. ISBN 978-0-470-82240-1.
- ↑ Nilsson, James William; Riedel, Susan A. (2008). Electric circuits (8th ed.). Prentice Hall. p. 338. ISBN 978-0-13-198925-2., Chapter 9, page 338
- ↑ Singh, Ravish R (2009). "Section 4.5: Phasor Representation of Alternating Quantities". Electrical Networks. Mcgraw Hill Higher Education. p. 4.13. ISBN 978-0070260962.
- ↑ Clayton, Paul (2008). Introduction to electromagnetic compatibility. Wiley. p. 861. ISBN 978-81-265-2875-2.
- ↑ de Oliveira, H.M. and Nunes, F.D. About the Phasor Pathways in Analogical Amplitude Modulations. International Journal of Research in Engineering and Science (IJRES) Vol.2, N.1, Jan., pp.11-18, 2014. ISSN 2320-9364
अग्रिम पठन
- Douglas C. Giancoli (1989). Physics for Scientists and Engineers. Prentice Hall. ISBN 0-13-666322-2.
- Dorf, Richard C.; Tallarida, Ronald J. (1993-07-15). Pocket Book of Electrical Engineering Formulas (1 ed.). Boca Raton,FL: CRC Press. pp. 152–155. ISBN 0849344735.
